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ABSTRACT:
We describe and implement a numerical method for modelling the frequency-dependent power-law absorption of

ultrasound in tissue, as governed by the first order linear wave equations with a loss taking the form of a fractional

time derivative. The (Caputo) fractional time derivative requires the full problem history, which is contained within

an iterative procedure. The resulting numerical method requires a fixed (static) memory cost, irrespective of the

number of time steps. The spatial domain is treated by the Fourier spectral method. Numerically. comparisons are

made against a model for the same power-law absorption with loss described by the fractional-Laplacian operator.

One advantage of the fractional time derivative over the fractional-Laplacian operator is the local treatment of the

power-law, allowing for a spatially varying frequency power-law. VC 2025 Acoustical Society of America.
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I. INTRODUCTION

The rate of absorption of ultrasound waves in the body

depends on frequency and, for the range of frequencies of

interest for biomedical ultrasound, typically follows a

power-law (Wells, 1975; Narayana and Ophir, 1983; Goss

et al., 1979; Treeby and Cox, 2010b). The absorption coeffi-

cient is, therefore, commonly written in the form a ¼ a0xy,

where x is the temporal frequency and a0 and y are tissue-

dependent parameters (Szabo, 1994; Chen and Holm, 2004).

Lossy wave equations that account for frequency-dependent

absorption were first derived for integer values of the expo-

nent, y (Blackstock, 1967; Stokes, 2007). However, for most

biological tissues, y is a non-integer lying in the range

0 < y < 2 (Li et al., 2022). Wave equations exhibiting this

behaviour have been developed using fractional time deriva-

tive operators (Caputo, 1967; Szabo, 1994; Liebler et al.,
2004; Wismer, 2006). A consequence of the use of a time-

fractional derivative on numerical approaches to solving

these equations is the need to store some history of the

wavefield, and hence, the need for additional computational

memory. The amount of additional memory required grows

significantly as y approaches 1. To avoid this memory issue,

a fractional-Laplacian has been used in place of a fractional

time derivative (Chen and Holm, 2003; Treeby and Cox,

2010b). This can be straightforwardly computed within the

context of pseudo-spectral models using the fast Fourier

transform (FFT) without the need to store the history of the

wavefield. This is the approach taken in the software pack-

age, k-Wave (see http://www.k-wave.org) (Treeby and Cox,

2010a). However, there are drawbacks. First, the power-law

that is modelled is not strictly a power-law of the frequency,

xy, as would be observed in experiments, but of the wave-

number ky, which for x to follow the power law relies on

close adherence to the loss-less dispersion relation x ¼ c0k.

Second, the power-law exponent y—because it is imple-

mented in k-space—cannot be spatially varying. To allow

heterogeneous power-law absorption to be modelled accu-

rately, this paper focuses on the equations that use fractional

time derivatives and looks at alternative methods of tackling

the memory problem.

Several alternative approaches for resolving the

increased memory requirement of time-fractional derivative

methods have been suggested, including the fixed memory

principle (Podlubny, 1998) and the logarithmic memory

principle (Ford and Simpson, 2001), as well as methods

(Yuan and Agrawal, 2002; Diethelm, 2008; Birk and Song,

2010) that re-frame the integral into a double integral form,

accounting for the full history with an iterative procedure

and quadrature rule. The specific procedure used here is of

this latter type, adapted from the work of Birk and Song

(2010). This method is also discussed and a range of numer-

ical examples are given in Gutleb and Carrillo (2023), which

highlights specific implementation approaches that we adapt

to make use of the k-space pseudo-spectral method and min-

imise the additional memory costs of the approach. Gutleb

and Carrillo (2023) additionally discuss the potential for the

time-fractional derivative given being used on lossy wave

equation given by Caputo/Wismer, citing this as their pri-

mary motivation. However, they actually make use of the

form given by Szabo (1994). This is performed on a two-

dimensional (2D) disk in line with the majority of Gutleb

and Carrillo (2023) focusing on a spectral approach in order

to resolve the problems in a wider range of spatial domains.a)Email: matthew.king@ucl.ac.uk
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This work is divided into two main sections. Section

