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 A B S T R A C T

Image reconstruction in photoacoustic tomography relies on an accurate knowledge of the speed of sound in 
the target. However, the speed of sound distribution is not generally known, which may result in artefacts in 
the reconstructed distribution of initial pressure. Therefore, reconstructing the speed of sound simultaneously 
with the initial pressure would be valuable for accurate imaging in photoacoustic tomography. Furthermore, 
the speed of sound distribution could provide additional valuable information about the imaged target. In 
this work, simultaneous reconstruction of initial pressure and speed of sound in photoacoustic tomography is 
studied. This inverse problem is known to be highly ill-posed. To overcome this, we study an approach where 
the ill-posedness is alleviated by utilising multiple photoacoustic data sets that are generated by different initial 
pressure distributions within the same imaged target. Then, these initial pressure distributions are reconstructed 
simultaneously with the speed of sound distribution. A methodology for solving this minimisation problem 
is formulated using a gradient-based iterative approach equipped with bound constraints and a multigrid 
approach. The methodology was evaluated with numerical simulations. Different approaches for generating 
multiple initial pressure distributions and their effect on the solution of the image reconstruction problem were 
studied. The results show that initial pressure and speed of sound can be simultaneously reconstructed from 
photoacoustic data. Furthermore, utilising multiple initial pressure distributions improves the reconstructions 
such that the locations of initial pressure and speed of sound inhomogeneities can be better distinguished and 
image artifacts are reduced.
. Introduction

Photoacoustic tomography (PAT) is a biomedical imaging modal-
ty developed during recent decades [1,2]. In photoacoustic tomog-
aphy, generation of acoustic pressure waves by the photoacoustic 
ffect is triggered by an external excitation of a near-infrared light. 
hese pressure waves propagate inside the target, and are measured 
n its boundary using ultrasound sensors. Then, an image of the target 
s reconstructed from these measurements. PAT is a hybrid imaging 
odality that combines the unique contrast of optical imaging and the 
igh resolution of ultrasound. As a result, it has various potential ap-
lications in medical and biomedical imaging, such as cancer detection 
nd monitoring, small animal imaging, and vascular imaging [3–5].
In the image reconstruction, i.e. inverse problem, of PAT, the initial 

ressure distribution is reconstructed. Different image reconstruction 
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methods for PAT have been developed, such as analytical methods, fil-
tered back-projection, time reversal, model-based variational methods, 
the Bayesian approach, and machine learning methods [6–11]. Many of 
the methods assume that the propagation of the acoustic waves occurs 
in a homogeneous medium, i.e. assuming a constant speed of sound. 
However, this assumption is rarely valid in real biological tissues. If the 
heterogeneous speed of sound is not taken into account, reconstructed 
initial pressure distributions can suffer from artefacts and aberrations, 
see e.g. Ref. [12] and references therein.

Different approaches for compensating the unknown speed of sound 
have been studied. For example, the ‘‘best possible’’ constant speed 
of sound has been selected by performing PAT image reconstructions 
using different speed of sound values and then selecting the one that 
maximises some image quality metrics [13,14]. However, reconstructed 
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images can still suffer from artefacts in targets containing heteroge-
neous speed of sound. Alternatively, other approaches, such as deep 
learning [15,16] and Bayesian approximation error modelling [17], 
have been used to compensate errors due to using constant speed of 
sound in the image reconstruction. These methods rely on the training 
datasets and models, that need to be accurate in terms of good gener-
alisation. One approach to overcome the problem of unknown speed 
of sound has been to utilise ultrasound measurements to determine the 
speed of sound. This has been implemented by first reconstructing the 
speed of sound distribution from ultrasound measurements, and then 
reconstructing the initial pressure from photoacoustic data utilising 
the predefined speed of sound in the reconstruction process [18–22]. 
Alternatively, in Ref. [23] an approach where the speed of sound 
and initial pressure were simultaneously reconstructed using both full 
wave-field ultrasound tomography data and photoacoustic data was 
proposed. Reconstruction of speed of sound from additional data poses 
more requirements for the measurement system, and also increases the 
computational complexity of the image reconstruction process.

An ideal approach, as it would require no additional hardware, 
to overcome challenges due to unknown speed of sound would be to 
reconstruct the speed of sound simultaneously with the initial pressure 
from photoacoustic data alone. In addition, when reconstructing the 
speed of sound simultaneously with the initial pressure, additional 
quantitative information about the target could be gained, since the 
reconstructed speed of sound can provide interesting knowledge about 
the properties of the target tissue. For example, the aim in ultra-
sound computed tomography is to reconstruct a spatially varying speed 
of sound and utilise that information in medical or biomedical pur-
poses [24,25]. In Ref. [26], the linearised problem of reconstructing 
the initial pressure and speed of sound simultaneously was shown to 
be unstable, suggesting the instability of the nonlinear problem. On 
the other hand, simultaneous reconstruction of spatially varying initial 
pressure and a constant speed of sound has been shown to have a 
unique solution [27]. In the case where both of these parameters are 
spatially varying, a unique solution for the reconstruction problem 
can be found only when additional assumptions are made [28–30]. 
In Ref. [31], the instability of this problem was demonstrated with 
numerical simulations. These various studies, such as in Refs. [26,31], 
showing the ill-posedness of the problem, indicate that simultaneous 
reconstruction of initial pressure and speed of sound is highly difficult 
in practice without further prior knowledge.

The ill-posedness of the inverse problem can be mitigated using 
different approaches. For example, in the variational approach, regu-
larisation can be included to alleviate the ill-posedness of the image re-
construction problem [32]. Similarly, in the Bayesian framework [33], 
prior information of the imaged target can be incorporated, lead-
ing to improved condition of the inverse problem. These approaches 
have been utilised in PAT in simultaneous reconstruction of the initial 
pressure and speed of sound. In Ref. [34], the effect of adding tight 
constraints, based on prior knowledge about the imaged target, to the 
optimisation problem was studied indicating that the ill-posedness of 
the problem can be mitigated when more prior knowledge is included. 
In Refs. [35,36], a model-based variational reconstruction of initial 
pressure and speed of sound, when the speed of sound distribution was 
re-parameterised to a coarse discretisation, was proposed. This enabled 
reconstructing both of these parameters in a more stable manner. 
Furthermore, in Refs. [37–39] a so-called feature coupling approach 
was proposed, where the detector arrays were divided into subsets 
and different initial pressure distributions were reconstructed from 
each subset. Then, the speed of sound, in coarse discretisation, was 
reconstructed simultaneously with the initial pressure by maximising 
the correlation of the different photoacoustic reconstructions. However, 
these methods still require prior knowledge on the locations of different 
tissues to perform the coarse discretisation accurately.

In this work, we propose an approach for PAT where multiple initial 
pressure distributions are reconstructed simultaneously with the speed 
2 
of sound distribution. With this approach, the number of unknown 
parameters grows compared to a situation of a single initial pressure 
distribution. However, more data containing information about the 
unknown speed of sound distribution is gained. This alleviates the ill-
posedness of the problem, and thus facilitates numerical solving of 
the related minimisation problem. In practise, these different initial 
pressure distributions could be generated using various approaches. For 
example, imaged target can be illuminated from different directions or 
by using spatially modulated illuminations patterns. This approach is 
utilised in quantitative PAT to overcome the non-uniqueness of simul-
taneous reconstruction of optical absorption and scattering coefficients, 
see Refs. [40–42] for directional and Ref. [43] for spatially modulated 
illuminations. In addition, illuminations from different directions have 
been utilised in simultaneous reconstruction of optical absorption and 
the speed of sound distributions in quantitative PAT [44]. Another 
possibility to generate different initial pressure distributions would 
be to use a single illumination pattern but different wavelengths of 
light. Furthermore, an approach where an additional optical absorber 
is placed to the imaged target, such as on its boundary, could be 
utilised, for example, similarly as in Ref. [45] for laser-induced ul-
trasound tomography. The position of this absorber could be varied, 
and thus the external photoacoustic source would lie in different posi-
tion, generating different initial pressure distribution that would result 
into acoustic pressure waves from different positions. In this work, to 
study the proposed approach, different initial pressure distributions 
are generated using three approaches: by using illuminations from 
different directions, by using different wavelengths of light, and by 
adding additional absorbers to the target.

The rest of the paper is organised as follows. In Section 2, the 
forward modelling of photoacoustic tomography and simultaneous re-
construction of the initial pressure and speed of sound are presented. 
In Section 3, optimisation strategies used in the image reconstruction 
are presented. In Section 4, the numerical simulations to evaluate the 
methodology are described and their results are shown. Furthermore, 
the results are discussed and conclusions are given in Section 5.

2. Methodology

2.1. Forward model

Propagation of acoustic waves generated by an initial pressure dis-
tribution is known as the initial value problem in acoustics. This initial 
value problem for the wave equation in an acoustically heterogeneous 
non-absorbing medium is given by 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝑐2(𝑟)

𝜕2

𝜕𝑡2
𝑝(𝑟, 𝑡) − ∇2𝑝(𝑟, 𝑡) = 0, 𝑟 ∈ R𝑑 , 𝑡 ∈ [0, 𝑇 ]

𝑝(𝑟, 𝑡 = 0) = 𝑝0(𝑟),
𝜕
𝜕𝑡
𝑝(𝑟, 𝑡 = 0) = 0,

(1)

where 𝑟 is the position, 𝑑 is the dimension, 𝑝0(𝑟) is the initial pressure 
distribution, 𝑝(𝑟, 𝑡) is the acoustic pressure at a time 𝑡, and 𝑐(𝑟) is the 
speed of sound [46]. In this work, we approximate the solution of the 
wave Eq. (1) using a k-space pseudo-spectral method implemented in 
the k-Wave MATLAB toolbox [47].