II gives the theoretical background, the governing equa-

tions and each of their parameters, along with a break-

down of the static memory method for the fractional

time derivative. It concludes with a discussion of the

numerical scheme used for the evaluation of the frac-

tional time derivatives. In Sec. III, a number of numeri-

cal results are presented illustrating the convergence of

the static memory method in each of its parameters with

comparisons to the fractional-Laplacian approach (as

implemented in k-Wave). This is followed by the illustra-

tion of the ability of the time-fractional method to cor-

rectly predict the absorption through a one-dimensional

(1D) example. Section III concludes by considering

examples with heterogeneous y in both 1D and three-

dimensional (3D), making comparisons to a homogenised

k-Wave formulation.

II. THEORY

A. Governing equations

One way to model power-law absorption of acoustic

pressure waves is through a wave equation with a loss term

described, as in the Caputo/Wismer equations, by the frac-

tional time derivative of the Laplacian of the pressure, p,

1

c2
0

@2p

@t2
¼ r2pþ s

@y�1

@ty�1
r2p; (1)

where c0 is the sound speed and s is related to the absorption

coefficient. However, instead of solving this equation

directly, we will instead make use of the equivalent system

of first order equations

q0

@u

@t
¼ �$p; (2a)

@q
@t
¼ �q0$ � u; (2b)

p ¼ c2
0 qþ s

@y�1q
@ty�1

� �
: (2c)

The introduction of the time-fractional derivative in the

acoustic equation of state [Eq. (2c)] may be viewed as

accounting for the material properties, and can be inter-

preted physically in terms of springs and dampers

(Mainardi, 2022). By taking the second time derivative of

Eq. (2c), it is easy to show that these equations give rise to

Eq. (1). An expression for s in terms of the absorption coef-

ficient can be found by considering the propagation of the

plane wave

p ¼ p0 expiðkx�xtÞ: (3)

We note that the wave will only attenuate for a real fre-

quency, x, when the wavenumber k ¼ kr þ iki has a positive

imaginary part, with the decay rate ki. Since we are

modelling power-law absorption following a ¼ a0xy, we set

ki ¼ a. Expanding Eq. (1) with Eq. (3), gives

k2
i ¼

1

2

x2

c2
0

� 1þ sxy�1 cos
�pðy� 1Þ

2

� �� �

1þ 2sxy�1 cos
�pðy� 1Þ

2

� �
þ ðsxy�1Þ2

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2sxy�1 cos

�pðy� 1Þ
2

� �
þ ðsxy�1Þ2

s

1þ 2sxy�1 cos
�pðy� 1Þ

2

� �
þ ðsxy�1Þ2

:

(4)

While the above expression is exact, if we additionally

assume that sxy�1 � 1, the resulting asymptotic expres-

sion for ki is given as

ki ¼ s
sin

pðy� 1Þ
2

� �
2c0

xy þ Oððsxy�1Þ3Þ; (5)

and so, in terms of the absorption parameters, setting

ki ¼ a0xy,

s ¼ 2c0a0

sin
pðy� 1Þ

2

� � : (6)

(For an extended derivation, see the supplementary

material.)

B. Static memory fractional time derivative

This section summarises the theories of Birk and Song

(2010) and Gutleb and Carrillo (2023), describing the

method used to approximate the fractional time derivative.

We begin by considering the Caputo fractional derivative of

order Y (Caputo, 1966) as given by

@Yf

@tY
ðtÞ ¼ 1

CðdYe � YÞ

ðt

0

f dYeð~tÞ
ðt� ~tÞYþ1�dYe d~t (7a)

¼ 1

Cð1� YÞ

ðt

0

f 0ð~tÞ
ðt� ~tÞY

d~t; (7b)

where the latter equation arises because, in this work, we

will only be concerned with y ¼ Y þ 1 2 ð1; 2Þ, i.e.,

Y 2 ð0; 1Þ, and so dYe ¼ 1. f 0ðtÞ denotes the ordinary deriva-

tive with respect to t. In order to evaluate this integral, we

can expand the Gamma function into an integral between

ð0;1Þ and apply a change of basis. This is detailed in the

supplementary material:

@Yf

@tY
ðtÞ ¼

ð1
0

2 sinðpaÞ
p

s2Y�1/f ðs; tÞds; (8a)
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/f ðs; tÞ ¼
ðt

0

e�s2ðt�~tÞf 0ð~tÞd~t: (8b)

We proceed by evaluating the outer integral between ð0;1Þ
through a quadrature rule, writing the problem as

@Yf

@tY
ðtÞ ¼

XL

j¼1

Aj

ðt

0

e�s2
j ðt�~tÞf 0ð~tÞd~t: (9)

To do this, we will make use of the Gauss–Jacobi quadrature

points, xj, and weights, kj, for the interval ð�1; 1Þ, which

results in Eq. (8) being expressed as

@Yf

@tY
ðtÞ ¼

XL

j¼0

kj
8 sinðpaÞ
pð1þ xjÞ4

/f

ð1þ xjÞ2

ð1� xjÞ2
; t

 !
; (10a)

@Yf

@tY
ðtÞ ¼

XL

j¼0

Aj/f sj; tð Þ (10b)

with

Aj ¼ kj
8 sinðpaÞ
pð1þ xjÞ4

; sj ¼
ð1þ xjÞ2

ð1� xjÞ2
: (10c)

We refer to sj and Aj as the Birk–Song quadrature points and

weights, respectively, as described in Birk and Song (2010).

L is a free parameter dictating the number of quadrature

points used. This process can be repeated for Y > 1, adjust-

ing Eq. (8) as given in Birk and Song (2010) and Gutleb and

Carrillo (2023). Alternatives to the Birk–Song points are

also available, such as those given in Diethelm (2008) and

Yuan and Agrawal (2002).

The advantage of writing the time-fractional derivative

as a sum of integrals is that /f lends itself easily to being

updated in discrete time steps. Set

/f ðsj; tÞ ¼ wjðtÞ ¼
ðt

0

e�s2
j ðt�~tÞf 0ð~tÞd~t; (11)

wjðtþ dtÞ ¼ e�s2
j dtwjðtÞ þ

ðtþdt

t

e�s2
j ðtþdt�~tÞf 0ð~tÞd~t: (12)

For suitably small dt, it is then possible to approximate f 0ð~tÞ
through interpolation, allowing the integral to be expressed

in a closed form, which is exact for this interpolation.

Assuming f ðtÞ is piecewise linear on intervals

ðndt; ðnþ 1ÞdtÞ, it follows that

wjððnþ1ÞdtÞ¼ e�s2
j dtwjðndtÞ

þ1�e�s2
j dt

s2
j

f ððnþ1ÞdtÞ� f ðndtÞ
dt

: (13)

This has an error of order OðNdtÞ after N time steps in each

of the wj. Taking higher order interpolating polynomials

also yields exact forms through integration by parts. This is

detailed in the supplementary material, though not used here

due to the time step sizes considered.

C. Numerical scheme

Here, we describe a numerical procedure for evaluating

Eq. (2) in one dimension, using s given by Eq. (6) and eval-

uating the time-fractional derivative by Eq. (9).1 With the

FFT denoted F and inverted by F�1. Additionally,

un ¼ uððn� 1=2Þdt; xÞ; (14a)

qn ¼ qðndt; xÞ; (14b)

pn ¼ pðndt; xÞ; (14c)

wn
j ¼ wj ndt; xð Þ; (14d)

where each variable is represented as an array of the size of the

spatial grid corresponding to x. (Note that the wn
j are L such var-

iables of spatial grid size, as indexed by j.) The update equations

for acoustic particle velocity and pressure can be written as

un ¼ un�1 � dt

q0

F�1ðikjFðpnÞÞ; (15a)