2.2. Image reconstruction

In this work, data is considered to consist of multiple photoacoustic 
datasets that are created by different initial pressure distributions in 
the imaged target. Then, the aim of the inverse problem is to simul-
taneously reconstruct these different initial pressure distributions and 
the speed of sound distribution.

Let us consider a situation where 𝑖 = 1,… , 𝐼 different initial pressure 
distributions 𝑝𝑖0(𝑟) are generated inside the imaged target. Let us use 
a notation 𝑝𝑖 =

(

𝑝𝑖 ,… , 𝑝𝑖
)

∈ R𝑁  to describe an initial pressure 
0 0,1 0,𝑁
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distribution represented in a spatial discretisation, where 𝑁 is the 
number of spatial discretisation points. Similarly, the discretised speed 
of sound is 𝑐 =

(

𝑐1,… , 𝑐𝑁
)

∈ R𝑁 . The photoacoustic (measurement) 
data 𝑦𝑖 ∈ R𝑀 , that is corrupted with measurement noise 𝑒𝑖 ∈ R𝑀 , is 
generated by the initial pressure 𝑝𝑖0. This data is sampled at a discrete 
set of sensor locations with a finite number of time steps. Further, let us 
denote the unknown multiple initial pressure distributions and speed 
of sound as 𝑥 =

(

𝑝10,… , 𝑝𝐼0 , 𝑐
)⊤ ∈ R(𝐼+1)𝑁 , full (measurement) data 

as 𝑦 =
(

𝑦1,… , 𝑦𝐼
)⊤ ∈ R𝐼𝑀  and noise 𝑒 =

(

𝑒1,… , 𝑒𝐼
)⊤ ∈ R𝐼𝑀 . The 

observation model with an additive noise can be written as 
𝑦 = 𝑓 (𝑥) + 𝑒, (2)

where 𝑓 (𝑥) = (

𝑓 1(𝑥1),… , 𝑓 𝐼 (𝑥𝐼 )
)⊤ , 𝑓 𝑖 ∶ R2𝑁 → R𝑀  is the discretised 

forward operator that maps unknown parameters 𝑥𝑖 = (

𝑝𝑖0, 𝑐
)⊤ ∈ R2𝑁

to the data 𝑦𝑖.
The solution to the inverse problem can be calculated by solving an 

optimisation problem 
𝑥̂ = argmin

𝑥
{ 𝜀(𝑥) } , (3)

where 𝜀(𝑥) is the objective function to be minimised. In this work, the 
objective function is of the form 

𝜀(𝑥) =
𝐼
∑

𝑖=1

1
2
‖

‖

‖

𝐿𝑒𝑖
(

𝑦𝑖 − 𝑓 𝑖(𝑥𝑖) − 𝜂𝑒𝑖
)

‖

‖

‖

2

+
𝐼
∑

𝑖=1

1
2
‖

‖

‖

‖

𝐿𝑝𝑖0

(

𝑝𝑖0 − 𝜂𝑝𝑖0

)

‖

‖

‖

‖

2

+1
2
‖

‖

‖

𝐿𝑐
(

𝑐 − 𝜂𝑐
)

‖

‖

‖

2
,

(4)

where the first term is the data likelihood, where 𝜂𝑒𝑖  is the mean of the 
noise and 𝐿𝑒𝑖  is a weighting matrix, that in a Bayesian framework is the 
Cholesky decomposition of the inverse of the noise covariance matrix 
𝐿⊤
𝑒𝑖
𝐿
𝑒𝑖
= 𝛤−1

𝑒𝑖
 [10,33,48]. Further, the last two (regularising) terms are 

the priors for the initial pressure and the speed of sound, where 𝜂𝑝𝑖0  and 
𝜂𝑐 are the means of the initial pressure and speed of sound, respectively, 
and 𝐿⊤

𝑝𝑖0
𝐿
𝑝𝑖0

= 𝛤−1
𝑝𝑖0

 and 𝐿⊤𝑐 𝐿𝑐 = 𝛤−1
𝑐  are the Cholesky decompositions, 

where 𝛤𝑝𝑖0  and 𝛤𝑐 are the covariance matrices of the initial pressure and 
speed of sound.

3. Optimisation

Optimisation problem (3) can be solved using iterative methods. 
In this work, the limited memory Broyden–Fletcher–Goldfarb–Shanno 
(L-BFGS) method is used [49,50]. L-BFGS requires only the gradients 
of the objective functional to be calculated, and thus no second order 
derivatives are needed. Evaluation of the gradients can be implemented 
with the adjoint-state method.

Let us define the adjoint problem of the wave Eq. (1) as 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝑐2(𝑟)

𝜕2

𝜕𝑡2
𝑞(𝑟, 𝑡) − ∇2𝑞(𝑟, 𝑡) = 𝑆(𝑟, 𝑡), 𝑟 ∈ R𝑑 , 𝑡 ∈ [0, 𝑇 ]

𝑞(𝑟, 0) = 0,
𝜕
𝜕𝑡
𝑞(𝑟, 0) = 0,

(5)

where 𝑞(𝑟, 𝑡) is the adjoint acoustic pressure (the solution of the adjoint 
equation) and 𝑆(𝑟, 𝑡) = 𝑝(𝑟, 𝑇 − 𝑡)𝑤(𝑟, 𝑡) is the time-varying source term 
where 𝑤(𝑟, 𝑡) is a window function mapping the pressure field accessible 
to the sensors [51]. Considering the discretised parameters and models 
defined in Section 2.2, the adjoint field 𝑞𝑖 =

(

𝑞𝑖1,… , 𝑞𝑖𝑁
)⊤ ∈ R𝑁𝑇

can be numerically approximated by setting a (discrete) source to the 
discretised adjoint Eq. (5) as 

𝑆 𝑖 =
(

𝐿⊤𝑒𝑖𝐿𝑒𝑖
)

(

𝑦𝑖 − 𝑓 𝑖(𝑥𝑖)
)

, (6)

where term 𝐿⊤
𝑒𝑖
𝐿
𝑒𝑖
 is acting as a weight to the residual (𝑦𝑖 − 𝑓 𝑖(𝑥𝑖)). 

The functional gradient for the initial pressure, i.e. the gradient of 
3 
Algorithm 1 L-BFGS update with two-loop recursion
𝜙 ←

𝜕𝜀(𝑥𝑘)
𝜕𝑥𝑘

for 𝑗 = 𝑘 − 1, 𝑘 − 2, ..., 𝑘 − 𝑙 do
 𝜆𝑗 ← 𝜌𝑗𝜘

⊤
𝑗 𝑞

 𝜙 ← 𝜙 − 𝜆𝑗𝜑𝑖
end for
𝜓 ← 𝐻0

𝑘𝜙
for 𝑗 = 𝑘 − 𝑙, 𝑘 − 𝑙 + 1, ..., 𝑘 − 1 do
 𝛽 ← 𝜌𝑗𝜑

⊤
𝑗 𝜓

 𝜓 ← 𝜓 − 𝜘𝑗 (𝜆𝑗 − 𝛽)
end for
𝐻𝑘

𝜕𝜀(𝑥𝑘)
𝜕𝑥𝑘

← 𝜓

Eq. (4) with respect to initial pressure 𝑝𝑖0, can be calculated with the 
adjoint-state method as 
𝜕𝜀(𝑥)
𝜕𝑝𝑖0

= 𝑞𝑖(𝑟, 𝑇 ) + 𝐿⊤
𝑝𝑖0
𝐿
𝑝𝑖0

(

𝑝𝑖0 − 𝜂𝑝𝑖0

)

, (7)

where 𝑞𝑖(𝑟, 𝑇 ) is the solution of the adjoint Eq. (5) at discretised position 
𝑟 at time instance 𝑡 = 𝑇 . In addition, the functional gradient with 
respect to speed of sound 𝑐 can be written as [52,53] 
𝜕𝜀(𝑥)
𝜕𝑐

=
𝐼
∑

𝑖=1
∫

𝑇

0

(

− 2
𝑐3
𝜕2𝑝𝑖(𝑟, 𝑡)
𝜕𝑡2

)⊤

𝑞𝑖(𝑟, 𝑇 − 𝑡) 𝑑𝑡 + 𝐿⊤𝑐 𝐿𝑐
(

𝑐 − 𝜂𝑐
)

. (8)

Let us denote the gradient of the objective function (4) as 

𝜕𝜀(𝑥)
𝜕𝑥

=

(

𝜕𝜀(𝑥)
𝜕𝑝10

,… ,
𝜕𝜀(𝑥)
𝜕𝑝𝐼0

,
𝜕𝜀(𝑥)
𝜕𝑐

)⊤

. (9)

On iteration 𝑘 of the L-BFGS algorithm, the parameter vector 𝑥 is 
updated as follows 