qn ¼ qn�1 � dtF�1ðikjFðq0unÞÞ; (15b)

where j is a k-space correction to reduce numerical disper-

sion (Treeby and Cox, 2010a). Noting that s, Aj, and sj can

be pre-computed using Eqs. (6) and (10c), we then update

the values of wjðndt; xÞ of q following Eq. (13),

wn
j ¼ e�s2

j dtwn�1
j þ 1� e�s2

j dt

s2
j

qn � qn�1

dt
: (16)

Instead of the forward difference approximation, we could

have used the gradient as already computed using the FFT

for Eq. (15b). While for this specific case, the result would

be more accurate, removing any cancellation errors, when a

perfectly matched layer (PML) is used, this results in a

reduced accuracy if not accounted for in the wj correctly.

Since in these cases qðndtÞ has already been computed, and

the cost for storing qððn� 1ÞdtÞ is fixed, we choose to use

the form given by Eq. (16). Additionally, using the forward

difference approximation allows for the inclusion of addi-

tive sources, which are added after the FFTs have been

applied. Now, we are ready to close the system by comput-

ing pn,

pn ¼ c2
0 qn þ s

XL

j¼1

Ajwj

0
@

1
A; (17)

where �j represents the vector dot product in j at each point

in the grid. As previously mentioned, in the numerical

results provided below, we have additionally included a

PML to prevent wave wrapping within the domain, which is

assumed to be periodic due to the use of the FFT. This
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change only impacts Eq. (15) and is detailed within the liter-

ature, such as in Tabei et al. (2002) and Treeby and Cox

(2010a,b).

III. NUMERICAL EXPERIMENTS

Here, the numerical scheme consisting of Eqs. (15)–

(17) will be demonstrated with examples.2 First, we will

examine the accuracy of the time-fractional numerical

scheme as L and dt are varied. For the variation of dt, we

make use of the Courant–Friedrichs–Lewy (CFL) (Courant

et al., 1967) number for 1D, acting as a normalised time

step given by CFL ¼ c0dt=dx. As such, increasing or

decreasing the CFL is equivalent to increasing or decreasing

dt, respectively. (With c0 and dx remaining fixed.)

Traditionally, the CFL number is used to ensure stability,

with an explicit time solver as we have here, being stable for

CFL<1. In higher dimensions, the formulation sums the

above expression across each of the dimensions; however,

for simplicity, the number we give here will always be given

only by the first dimension.

Second, the absorption power-laws that result from the

scheme are compared to those that use the fraction

Laplacian, as implemented in k-Wave. Finally, 1D and 3D

examples are given in which the absorption power-law

exponent, y, varies throughout the domain. Throughout this

section, we make use of the parameters given in Table I,

unless stated otherwise in the figure captions.

A. Convergence in L and dt

For Figs. 1 and 2, three different power-laws, a ¼ a0xy,

and three different timesteps, dt (through the CFL) are con-

sidered. The problem, a 1D simulation across 16 mm with a

point source located 4 mm into the domain, is run over 7 ls

with a sensor located 10 mm from a point pressure source.

The errors considered are those in the sensor signal. In Fig.

1, this is done sequentially, comparing the signals for each

fixed value to L to the signal for L–10, with Fig. 1 plotting

the error in the l1 norm with the l2 norm behaving

similarly.

Figure 2 instead compares the signals to a reference

produced by running the same simulation with a CFL of

6:25� 10�4 and L ¼ 300. In order to compare the reference

signal to the sensor signals, the reference signal is sampled

at the times for which the sensor records a point.

In Fig. 1, it can be observed that, irrespective of the

time step size, the improvement in the sensor output is uni-

form between the case for increasing values of L. This

remains true even for different values of y with each case

also giving similar results. Despite the consistent conver-

gence in L for any given CFL, this does not mean we are

converging to an exact solution, rather for large enough L,

the error from the choice of dt becomes dominant. As a

result, for each dt, we converge to a solution with a mini-

mum fixed error in L. This same behaviour was observed in

Gutleb and Carrillo (2023) for the approximation of the frac-

tional derivative. This is most clearly seen here in Fig. 2

where for each of the CFL considered, increasing L
decreases the error only so far before it plateaus and

becomes approximately constant. For a decreased CFL, and

therefore smaller time step dt, it may be observed that a

higher value of L is required to reach this plateau; however,

for each fixed L, decreasing the time step results in a smaller

error.

While it can be observed that each of the three y values

produce the similar error, irrespective of the choice of the

CFL for large y, in Fig. 2, we may observe that the rate at

which the error plateaus is different, becoming steady for a

smaller value of L for y closer to 2, suggesting that for the

larger values of y the error for a fixed dt is larger compared

to the error from the choice of L, and therefore dominates.

This is more clearly seen in Fig. 3 where a fixed a0 and var-

ied y, and a fixed y and varied a0 are considered.

In Fig. 3 (left), it can be observed that, when just y is

varied, most of the behaviour of Fig. 2 (bottom right) is still

captured—with the larger values of y producing smaller

errors for the same value of L until the error plateaus. In Fig.

3 (right), on the other hand, the three different values of a0

present very little variation, showing the exact same behav-

iour across the different CFL and L values. While the larger

values for a0 do perform marginally better across the cases,

this difference is not comparable to the differences observed

in Fig. 2.

Rather than comparing the time-fractional solution to

itself, we can also compare against the Green’s function

solution to the second order PDE problem.1 Approximate

methods for computing the Green’s function are given in,

for example, Kelly and McGough (2016). Alternatively, we

can make use of the exact Green’s function solution given in

Treeby and Cox (2011), which instead of the time-fractional

derivative term gives the loss in terms of the fractional-

Laplacian. It should be noted that the two problems are

equivalent up to the order of perturbation within the linear-

ised Euler equations with loss. The advantage of using the

Green’s function solutions is that they are exact when con-

sidered in homogeneous domains. While the Green’s func-

tion solution cannot be extended to the heterogeneous

model, when considered in a homogeneous domain, it pro-

vides a suitable test case, capturing the correct absorption

TABLE I. Typical parameters for c0, a ¼ a0xy, and q0. Figures 1–9 used

(a)–(c) and the named tissues were used for Fig. 10. The data are taken

from Treeby and Cox, J. Acoust. Soc. Am. 127(5), 2741–2748 (2010b);

Lou et al., J. Biomed. Opt. 22(4), 041015 (2017); Szabo, Diagnostic

Ultrasound Imaging: Inside Out, Academic Press, 2004, Table B.1.; and

Moran et al., Ultrasound Med. Biol. 21(9), 1177–1190 (1995).

c0 a0 y q0 Cite

(a) 1500 0.5 1.1 1 Treeby and Cox (2010b)

(b) 1500 0.25 1.5 1 Treeby and Cox (2010b)

(c) 1500 0.1 1.9 1 Treeby and Cox (2010b)

Fat 1470 0.6 1.01 937 Lou et al. (2017); Szabo (2014)

Blood vessel 1584 0.14 1.21 1040 Lou et al. (2017); Szabo (2014)

Skin 1650 0.22 1.15 1150 Lou et al. (2017); Moran et al. (1995)

Fibroglandular 1515 0.75 1.5 1040 Lou et al. (2017); Szabo (2014)
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behaviour. Additionally, we may compare the rates of con-

vergence between the fractional-Laplacian loss, and the

time-fractional approach to the Green’s function, which

is included in the k-Wave MATLAB package (Mathworks Inc.,

Natick, MA) (Treeby and Cox, 2011).