𝑥𝑘+1 = 
(

𝑥𝑘 − 𝛼𝑘𝐻𝑘
𝜕𝜀(𝑥𝑘)
𝜕𝑥𝑘

)

, (10)

where 𝐻𝑘 is the inverse Hessian approximation,  is the projector 
operator for bound constraints, and 𝛼𝑘 is the step length parameter. 
In L-BFGS, the approximation of the inverse Hessian 𝐻𝑘 is constructed 
by using 𝑙 previous gradient and parameter vector values [50]. This can 
be performed by updating 𝐻𝑘 with a formula
𝐻𝑘 =

(

𝑉 ⊤
𝑘−1 ⋯𝑉 ⊤

𝑘−𝑙
)

𝐻0
𝑘
(

𝑉𝑘−𝑙⋯𝑉𝑘−1
)

+ 𝜌𝑘−𝑙
(

𝑉 ⊤
𝑘−1 ⋯𝑉 ⊤

𝑘−𝑙+1
)

𝜘𝑘−𝑙𝜘
⊤
𝑘−𝑙

(

𝑉𝑘−𝑙+1 ⋯𝑉𝑘−1
)

+ 𝜌𝑘−𝑙+1
(

𝑉 ⊤
𝑘−1 ⋯𝑉 ⊤

𝑘−𝑙+2
)

𝜘𝑘−𝑙+1𝜘
⊤
𝑘−𝑙+1

(

𝑉𝑘−𝑙+2 ⋯𝑉𝑘−1
)

+ ⋯

+ 𝜌𝑘𝜘𝑘𝜘
⊤
𝑘 ,

where 𝜘𝑘 = 𝑥𝑘 − 𝑥𝑘−1, 𝜌𝑘 = 1
𝜑⊤𝑘 𝜘𝑘

, 𝑉𝑘 = I − 𝜌𝑘𝜑𝑘𝜘
⊤
𝑘 , 𝜑𝑘 =

𝜕𝜀(𝑥𝑘)
𝜕𝑥𝑘

− 𝜕𝜀(𝑥𝑘−1)
𝜕𝑥𝑘−1

and I is an identity matrix. In the equation, initial inverse Hessian 
approximation 𝐻0

𝑘 is chosen as 𝐻0
𝑘 =

𝜘⊤𝑘 𝜑𝑘
𝜑⊤𝑘 𝜑𝑘

I. Implementation of the 
L-BFGS update direction can be performed with a two-loop recursion, 
described in Algorithm 1 [50].  The operator (𝑧) to implement the 
bound constraints can be written as 

(𝑧) =

⎧

⎪

⎨

⎪

⎩

𝐿, 𝑧 ≤ 𝐿
𝑧, 𝐿 < 𝑧 < 𝑈
𝑈, 𝑈 ≤ 𝑧,

(11)

where 𝐿 and 𝑈 are the lower and upper bounds. Furthermore, the 
step length is evaluated on each iteration with a backtracking line-
search [50].

3.1. Improving convergence

Optimisation problem (3)–(4) is non-convex. This means that, when 
iteratively solving the inverse problem, it is possible to get stuck in a 
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local minimum without finding the global minimum. In seismic and 
ultrasound imaging, this issue is often referred to as ‘‘a cycle skipping 
problem’’, as it typically leads to a phenomenon where cycles of the 
sinusoidal simulated data traces are matched to incorrect ones in the 
(measured) time series data [54]. Similar problem can occur in PAT 
when the speed of sound is simultaneously reconstructed with the 
initial pressure. To avoid the cycle skipping problem, one can try to 
reduce the high frequencies in the early stage of the iteration algorithm 
and increase the frequency content as iteration proceeds. This can be 
achieved, for example, by modifying the order of spatial discretisation 
during the iteration. In addition, different approaches to tackle the 
cycle skipping problem have been proposed, for example, low-pass 
filtering [52,55] and modifying the objective function [56].

In this work, we utilise the multigrid approach, where different dis-
cretisations [52,57] are used during the iterative image reconstruction 
process to incorporate frequency content gradually to avoid the cycle 
skipping problem. The image reconstruction process is started with a 
coarse discretisation and the discretisation order is increased during 
the iterations. In every discretisation, the iterative image reconstruction 
process is continued until the solution converges. The reconstructed 
parameters are then linearly interpolated to a finer discretisation and 
the interpolated values for the parameter distribution are used as an 
initial guess for the iteration process in the finer discretisation. This is 
repeated until the problem has converged in the finest discretisation. 
The discretisation size defines the range of supported frequencies, and 
by using a coarse discretisation, only lower frequencies are supported. 
This smoothens the objective functional and enables the solution to 
converge to the neighbourhood of the global minimum by avoiding 
local minima [52]. That is, the solution is initialised near the global 
minimum when the grid is refined. The approach does not only help to 
avoid getting stuck in local minimums, but it also reduces the total com-
putation time, since iterations are started with coarser discretisations 
that are computationally less expensive [58,59].

Another possible strategy, that is used in ultrasound and seismic 
imaging to enhance convergence and numerical stability of the prob-
lem, would be to reconstruct slowness 1∕𝑐(𝑟) or squared slowness 
1∕𝑐(𝑟)2 instead of directly reconstructing the speed of sound 𝑐(𝑟). This 
technique was not studied in this work, but more information can be 
found for example in Ref. [57].

4. Simulations

To evaluate the proposed methodology, numerical simulations in 
2D were performed. These were carried out in a rectangular 20 mm ×
20 mm domain. In all simulations, 236 acoustic point-like sensors were 
evenly placed in a distance of 0.2 mm from the boundary covering all 
sides of the domain. This setup simulates a planar detection geometry 
such as Fabry–Pérot scanner, see e.g. Refs. [60–62]. We studied the 
simultaneous reconstruction of the initial pressure and the speed of 
sound with the proposed approach where multiple different initial pres-
sure distributions were utilised. The approach was compared against 
(conventional) approach, where only one initial pressure distribution 
and the speed of sound distribution were reconstructed simultaneously.

4.1. Simple phantom

4.1.1. Phantom and data simulation
In the first set of simulations, a simplified numerical phantom con-

sisting of different initial pressure and speed of distributions was used 
to study the proposed methodology for simultaneous reconstruction of 
these parameters.

First, a numerical phantom consisting of circular inclusions, was 
studied (see Fig.  1 in Section 4.1.3). The speed of sound values were 
of low-contrast, mimicking typical values of soft biological tissue, with 
the target consisting of nine circular inclusions with 1580 m∕s in a 
constant background with 1430 m∕s. For the proposed approach, four 
4 
Fig. 1. Reconstructions in a simple geometry phantom with a low speed of sound 
contrast. First column: True parameters. Second column: Reconstructed initial pressure 
𝑝10, 𝑝20, 𝑝30 and 𝑝40, and speed of sound 𝑐 distributions using the proposed approach. Third 
column: Reconstructed initial pressure 𝑝10 and speed of sound 𝑐 distributions using the 
reference approach. Units are in Pa and m∕s for initial pressures and speed of sound, 
respectively.

different initial pressure distributions 𝑝10, 𝑝20, 𝑝30 and 𝑝40 were simulated. 
These consisted of a circular inclusions in a zero background. The initial 
pressure in the inclusions was set arbitrarily to 10Pa, but due to linearity 
of the system, this could be scaled. In the reference approach, the initial 
pressure distribution 𝑝10 was used.

In the second simulation, a similar numerical phantom as previously 
was used but the speed of sound distribution included also a water bath 
mimicking layer, which is typical in many applications of photoacoustic 
tomography (Fig.  2 in Section 4.1.3). The speed of sound values of the 
background, circular inclusions and water bath was set to 1430 m∕s, 
1580 m∕s and 1482 m∕s, respectively. The same four different initial 
pressure distributions 𝑝10, 𝑝20, 𝑝30 and 𝑝40 as in the first simulation were 
used. The initial pressure distribution 𝑝10 was used in the reference 
approach.

In the third simulation, the speed of sound distribution consisted, 
in addition to the circular inclusions, of a rectangular inclusion with 
a higher contrast to the background, mimicking values typical of a 
bone-like tissue (Fig.  3 in Section 4.1.3). The speed of sound in the 
background, circular inclusions and bone mimicking inclusion were set 
to 1430 m∕s, 1580 m∕s and 2500 m∕s, respectively. Four different initial 
pressure distributions 𝑝10, 𝑝20, 𝑝30 and 𝑝40 were used also in this simulation. 
In the reference approach, the initial pressure distribution 𝑝10 was used, 
similarly as in the previous simulations.
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Table 1
Discretisation parameters of the data simulation grid and image reconstruction (multi) 
grids of different orders: pixel size 𝛥𝑧 (𝜇m), the number of pixels 𝑁𝑧 in the target 
domain, the number of pixels to place the acoustic sensors 𝑁S

𝑧  added outside the target 
domain on each side, the number of pixels in the PML 𝑁PML

𝑧  added outside the target 
and sensor domains on each side, time discretisation 𝛥𝑡 (ns), number of time points 𝑁𝑡, 
and peak frequency 𝑓𝑝 (MHz) supported by the grid. Multigrid discretisations 1-4 were 
used for simple target and 2-5 were used for tissue-mimicking target.
 Grid 𝛥𝑧 𝑁𝑧 𝑁S