Plotted in Fig. 4 are the normalised errors for the first

order ordinary differential equation (ODE) solver, with loss

described both by the fractional-Laplacian and the time-

fractional derivative as discussed here, with L¼ 80. These

are compared to the second order ODE Green’s function for

the fractional-Laplacian loss. The choice of L is due to the

near-convergence seen for each of the CFL numbers in Figs.

2 and 3, with the error dictated by choice of the CFL and not

the quadrature rule, except for exceptionally small time

steps. Improved errors may be observed for the smaller CFL

numbers by increasing L further. This choice of L addition-

ally limits the increased computational cost of the method,

both in memory storage, and number of operations com-

pared to the fractional-Laplacian method, with L increasing

these both linearly. This is detailed further in Sec. IV.

For all three of the parameter pairs for a, it may be

observed that both methods converge to the Green’s func-

tion solution as would be expected, confirming that in the

small dt limit, the two methods are equivalent, further val-

idating the time-fractional method as an alternative

approach to modelling power-law absorption to the tradi-

tional fractional-Laplacian method. In addition to this, it

is interesting to notice that despite representing a differ-

ent loss term, the model that uses the time-fractional

derivative converges faster than the fractional-Laplacian

model to the Green’s function solution with fractional-

Laplacian loss. In particular, between CFL ¼ 2�3 and 2�9,

in the case of y ¼ 1:1 and a0 ¼ 0:5, the time-fractional

method produces an error of the same magnitude as the

fractional-Laplacian with a CFL 2�4 smaller, i.e., the

same accuracy is being retrieved for a time step that is 16

times larger. For the values y ¼ 1:5 and a0 ¼ 0:25, this is

FIG. 1. Normalised maximum error, l1, of the pressure at the sensor

between p(t,L) and p(t,L–10). Plotted for parameter sets (a)–(c) as indicated

according to Table I with CFL¼ 0.5, 0.1, and 0.05, and for CFL¼ 0.5 for

each parameter set (bottom right).

FIG. 2. As shown in Fig. 1, comparing p(t,L) with the indicated CFL num-

bers to p(t,300) with a CFL of 6:25� 10�4. Plotted with CFL¼ 0.64, 0.16,

0.04, and 0.01 and for CFL¼ 0.04 for each y (bottom right).

FIG. 3. As shown in Fig. 2, comparing p(t,L) with the indicated CFL num-

bers to p(t,300) with a CFL of 6:25� 10�4. Plotted with CFL¼ 0.16 (top)

and CFL¼ 0.04 (bottom) we vary y for a fixed a0 ¼ 0:25 (left), and vary a0

for a fixed y ¼ 1:5 (right).
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reduced to only four times larger, and in the final case,

only observes a small improvement. However, noting that

for soft tissues y is typically close to 1 implies that the

improvement seen in the first case could represent a sig-

nificant computational saving by considering the time-

fractional approach. Observing the bottom right plot of

Fig. 4, which plots all three cases just for the fractional-

Laplacian method, as the CFL decreases. the error

decreases at a faster rate in y. This coincides with the

reduced difference between the time-fractional and

fractional-Laplacian methods, which already allows for a

larger time step.

B. Absorption

We now test how well the method reproduces each

aðxÞ by comparing the observed absorption to the

frequency-dependant power-law given by the input parame-

ters. In addition to this, we make use of the Kramers–Kronig

relation (Waters et al., 2005; Waters et al., 2000) to com-

pare the observed dispersive wave speed to predicted values

for the given power-law. This is done as in Treeby and Cox

(2010b) for the loss generated by the fractional-Laplacian,

which we will additionally compare against. Each of the fig-

ures in this section have been produced considering the fol-

lowing simulation: a 1D, 12.2 mm domain is considered

under a uniform spatial grid of size 1024, over a time of 4

ls for a CFL of 0.05. A point pressure source applied at

time, t¼ 0, is located 3.05 mm into the domain, with two

sensors located 3.55 and 4.55 mm in the domain. The sensor

data are recorded and their respective amplitude and phase

spectra are found. This information is then processed into

the absorption by comparing the amplitude spectrum of the

two sensors, and the dispersion through the phase spectrum.