𝑧 𝑁PML
𝑧 𝛥𝑡 𝑁𝑡 𝑓𝑝  

 Data simulation 63.7 335 10 20 12.1 1747 11.2 
 Multigrid discretisation 1 526.3 39 2 19 99.9 212 1.4  
 Multigrid discretisation 2 370.4 55 4 31 70.4 301 2.0  
 Multigrid discretisation 3 227.3 89 4 14 43.2 490 3.2  
 Multigrid discretisation 4 156.3 129 6 17 29.7 712 4.1  
 Multigrid discretisation 5 101.0 199 8 14 19.2 1101 6.4  

To simulate the photoacoustic data from an initial pressure, the 
target domain was discretised into 335 × 335 pixel grid with a pixel size 
of 63.7 μm. A small layer of 10 pixels, where the acoustic sensors were 
located, was added outside of the target domain. In addition, a perfectly 
matched layer (PML) of 20 pixels was added to each side (outside of the 
target and sensor domains) to reduce reflections on the boundary. The 
size of the PML-layer was chosen such that the overall grid size would 
have the smallest prime factors to reduce computational time with k-
Wave [47]. In the temporal discretisation, 1747 time points with a time 
step of 12.1ns was used. These choices enabled the acoustic simulations 
with a peak frequency support of 11.2 MHz. Discretisation parameters 
used in the data simulation are listed in Table  1. In all simulations, 
additive Gaussian distributed noise with 1% of peak-to-peak amplitude 
of the corresponding simulated photoacoustic data, was added to the 
data.

4.1.2. Image reconstruction
Image reconstruction was performed using a different discretisa-

tion compared to data simulation to avoid the inverse crime. In all 
situations, the multigrid approach (Section 3.1) was used, and the com-
putational domain was discretised using four different grids, starting 
from the coarsest grid and gradually moving to more dense grids. The 
simulated noisy measurement data was interpolated to each temporal 
grid used in the image reconstruction. Selecting multigrid discretisation 
can be done in different ways. In this work, the finest discretisation 
was selected to be as dense as possible based on the computational 
cost, such that it supported the desirable frequency content. The coarser 
discretisations were selected based on the computational burden, such 
that the interpolation errors between different discretisations were 
reduced. Details of the discretisations that were used in the image 
reconstruction are given in Table  1.

As the prior model, the Ornstein–Uhlenbeck prior was used [10,
63,64]. It is a Gaussian prior model that promotes local correlation, 
but also allows high contrast changes in the reconstructed parameter 
values. This kind of prior model can be seen as an appropriate for pho-
toacoustic imaging, where the images often consists of heterogeneous 
background and inclusions with sharp edges, such as blood vessels. 
There exists a variety of other possible priors models. For example, 
Total Variation (TV) prior model has been utilised in photoacoustic 
imaging since it promotes discontinuities of the target. More infor-
mation about different prior models can be found, for example, in 
Refs. [32,63]. In the Ornstein–Uhlenbeck prior, the covariance matrix 
for each distinctive parameter distribution 𝑧 (different initial pressures 
and the speed of sound) can be presented as 𝛤𝑧 = 𝜎2𝑧𝛯, where 𝜎𝑧 is the 
standard deviation and the unit covariance matrix is defined as 𝛯𝑖𝑗 =
exp

(

− ‖𝑟𝑖−𝑟𝑗‖
𝜏

)

. Here, 𝑟𝑖 and 𝑟𝑗 are the pixel locations and characteristic 
length scale 𝜏 controls the amount of spatial smoothness of adjacent 
pixels. The prior mean 𝜂𝑧 for each parameter was chosen as the median 
value of the interval of the true parameter distribution in the case of 
targets with low contrast speed of sound. For the target, where the 
5 
Fig. 2. Reconstructions in a simple geometry phantom with a low speed of sound 
contrast and a water bath mimicking layer. First column: True parameters. Second 
column: Reconstructed initial pressure 𝑝10, 𝑝20, 𝑝30 and 𝑝40, and speed of sound 𝑐
distributions using the proposed approach. Third column: Reconstructed initial pressure 
𝑝10 and speed of sound 𝑐 distributions using the reference approach. Units are in Pa and 
m∕s for initial pressures and speed of sound, respectively.

speed of sound had a higher contrast, prior mean for speed of sound 
was chosen as 1482m∕s i.e. value between the background and circular 
inclusions of the true parameter distribution. Standard deviations 𝜎𝑧
were chosen so that 𝜎𝑧 = 1∕4

(

max(𝑧true) − min(𝑧true)
)

. With these 
choices, it is assumed that 95% of the reconstructed parameter values 
would lie within the values of the true parameter range, except for 
the speed of sound distribution in high contrast simulations, where 
most of the parameter values were expected to lie between the values 
of true background and circular inclusions. Characteristic length scale 
value 𝜏 = 1.5 mm was used. Noise was modelled as additive with zero 
mean and a standard deviation corresponding to 1% of the peak-to-peak 
amplitude of the simulated noisy signal for every dataset corresponding 
to different initial pressures.

Throughout the work, memory value 𝑙 = 20 in the L-BFGS method 
was used. Initial guess 𝑥0 for the reconstructed parameters was chosen 
such that the initial pressure was zero and speed of sound was the 
mean of the prior. In addition, lower bound 𝐿𝑝0 = 0 for initial pressures 
was used, with no upper bound throughout the work. For the speed of 
sound, bounds 𝐿𝑐 = 1300 m∕s and 𝑈𝑐 = 1800 m∕s were used, assuming 
the values of speed of sound lies within realistic interval for soft tissue 
targets [65], except in simulations with a high speed of sound contrast, 
the upper bound 𝑈𝑐 = 3000 m∕s was used. Using bound constraints for 
the speed of sound enhances the stability of the image reconstruction 
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Fig. 3. Reconstructions in a simple geometry phantom with a high speed of sound 
contrast. First column: True parameters. Second column: Reconstructed initial pressure 
𝑝10, 𝑝20, 𝑝30 and 𝑝40, and speed of sound 𝑐 distributions using the proposed approach. Third 
column: Reconstructed initial pressure 𝑝10 and speed of sound 𝑐 distributions using the 
reference approach. Units are in Pa and m∕s for initial pressures and speed of sound, 
respectively.

process, and also ensures that the solution stays numerically stable 
during the wave propagation and gradient calculations.

To evaluate the reconstructed images quantitatively, the relative 
errors of initial pressure 𝐸𝑝𝑖0  and speed of sound 𝐸𝑐 between the 
reconstructed and true parameter distributions were calculated as 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐸𝑝𝑖0
= 100% ⋅

‖𝑝𝑖0,true − 𝑝
𝑖
0,rec‖

‖𝑝𝑖0,true‖
,

𝐸𝑐 = 100% ⋅
‖𝑐true − 𝑐rec‖

‖𝑐true‖
,

(12)

where 𝑝𝑖0,true and 𝑐true are the true, and 𝑝𝑖0,rec and 𝑐rec are the recon-
structed parameter distributions for the initial pressure and speed of 
sound, respectively.

4.1.3. Results
Reconstructed initial pressure and speed of sound distributions for 

the simple phantom with a low speed of sound contrast are shown in 
Fig.  1. As we can see, the reconstructed initial pressure distributions 
resemble the true parameters well. Locations and parameter values of 
the inclusions are close to the true parameter. For the reconstructed 
speed of sound, the shape of the inclusions resembles the true target 
distributions, but the speed of sound values are a bit lower than the true 
6 
Fig. 4. Optical absorption 𝜇a and reduced scattering 𝜇′
s coefficients used to simulate 

initial pressure distributions when multiple illuminations were used. Units are in mm−1.

Table 2
Relative errors of reconstructed initial pressures 𝐸𝑝10 (%), 𝐸𝑝20 (%), 𝐸𝑝30 (%) and 𝐸𝑝40 (%), 
and speed of sound 𝐸𝑐 (%) distributions in a simple geometry phantom.
 𝐸𝑝10 𝐸𝑝20 𝐸𝑝30 𝐸𝑝40 𝐸𝑐  
 Low contrast 17.0 17.5 17.3 20.0 2.0  
 Reference 24.9 3.2  
 Water bath 17.5 18.2 17.3 18.8 2.1  
 Reference 26.0 3.5  
 High contrast 24.8 23.9 22.1 26.0 12.0 
 Reference 42.8 14.5 

inclusion values. Also the reconstructed background speed of sound 
suffers from artefacts, mainly in the vicinity of the initial pressure in-
clusions. The reconstructions calculated using the reference approach, 
where a (single) initial pressure and the speed of sound distributions 
were reconstructed, are also presented in Fig.  1. Similarly as with 
the proposed approach, the reconstructed initial pressure distribution 
resembles the true parameter in shape and parameter values. However, 
the reconstructed speed of sound suffers highly from artefacts. The 
inclusions are hardly recognisable and values are notably smaller than 
in the true inclusions, except in the case of the inclusion that matches in 
position with an initial pressure inclusion. The calculated relative errors 
are presented in Table  2. Relative error values for the initial pressure 
and speed of sound obtained with the proposed approach are lower 
than when compared to the reference approach.

Reconstructed initial pressure and speed of sound distributions for 
the simple phantom with a low speed of sound contrast and a water 
bath -mimicking layer are shown in Fig.  2. As it can be seen, the 
initial pressure distributions reconstructed with the proposed approach 
resemble the true parameter distributions well. Also, the reconstructed 
speed of sound resembles the true parameter as the circular inclusions 
and the water mimicking layer can be distinguished. However, similarly 
as in the previous simulation, the speed of sound values are a bit 
lower and some artefacts are visible. In the case of the reference 
approach (Fig.  2), the shape and values of the initial pressure inclusions 
resembles the true inclusions. The speed of sound distribution, on the 
other hand, suffers highly from artefacts, and the inclusions are difficult 
to distinguish. These observations can also be verified quantitatively 
with the calculated relative errors (see Table  2), where the relative 
errors are lower with the proposed approach than with the reference 
approach.

Initial pressure and speed of sound reconstructions for the simple 
phantom and a high speed of sound contrast are shown in Fig.  3. Now, 
the reconstructed initial pressure distributions resemble the true pa-
rameter distributions. However, all inclusions show small artefacts that 
were not present in the previous low-contrast phantom simulations. 
In the reconstructed speed of sound, the shape of the high contrast 
inclusion is detectable but the parameter values are lower than the 
true parameters. In addition, artefacts are visible in the reconstructed 
image. In the case of the reference approach (Fig.  3), the reconstructed 
initial pressure distribution resembles the true parameters. However, 
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it suffers from larger artefacts than the proposed approach, especially 
in the vicinity of the inclusions. The speed of sound reconstruction 
suffers highly from artefacts and the high contrast inclusions are barely 
distinguishable. Comparing the relative errors (Table  2) supports these 
findings: the relative errors are significantly lower with the proposed 
approach than with the reference approach.

Based on the simulations performed with a simplified numerical 
phantom, it appears that multiple initial pressure and speed of sound 
distributions can be reconstructed more accurately than a single initial 
pressure and speed of sound distributions. It also seems that, when the 
target contains large variations in the speed of sound values, recon-
structing the speed of sound is more difficult than in a low-contrast 
case.

4.2. Tissue-mimicking phantom

4.2.1. Phantom and data simulation
In the second set of simulations, a more realistic tissue-mimicking 

photoacoustic phantom was used. Furthermore, modelling of light 
transport and absorption was included in the data simulation. A numer-
ical breast phantom, that is described in [66], was taken as a target. 
2D cross-sectional (coronal plane) slices of the optical parameters 
and speed of sound distributions were extracted from a 3D numerical 
phantom and further cropped to match the simulation geometry used 
in this work (described in the previous section). The initial pressure 
distributions were simulated using a light propagation model. As a 
light propagation model, the diffusion approximation was used [41], 
see Appendix. Three different approaches to generate multiple initial 
pressures in the target were studied: illuminations from different direc-
tions, using multiple wave-lengths of light, and introducing additional 
absorbers on the boundary of the target.

In the first simulation, illuminations from different directions were 
used to generate different initial pressure distributions in the target. 
The optical parameters of the target (absorption and reduced scatter-
ing) are illustrated in Fig.  4. The target was illuminated from different 
directions using a planar illumination with the width of the side of 
the phantom, leading to four different initial pressure distributions: 
𝑝10 (illumination from the top), 𝑝20 (illumination from the left), 𝑝30
(illumination from the bottom) and 𝑝40 (illumination from the right). 
The simulated initial pressure and speed of sound distributions are 
presented in Fig.  6 that is shown later in Section 4.2.3. As a reference, 
a single illumination from the top and thus initial pressure 𝑝10 was used.

In the second simulation, we studied a situation where the tar-
get cannot be illuminated from all directions, and instead the initial 
pressure distributions were simulated by using multiple wavelengths 
of light. In this case, the target was assumed to consist of oxygenated 
and deoxygenated hemoglobin, water and fat. Target optical (spectral) 
parameters are illustrated in Fig.  5. Four different initial pressure 
distributions 𝑝10, 𝑝20, 𝑝30 and 𝑝40 were simulated by using wavelengths 
650 nm, 750 nm, 850 nm and 950 nm, respectively. In all illuminations, 
a planar illumination that covered the top and left sides of the domain 
was used. The simulated initial pressure and speed of sound distri-
butions shown in Fig.  7 that is shown later in Section 4.2.3. For the 
reference approach, the initial pressure 𝑝10 was used, i.e. data simulated 
with the wavelength 𝜆 = 650 nm.

In the third simulation, photoacoustic datasets were simulated by 
including additional absorbers to the imaged target. Now, the same 
multi-wavelength optical phantom was used as in the previous simu-
lations. However, additional absorbers were added on the boundary. 
One initial pressure distribution 𝑝10 was simulated without adding any 
exogenous absorbers and three initial pressure distributions 𝑝20, 𝑝30
and 𝑝40 were simulated by adding four exogenous absorbers with an 
absorption coefficient value of 𝜇a = 0.3 mm−1 to different positions in 
the target (see Fig.  5). The simulated initial pressure and speed of sound 
distributions shown in Fig.  8 (Section 4.2.3). In the reference approach, 
7 
Fig. 5. Volume fractions of deoxygenated HHb, and oxygenated HbO2
 hemoglobin, 

water water and fat fat , and reference scattering 𝜇′
s,ref at wavelength 𝜆ref = 800 nm

used to simulate initial pressure distributions when multiple wavelengths or exogenous 
absorbers were utilised. Locations of exogenous absorbers are highlighted with green 
colour in the top left figure. Units are in mm−1 for reference scattering.

the initial pressure target was the one without an exogenous absorber 
i.e. 𝑝10.

Photoacoustic data generated by the initial pressure distributions 
was simulated with the same discretisation and parameter settings as 
the data of the simple phantom (see Table  1). Furthermore, additive 
Gaussian distributed noise with 1% of peak-to-peak amplitude of the 
corresponding simulated photoacoustic data, was added to the data.

4.2.2. Image reconstruction
Image reconstruction was performed using a multigrid approach, 

similarly as with simple phantom, (see Sections 3.1 and 4.1.2). The 
tissue-mimicking target had structure with higher resolution compared 
to the simple target, and thus higher discretisation in the image re-
construction was needed. Details of the multigrid discretisation are 
presented in Table  1.

As a prior model, Ornstein–Uhlenbeck prior was used. Prior mean 𝜂𝑧
for each parameter was chosen as the median value of interval of the 
true parameter distribution, and standard deviations 𝜎𝑧 were chosen 
so that 𝜎𝑧 = 1∕4

(

max(𝑧true) − min(𝑧true)
)

. This means that 95% of the 
parameter values were expected to lie within the values of the true 
parameter range. Value 𝜏 = 1 mm for characteristic length scale was 
used. Similarly as in the simple target simulations, noise model of 1% 
additive and zero mean noise was used for every dataset corresponding 
to different initial pressures

Similarly as in simple target simulations, initial guess 𝑥0 for the 
reconstructed parameters was chosen such that the initial pressure was 
zero and speed of sound was the mean of the prior. In addition, bound 
constraints 𝐿𝑝0 = 0 with no upper bound for initial pressure, and 
𝐿𝑐 = 1300 m∕s and 𝑈𝑐 = 1800 m∕s for speed of sound were used.

4.2.3. Results
Reconstructed distributions of the initial pressure and speed of 

sound, when the true initial pressures were simulated by planar illu-
minations from different directions, are shown in Fig.  6. As it can be 
seen, the reconstructed initial pressure distributions resemble closely 
the true parameter distributions. In the reconstructed speed of sound 
distribution, the shape and location of the heterogeneities are well 
distinguishable and the speed of sound values are close to the true 
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Fig. 6. Reconstructions in a tissue-mimicking target with multiple illuminations. First 
column: True parameters. Second column: Reconstructed initial pressure 𝑝10, 𝑝20, 𝑝30 and 
𝑝40, and speed of sound 𝑐 distributions using the proposed approach. Third column: 
Reconstructed initial pressure 𝑝10 and speed of sound 𝑐 distributions using the reference 
approach. Units are in Pa and m∕s for initial pressures and speed of sound, respectively.

Table 3
Relative errors of reconstructed initial pressures 𝐸𝑝10 (%), 𝐸𝑝20 (%), 𝐸𝑝30 (%) and 𝐸𝑝40 (%), 
and speed of sound 𝐸𝑐 (%) distributions in a tissue-mimicking phantom.
 𝐸𝑝10 𝐸𝑝20 𝐸𝑝30 𝐸𝑝40 𝐸𝑐  
 Multi-illumination 28.1 26.9 28.6 30.6 1.7 
 Reference 38.4 3.1 
 Multi-wavelength 49.0 48.3 48.7 48.8 5.6 
 Reference 46.7 4.3 
 Exogenous absorbers 29.8 27.1 28.1 28.2 2.2 
 Reference 46.7 4.3 

speed of sound. Fig.  6 also shows the reference reconstructions of the 
initial pressure and speed of sound, where the true initial pressure 
distribution was simulated with a single illumination from the top. In 
this situation, the initial pressure distribution resembles the true param-
eter distribution. However, the speed of sound distribution is highly 
distorted and the target structure cannot be accurately distinguished. 
The calculated relative errors are presented in Table  3. These support 
the visual findings as the relative errors of the initial pressure 𝑝10 and 
speed of sound are lower for proposed approach than of the reference. 
Thus, it appears that using multiple illuminations from different direc-
tions could be used to improve simultaneous reconstruction of initial 
pressure and speed of sound.
8 
Fig. 7. Reconstructions in a tissue-mimicking target with multiple wavelengths of light. 
First column: True parameters. Second column: Reconstructed initial pressure 𝑝10, 𝑝20, 𝑝30
and 𝑝40, and speed of sound 𝑐 distributions using the proposed approach. Third column: 
Reconstructed initial pressure 𝑝10 and speed of sound 𝑐 distributions using the reference 
approach. Units are in Pa and m∕s for initial pressures and speed of sound, respectively.