Figures 5 and 6 plot a and Cp for four values of L. These are

L ¼ 20, L ¼ 40, L ¼ 80, and L ¼ 160.

For L ¼ 20, it is clear that the simulation has failed to pre-

dict the absorption correctly, with no frequency dependence

observed, but rather a constant value of a. This problem is

mostly resolved for L ¼ 40; however, each case observes

divergence between the prediction and simulations as the fre-

quency increases. Increasing to L ¼ 80 reduces the error for all

three with only small differences between the cases of L ¼ 80

and L ¼ 160. This is similarly observed for the dispersion,

with L ¼ 20 unable to correct predict cp, while L ¼ 40 repro-

duces the prediction for low frequencies but then breaks down

for the higher frequencies. Similar results are produced by L ¼
80 and L ¼ 160; however, for y ¼ 1:9, the higher frequencies

still observe this difference. This may be anticipated through

Fig. 2 where, in the bottom right plot, we compare the errors

for the three values of y. Here, we observe that, while for y ¼
1:9 we see convergence in L faster than for the lower values of

y, it is observable that these lower values actually produce a

smaller error for a CFL of 0.04, which is comparable to that

used for this simulation.

It is natural to then compare these results to those pro-

duced for the fractional-Laplacian using the k-Wave toolbox;

this is performed in Fig. 7. Here, we have chosen L ¼ 120.

FIG. 4. Comparison between the reference Green’s function solution for the

fractional-Laplacian loss and the solution from the first order equations

with the time-fractional loss term (L¼80, �) and with the fractional-

Laplacian loss (þ). Errors computed for CFL numbers between 2�1 and

2�9. The errors have been normalised against the maximum value of the

second order solution at the sensor location. Pairs of a0 and y are as used in

Fig. 1, with the bottom right plot only showing the results for the time-

fractional derivative for each power-law considered.

FIG. 5. Absorption alpha for L¼ 20, 40, 80, and 160 computed as described

in the main text. Solid lines describe the predicted absorption while circles

mark on the values found through the simulation. For L¼ 20 (top left), the

results from the predicted absorption are indistinguishable between the

three cases.
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In this figure, it can be observed for each of the values of

y that the results produced are very similar between the two

methods. However, it may be observed in the dispersion for

y ¼ 1:5 and y ¼ 1:9, where the time-fractional derivative was

least accurate to the predictions, that this method performs bet-

ter than when the loss is given by the fractional-Laplacian.

This improvement from the fractional-Laplacian to the time-

fractional derivative may have been anticipated from Fig. 4

where this improvement was observed for each parameter set

considered. Observing the plot of the dispersive sound speed, it

may be suggested that the larger values of y present a larger

error, suggesting a contradiction to the results of Fig. 4. There

are two important features to note: first, the waves with the

highest frequency will decay fastest, which is where this error

is observed most readily, minimising the effect of these high

frequency regions at the sensor locations. Second, even when

these errors are larger, the time-fractional method performs

better than the fractional-Laplacian method.

C. Spatially varying power-law absorption

One advantage of the time-fractional approach is that,

unlike the fractional-Laplacian, the derivative is local in

space. Heterogeneities typically manifest in three forms

within biological media, the ambient density q0, the sound

speed c0, and the absorption a. The variation in q0, which

manifests as u � $q0 within the conservation of mass equa-

tion, can be removed, reducing the equations back to the

homogeneous form, by considering q not as the true density

but as the adjusted parameter described by q� d � $q0,

where d is the particle displacement. As such, the acoustic

density fluctuation is not computed directly. There is, in

addition, an adjusted loss term; however, the difference is

small in the majority of cases, and zero where $q0 ¼ 0, and

therefore may be neglected in the majority of cases. A var-

ied c0 is only observed in the computation of the equation of

state, appearing both in the pre-factor, and within the loss

term.