Reconstructed initial pressure and speed of sound distributions, in 
the case where multiple wavelengths of light were utilised to simulate 
different initial pressure distributions, are shown in Fig.  7. The re-
constructed initial pressure distributions resemble the true parameters. 
However, small amount of artefacts are visible in the background. The 
reconstructed speed of sound distribution is distorted and suffers from 
artefacts. The reference reconstructions, when a single wavelength of 
light is utilised, are also presented in Fig.  7. Similarly as in the case 
of multiple wavelengths, the initial pressure distribution resembles the 
true parameter distribution and only small artefacts are visible in the 
reconstruction. However, the reconstructed speed of sound is distorted 
and suffers from artefacts. Comparing the relative errors, presented in 
Table  3, reveals that the relative errors of the reference approach are 
lower than the proposed approach. Thus, it seems that utilising multiple 
wavelengths is not necessary enough to improve the simultaneous 
reconstruction of initial pressure and speed of sound. We believe that 
this is related to whether absorption of light at different wavelengths 
by different chromophores produces spatially different initial pressure 
distributions. Now, in this simulation, the initial pressure distributions 
(Fig.  7), are spatially very similar, and may not ease the ill-posedness 
of the inverse problem.

Reconstructed initial pressure and speed of sound distributions in 
the case where exogenous absorbers were placed on the boundary of the 
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Fig. 8. Reconstructions in a tissue-mimicking target with exogenous absorbers. First 
column: True parameters. Second column: Reconstructed initial pressure 𝑝10, 𝑝20, 𝑝30 and 
𝑝40, and speed of sound 𝑐 distributions using the proposed approach. Third column: 
Reconstructed initial pressure 𝑝10 and speed of sound 𝑐 distributions using the reference 
approach. Units are in Pa and m∕s for initial pressures and speed of sound, respectively.

imaged are shown in Fig.  8. Now, the reconstructed initial pressure dis-
tributions resemble the true parameters well. The reconstructed speed 
of sound distribution is similar when compared to the true distribution 
since the shape, location and values of the heterogeneities are well 
distinguished. However, the image suffers from some artefacts. The 
reconstructions with the reference approach, i.e. without the additional 
absorbers, are also shown in Fig.  8. Also in this case, the initial pressure 
distribution resembles the true parameter distribution. However, it has 
more artefacts when compared to the reconstruction with the proposed 
approach. On the other hand, the reconstructed speed of sound suffers 
from severe artefacts. The relative errors given in Table  3 support the 
visual findings, as the relative errors of the initial pressure and speed of 
sound are lower with the proposed approach than the values calculated 
with the reference approach. Thus, it seems that utilising exogenous 
absorbers could aid in simultaneous reconstruction of initial pressure 
and speed of sound.

5. Discussion and conclusions

In this work, simultaneous reconstruction of initial pressure and 
the speed of sound distributions in PAT was studied. An approach 
were multiple initial pressure distributions are utilised to alleviate ill-
posedness of the image reconstruction problem was proposed. The 
approach was compared against a (conventional) approach where a 
9 
single initial pressure distribution and speed of sound distributions are 
reconstructed.

The approach was evaluated with numerical simulations. The results 
show that multiple initial pressure distributions and the speed of sound 
distribution can be reconstructed simultaneously from photoacoustic 
data. Furthermore, the quality of the reconstructions was found to 
be higher compared to a reference approach of reconstructing a sin-
gle initial pressure distribution and speed of sound simultaneously. 
Furthermore, results show that in more realistic imaging situations, 
these different initial pressures used could be formed by illuminating 
the target from multiple directions or by placing additional optical 
absorbers to the target. However, utilising only multiple wavelengths 
of light without additional absorbers, may not generate such initial 
pressure distributions that they would be different enough to ease the 
ill-posedness of the image reconstruction problem. On possibility to 
overcome this could be to try to select more optimal wavelengths that 
would produce distinctive initial pressure distributions. For example, 
the use of similar methods that are utilised in optimal wavelengths 
selection in multispectral photoacoustic tomography [67] could be 
studied.

Overall, the problem of reconstructing the initial pressure and speed 
of sound simultaneously is challenging and advanced methods to solve 
this problem are needed. In addition to requirement of careful imple-
mentation of these methods, such as including bound constraints and 
the use of multigrid methods, this also increases the computational 
expensive nature of the problem by the need of, for example, fine 
discretisations and multiple iterations. The future steps for research 
include, for example, extension of the work in realistic 3D geometries, 
and experiments with real photoacoustic data.
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Table A.1
Absorption spectra values used for pure oxygenated 𝜇a,oxy (mm−1) and deoxygenated 
𝜇a,deoxy (mm−1) hemoglobin, water 𝜇a,water (m−1) and fat 𝜇a,fat (m−1) with different 
wavelengths of light 𝜆 (nm) [70–72].
 𝜆 𝜇a,oxy 𝜇a,deoxy 𝜇a,water 𝜇a,fat 
 650 0.17 1.74 0.32 0.47 
 750 0.25 0.69 2.6 0.97 
 850 0.52 0.35 2.0 0.64 
 950 0.60 0.32 39.0 3.7  

Appendix. Simulating the initial pressure distributions with the 
diffusion approximation

In this work, the diffusion approximation (DA) was used to simulate 
absorbed optical energy density leading to different initial pressure 
distributions in the target. The DA is of the form 
⎧

⎪

⎨

⎪

⎩

−∇ ⋅ 𝜅(𝑟, 𝜆)∇𝛷(𝑟, 𝜆) + 𝜇a(𝑟, 𝜆)𝛷(𝑟, 𝜆) = 0, 𝑟 ∈ 𝛺

𝛷(𝑟, 𝜆) + 1
2𝜍𝑑
𝜅(𝑟, 𝜆)∇𝛷(𝑟, 𝜆) ⋅ 𝑛̂ =

{ 𝑠(𝑟,𝜆)
𝜍𝑑

, 𝑟 ∈ 𝜖

0, 𝑟 ∈ 𝜖 ⧵ 𝜕𝛺

(A.1)

where 𝛷(𝑟, 𝜆) is the photon fluence at wavelength 𝜆 and 𝜅(𝑟, 𝜆) =
(

𝑑(𝜇a(𝑟, 𝜆) + 𝜇′s(𝑟, 𝜆)
)−1 is the diffusion coefficient where 𝜇a(𝑟, 𝜆) and 

𝜇′s(𝑟, 𝜆) are absorption and reduced scattering coefficients [68,69]. Fur-
ther, 𝑠(𝑟, 𝜆) is the light source at a source position 𝜖 ⊂ 𝜕𝛺, 𝜍𝑑 is the 
dimension dependent parameter (𝜍2 = 1

𝜋  in 2D) and 𝑛̂ is an outward 
unit normal. Wavelength dependent optical absorption and reduced 
scattering coefficients can be calculated as 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜇a(𝑟, 𝜆) =
𝐿
∑

𝑙=1
𝑙(𝑟)𝜇a,𝑙(𝜆),

𝜇′s(𝑟, 𝜆) = 𝜇′s,ref (𝑟)
(

𝜆
𝜆ref

)

,
(A.2)

where 𝑙, 𝑙 = 1,… , 𝐿 are the volume fractions of 𝐿 chromophores 
and 𝜇a,𝑙 are the absorption spectra value of each distinctive chro-
mophore [70]. Absorption spectra values for different chromophores, 
that are used in this work, are presented in Table  A.1. Further, 𝜇′s,ref (𝑟)
is the reduced scattering coefficient at reference wavelength 𝜆ref . The 
initial pressure can be calculated from photon fluence as 
𝑝0(𝑟, 𝜆) = 𝛾(𝑟)𝜇a(𝑟, 𝜆)𝛷(𝑟, 𝜆), (A.3)

where 𝛾(𝑟) is the Grüneisen parameter that describes the photoacoustic 
efficiency of the target. In this work, the Grüneisen parameter is 
modelled as constant 𝛾(𝑟) = 1.

Solution of the diffusion approximation was numerically approxi-
mated using the finite element method (FEM) [41]. For this, the target 
was discretised into a triangular grid consisting of 47310 elements and 
23942 nodes, where the optical parameters and the calculated absorbed 
optical energy were presented in a piece-wise linear basis. Simulated 
initial pressures in the triangular FEM-grid were linearly interpolated 
to a pixel grid that was used to simulate the photoacoustic data.

Data availability

Data will be made available on request.

References

[1] P. Beard, Biomedical photoacoustic imaging, Interface Focus. 1 (2011) 602–631.
[2] C. Li, L. Wang, Photoacoustic tomography and sensing in biomedicine, Phys. 

Med. Biol. 54 (19) (2009) R59–R97.
[3] A. Attia, G. Balasundaram, M. Moothanchery, U. Dinish, R. Bi, V. Ntziachristos, 

M. Olivo, A review of clinical photoacoustic imaging: Current and future trends, 
Photoacoustics 16 (2019) 100144.
10 
[4] Y. Gu, Y. Sun, X. Wang, H. Li, J. Qiu, W. Lu, Application of photoacoustic 
computed tomography in biomedical imaging: A literature review, Bioeng. Transl. 
Med. 8 (2) (2022) e10419.

[5] L. Li, L.V. Wang, Recent advances in photoacoustic tomography, BME Front. 
2021 (2021) 1–17.

[6] X. Dean-Ben, D. Razansky, A practical guide for model-based reconstruction in 
optoacoustic imaging, Front. Phys. 10 (2022).

[7] A. Hauptmann, B. Cox, Deep learning in photoacoustic tomography: current 
approaches and future directions, J. Biomed. Opt. 25 (11) (2020) 112903.

[8] P. Kuchment, L. Kunyansky, Mathematics of Photoacoustic and Thermoacoustic 
Tomography, Springer, New York, 2011, pp. 817–865.

[9] J. Poudel, Y. Lou, M. Anastasio, A survey of computational frameworks for solv-
ing the acoustic inverse problem in three-dimensional photoacoustic computed 
tomography, Phys. Med. Biol. 64 (14) (2019) 14TR01.

[10] J. Tick, A. Pulkkinen, T. Tarvainen, Image reconstruction with uncertainty 
quantification in photoacoustic tomography, J. Acoust. Soc. Am. 139 (4) (2016) 
1951–1961.

[11] M. Xu, L.V. Wang, Universal back-projection algorithm for photoacoustic 
computed tomography, Phys. Rev. E 71 (6) (2005) 016706.

[12] T. Wang, W. Liu, C. Tian, Combating acoustic heterogeneity in photoacoustic 
computed tomography: A review, J. Innov. Opt. Heal. Sci. 13 (3) (2020) 
2030007.

[13] S. Mandal, E. Nasonova, X. Dean-Ben, D. Razansky, Optimal self-calibration of 
tomographic reconstruction parameters in whole-body small animal optoacoustic 
imaging, Photoacoustics 2 (2014) 128–136.

[14] B. Treeby, T. Varslot, E. Zhang, J. Laufer, P. Beard, Automatic sound speed 
selection in photoacoustic image reconstruction using an autofocus approach, J. 
Biomed. Opt. 16 (9) (2011) 090501.

[15] S. Jeon, W. Choi, B. Park, C. Kim, A deep learning-based model that reduces 
speed of sound aberrations for improved In Vivo photoacoustic imaging, IEEE 
Trans. Image Process. 30 (2021) 8773–8784.

[16] J. Poimala, B. Cox, A. Hauptmann, Compensating unknown speed of sound 
in learned fast 3D limited-view photoacoustic tomography, Photoacoustics 37 
(2024) 100597.

[17] J. Tick, A. Pulkkinen, T. Tarvainen, Modelling of errors due to speed of sound 
variations in photoacoustic tomography using a Bayesian framework, Biomed. 
Phys. Eng. Express 6 (2020) 015003.

[18] M. Dantuma, F. Lucka, S. Kruitwagen, A. Javaherian, L. Alink, R. Pompe van 
Meerdervoort, M. Nanninga, T. Op ’t Root, B. De Santi, J. Budisky, G. Bordovsky, 
E. Coffy, M. Wilm, T. Kasponas, S. Aarnink, L. de Geus-Oei, F. Brochin, T. 
Martinez, A. Michailovas, W. Muller Kobold, J. Jaros, J. Veltman, B. Cox, 
S. Manohar, Fully three-dimensional sound speed-corrected multi-wavelength 
photoacoustic breast tomography, 2023, arXiv:2308.06754. [Physics.Med-Ph].

[19] J. Jose, R. Willemink, W. Steenbergen, C. Slump, T. van Leeuwen, S. Manohar, 
Speed-of-sound compensated photoacoustic tomography for accurate imaging, 
Med. Phys. 32 (12) (2012) 7262–7271.

[20] E. Mercep, J. Herraiz, X. Dean-Ben, D. Razansky, Transmission-reflection optoa-
coustic ultrasound (TROPUS) computed tomography of small animals, Light.: Sci. 
Appl. 8 (18) (2019).

[21] S. Ranjbaran, H. Aghamiry, A. Gholami, S. Operto, K. Avanaki, Quantitative 
photoacoustic tomography using iteratively refined wavefield reconstruction 
inversion: A simulation study, IEEE Trans. Med. Imaging 43 (2) (2024) 874–885.

[22] J. Xia, C. Huang, K. Maslov, M. Anastasio, L. Wang, Enhancement of photoacous-
tic tomography by ultrasonic computed tomography based on optical excitation 
of elements of a full-ring transducer array, Opt. Lett. 38 (16) (2013) 3140–3143.

[23] T. Matthews, M. Anastasio, Joint reconstruction of the initial pressure and speed 
of sound distributions from combined photoacoustic and ultrasound tomography 
measurements, Inverse Problems 33 (2017) 124002.

[24] N. Duric, P. Littrup, Breast Imaging, Chapter: Breast Ultrasound Tomography, 
Intech, London, 2018.

[25] C. Li, N. Duric, P. Littrup, L. Huang, In vivo breast sound-speed imaging with 
ultrasound tomography, Ultrasound Med. Biol. 35 (10) (2009) 1615–1628.

[26] P. Stefanov, G. Uhlmann, Instability of the linearized problem in multiwave 
tomography of recovery both the source and the speed, Inverse Probl. Imaging 
7 (4) (2013) 1367–1377.

[27] H. Liu, G. Uhlmann, Determining both sound speed and internal source in 
thermo- and photo-acoustic tomography, Inverse Problems 31 (2015) 105005.

[28] S. Acosta, Recovery of pressure and wave speed for photoacoustic imaging under 
a condition of relative uncertainty, Inverse Problems 35 (2019) 115013.

[29] Y. Kian, G. Uhlmann, Determination of the sound speed and an initial source in 
photoacoustic tomography, 2023, arXiv:2302.03457. [Math.AP].

[30] C. Knox, A. Moradifam, Determining both the source of a wave and its speed in 
a medium from boundary measurements, Inverse Problems 36 (2020) 025002.

[31] C. Huang, K. Wang, R. Schoonover, L. Wang, M. Anastasio, Joint reconstruction 
of absorbed optical energy density and sound speed distributions in photoacoustic 
computed tomography: A numerical investigation, IEEE Trans. Comput. Imaging 
2 (2) (2016) 136–149.

[32] O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, F. Lenzen, Variational 
Methods in Imaging, Springer, New York, 2009.

[33] J. Kaipio, E. Somersalo, Statistical and Computational Inverse Problems, Springer, 
New York, 2005.

http://refhub.elsevier.com/S2213-5979(25)00071-0/sb1
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb2
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb2
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb2
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb3
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb3
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb3
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb3
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb3
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb4
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb4
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb4
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb4
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb4
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb5
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb5
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb5
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb6
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb6
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb6
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb7
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb7
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb7
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb8
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb8
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb8
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb9
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb9
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb9
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb9
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb9
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb10
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb10
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb10
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb10
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb10
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb11
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb11
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb11
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb12
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb12
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb12
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb12
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb12
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb13
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb13
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb13
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb13
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb13
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb14
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb14
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb14
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb14
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb14
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb15
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb15
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb15
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb15
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb15
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb16
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb16
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb16
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb16
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb16
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb17
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb17
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb17
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb17
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb17
http://arxiv.org/abs/2308.06754
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb19
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb19
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb19
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb19
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb19
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb20
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb20
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb20
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb20
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb20
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb21
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb21
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb21
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb21
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb21
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb22
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb22
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb22
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb22
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb22
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb23
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb23
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb23
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb23
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb23
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb24
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb24
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb24
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb25
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb25
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb25
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb26
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb26
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb26
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb26
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb26
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb27
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb27
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb27
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb28
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb28
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb28
http://arxiv.org/abs/2302.03457
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb30
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb30
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb30
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb31
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb31
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb31
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb31
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb31
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb31
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb31
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb32
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb32
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb32
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb33
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb33
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb33


M. Suhonen et al. Photoacoustics 45 (2025) 100748 
[34] G. Jeong, U. Villa, M. Anastasio, Revisiting the joint estimation of initial pressure 
and speed-of-sound distributions in photoacoustic computed tomography with 
consideration of canonical object constraints, Photoacoustics 43 (2025) 100700.

[35] T. Matthews, J. Poudel, L. Li, L. Wang, M. Anastasio, Parameterized joint recon-
struction of the initial pressure and sound speed distributions for photoacoustic 
computed tomography, SIAM J. Imaging Sci. 11 (2) (2018) 1560–1588.

[36] J. Zhang, K. Wang, Y. Yang, M. Anastasio, Simultaneous reconstruction of speed-
of-sound and optical absorption properties in photoacoustic tomography via a 
time-domain iterative algorithm, Proc. SPIE 6856 (2008) 68561F.

[37] C. Cai, X. Wang, K. Si, J. Qian, J. Luo, C. Ma, Feature coupling photoacoustic 
computed tomography for joint reconstruction of initial pressure and sound speed
in vivo, Biomed. Opt. Express 10 (7) (2019) 3447–3462.

[38] K. Deng, X. Wang, C. Cai, M. Cui, H. Zuo, J. Luo, C. Ma, Multi-segmented 
feature coupling for jointly reconstructing initial pressure and speed of sound 
in photoacoustic computed tomography, J. Biomed. Opt. 27 (7) (2022) 076001.

[39] J. Zhang, M. Anastasio, Reconstruction of speed-of-sound and electromagnetic 
absorption distributions in photoacoustic tomography, Proc. SPIE 6086 (2006) 
608619.

[40] G. Bal, K. Ren, Multi-source quantitative photoacoustic tomography in a diffusive 
regime, Inverse Problems 27 (7) (2011) 075003.

[41] T. Tarvainen, B. Cox, J. Kaipio, S. Arridge, Reconstructing absorption and scat-
tering distributions in quantitative photoacoustic tomography, Inverse Problems 
28 (11) (2012) 084009.

[42] R. Zemp, Quantitative photoacoustic tomography with multiple optical sources, 
Appl. Opt. 49 (18) (2010) 3566–3572.

[43] A. Pulkkinen, B. Cox, S. Arridge, J. Kaipio, T. Tarvainen, Quantitative photoa-
coustic tomography using illuminations from a single direction, J. Biomed. Opt. 
20 (3) (2015) 36015.

[44] T. Ding, K. Ren, S. Valléian, A one-step reconstruction algorithm for quantitative 
photoacoustic imaging, Inverse Problems 31 (9) (2015) 095005.

[45] S. Manohar, R. Willemink, F. van der Heijden, C. Slump, T. van Leeuwen, 
Concomitant speed-of-sound tomography in photoacoustic imaging, Appl. Phys. 
Lett. 91 (2007) 131911.

[46] B. Cox, S. Kara, S. Arridge, P. Beard, k-space propagation models for acoustically 
heterogeneous media: Application to biomedical photoacoustics, J. Acoust. Soc. 
Am. 121 (6) (2007) 3453–3464.

[47] B. Treeby, B. Cox, K-wave: MATLAB toolbox for the simulation and re-
construction of photoacoustic wave fields, J. Biomed. Opt. 15 (2) (2010) 
021314.

[48] A. Tarantola, Inverse Problems Theory and Methods for Model Parameter 
Estimation, SIAM, 2005.

[49] H. Gao, J. Feng, L. Song, Limited-view multi-source quantitative photoacoustic 
tomography, Inverse Problems 31 (6) (2015) 065004.

[50] J. Nocedal, S. Wright, Numerical Optimization, Springer Nature, 2006.
[51] S. Arridge, M. Betcke, B. Cox, F. Lucka, B. Treeby, On the adjoint operator in 

photoacoustic tomography, Inverse Problems 32 (11) (2016) 115012.
[52] C. Bunks, F. Saleck, S. Zaleski, G. Chavent, Multiscale seismic waveform 

inversion, Geophysics 60 (5) (1995) 1457–1473.
[53] S. Norton, Iterative inverse scattering algorithms: Methods of computing Fréchet 

derivatives, J. Acoust. Soc. Am. 106 (5) (1999) 2653–2660.
[54] J. Virieux, S. Operto, An overview of full-waveform inversion in exploration 

geophysics, Geophysics 74 (6) (2009) WCC1–WCC26.
[55] S. Bernard, V. Monteiller, D. Komatitsch, P. Lasaygues, Ultrasonic computed 

tomography based on full-waveform inversion for bone quantitative imaging, 
Phys. Med. Biol. 62 (2017) 7011–7035.
11 
[56] M. Warner, L. Guasch, Adaptive waveform inversion: Theory, Geophysics 81 (6) 
(2016) R429–R445.

[57] F. Lucka, M. Perez-Liva, B. Treeby, B. Cox, High resolution 3D ultrasonic breast 
imaging by time-domain full waveform inversion, Inverse Problems 38 (2022) 
025008.

[58] A. Javaherian, S. Holman, A multi-grid iterative method for photoacoustic 
tomography, IEEE Trans. Med. Imaging 36 (3) (2017) 696–706.

[59] S. Li, B. Montcel, Z. Yuan, W. Liu, D. Vray, Multigrid-based reconstruction 
algorithm for quantitative photoacoustic tomography, Biomed. Opt. Express 6 
(7) (2015) 2424–2434.

[60] R. Ellwood, O. Ogunlade, E. Zhang, P. Beard, B. Cox, Photoacoustic tomography 
using orthogonal Fabry–Pérot sensors, J. Biomed. Opt. 22 (4) (2017) 041009.

[61] N. Huynh, E. Zhang, O. Francies, F. Kuklis, T. Allen, J. Zhu, O. Abeyakoon, 
F. Lucka, M. Betcke, J. Jaros, S. Arridge, B. Cox, A. Plumb, P. Beard, A fast 
all-optical 3D photoacoustic scanner for clinical vascular imaging, Nat. Biomed. 
Eng. (2024).

[62] E. Zhang, J. Laufer, P. Beard, Backward-mode multiwavelength photoacoustic 
scanner using a planar Fabry–Perot polymer film ultrasound sensor for high-
resolution three-dimensional imaging of biological tissues, Appl. Opt. 47 (2008) 
4.

[63] C. Rasmussen, C. Williams, Gaussian Processes for Machine Learning, MIT Press, 
Cambridge, MA, USA, 2006.

[64] M. Suhonen, A. Pulkkinen, T. Tarvainen, Single-stage approach for estimating 
optical parameters in spectral quantitative photoacoustic tomography, J. Opt. 
Soc. Amer. A 42 (3) (2024) 527–542.

[65] T. Szabo, Diagnostic Ultrasound Imaging: Inside Out, Second Ed., Academic Press, 
2014.

[66] S. Park, U. Villa, F. Li, R.M. Cam, A. Oraevsky, M. Anastasio, Stochastic three-
dimensional numerical phantoms to enable computational studies in quantitative 
optoacoustic computed tomography of breast cancer, J. Biomed. Opt. 28 (6) 
(2023) 066002.

[67] G. Luke, S. Nam, S. Emelianov, Optical wavelength selection for improved 
spectroscopic photoacoustic imaging, Photoacoustics 1 (2) (2013) 36–42.

[68] S. Arridge, Optical tomography in medical imaging, Inverse Problems 15 (1999) 
R41–R93.

[69] A. Ishimaru, Wave Propagation and Scattering in Random Media, vol. 1, 
Academic Press, New York, 1978.

[70] S. Jacques, Optical properties of biological tissues: a review, Phys. Med. Biol. 58 
(11) (2013) R37–R61.

[71] G. Hale, M. Querry, Optical constants of water in the 200-nm to 200-𝜇m 
wavelength region, Appl. Opt. 12 (3) (1973) 555–563.

[72] R. van Veen, H. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, R. Cubeddu, 
Determination of visible near-IR absorption coefficients of mammalian fat using 
time- and spatially resolved diffuse reflectance and transmission spectroscopy, J. 
Biomed. Opt. 10 (2) (2005) 054004.

http://refhub.elsevier.com/S2213-5979(25)00071-0/sb34
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb34
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb34
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb34
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb34
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb35
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb35
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb35
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb35
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb35
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb36
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb36
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb36
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb36
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb36
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb37
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb37
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb37
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb37
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb37
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb38
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb38
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb38
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb38
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb38
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb39
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb39
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb39
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb39
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb39
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb40
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb40
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb40
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb41
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb41
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb41
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb41
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb41
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb42
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb42
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb42
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb43
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb43
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb43
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb43
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb43
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb44
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb44
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb44
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb45
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb45
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb45
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb45
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb45
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb46
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb46
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb46
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb46
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb46
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb47
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb47
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb47
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb47
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb47
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb48
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb48
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb48
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb49
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb49
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb49
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb50
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb51
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb51
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb51
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb52
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb52
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb52
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb53
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb53
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb53
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb54
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb54
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb54
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb55
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb55
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb55
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb55
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb55
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb56
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb56
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb56
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb57
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb57
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb57
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb57
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb57
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb58
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb58
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb58
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb59
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb59
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb59
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb59
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb59
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb60
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb60
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb60
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb61
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb61
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb61
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb61
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb61
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb61
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb61
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb62
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb62
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb62
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb62
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb62
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb62
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb62
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb63
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb63
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb63
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb64
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb64
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb64
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb64
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb64
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb65
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb65
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb65
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb66
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb66
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb66
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb66
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb66
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb66
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb66
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb67
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb67
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb67
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb68
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb68
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb68
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb69
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb69
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb69
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb70
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb70
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb70
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb71
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb71
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb71
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb72
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb72
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb72
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb72
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb72
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb72
http://refhub.elsevier.com/S2213-5979(25)00071-0/sb72

	Reconstructing multiple initial pressure and speed of sound distributions simultaneously in photoacoustic tomography
	Introduction
	Methodology
	Forward model
	Image reconstruction

	Optimisation
	Improving convergence

	Simulations
	Simple phantom
	Phantom and data simulation
	Image reconstruction
	Results

	Tissue-mimicking phantom
	Phantom and data simulation
	Image reconstruction
	Results


	Discussion and Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix. Simulating the initial pressure distributions with the diffusion approximation
	Data availability
	References