It is not common numerically to account for a varied

absorption, despite being known to influence the final result

within applications. For the time-fractional method, since

each location in the domain is treated locally in the equation

of state, we need only pre-compute the Aj and sj [Eq. (10c)]

parameters for each location, proceeding exactly as before,

with increased storage, but no increased computational cost

for each time step.

In Figs. 8 and 9, a system with varied absorption is

illustrated. We have considered a 1D, 18.8 mm domain with

2048 grid points. A point source is located at 4.7 mm from

the left edge of the domain. Sensors have been placed 5.2,

6.2, 8.2, 9.2, 11.1, and 12.1 mm to the right of the point

source. We have then enforced that the absorption is defined

FIG. 6. As shown in Fig. 5 but showing the dispersion. Both predicted

(solid lines) and from the simulation.

FIG. 7. As shown in Figs. 5 (top) and 6 (bottom), plotting the alpha for both

the time-fractional derivative (�) with L ¼ 120, and with the fractional-

Laplacian (þ).
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by a ¼ 0:05x1:9 between 0 and 7.2 mm from the left edge of

the domain, and a ¼ 0:125x1:5 between 7.2 and 11.1 mm.

Finally, a ¼ 0:25x1:1 from 11.1 mm to the rightmost edge

of the domain. This locates the first two sensors within the

first region, the third and forth sensors in the second region,

and finally, the sixth sensor in the third region. The fifth sen-

sor is located exactly at the interchange between the second

and third region of the domain. It should be noted that the a0

values used here are half of the values given in Table I. This

reduces the absorption effects and reflections as the wave

changes between the regions and as a result, the numerical

errors introduced in the calculation of a and cp from the

numerical data.

In Fig. 8, the sensor data from each of the six sensors

can be observed, with colours indicating in which region of

the domain they are located. These are then translated into

plots of the absorption and the dispersion in Fig. 9 where

matching colours have been used to indicate the regions for

comparisons against the actual absorption and the

Kramers–Kronig relation indicated once again with solid

lines.

In Fig. 9, there is a region in which an error can be

observed unalike those observed in Figs. 5 and 7. For

x < 10 MHz for y ¼ 1:5, observed more clearly in the plot

of the dispersive sound speed, the Kramers–Kronig relation

is poorly predicted. This is a result of a reflected waves

being produced due to the change in absorption, since these

propagate in the opposite direction to the initial wave,

despite their small amplitude. This same error occurs in the

first region, y ¼ 1:9; however, it is less noticeable.

It is additionally possible to model a varied absorption

in both 2D and 3D; with Fig. 10, this is illustrated for a 3D

example. We make use of a 3D Breast Phantom provided

alongside Lou et al. (2017). In the breast phantom, we have

modelled the different tissue types with different sound

speeds and densities. In addition, we have then applied a

varied absorption, according to the tissue type when running

the simulation with the time-fractional method, or a uniform

absorption for a loss described by the fractional-Laplacian.

Sensors were located on the “outside” of the breast such that

only the effects of the breast material properties are

observed with a source represented by a single pulse from

each voxel representing blood vessels at time, t ¼ 0.

From Fig. 10, it can be observed that while both simula-

tions produce similar signals, as time progresses, the arrival of

the signals gradually vary an increased amount, while from

FIG. 8. Plot of the pressure at each time for each of the six sensors, with

colours indicating the region of absorption in which they are located.

Yellow plots correspond to a0 ¼ 0:25 and y ¼ 1:9 as between sensors one

and two. Red plots correspond to a0 ¼ 0:125 and y ¼ 1:5, as used between

sensors three and five. Blue plots use a0 ¼ 0:25, y ¼ 1:1, as for sensors five

and six. Note that sensor five is located on the border between two regions.

FIG. 9. As shown in Fig. 7, plotting a and dispersion from the time-

fractional derivative with L ¼ 100, with absorption plotted between sen-

sors; one and two, three and four, four and five, and five and six. Yellow

plots correspond to a0 ¼ 0:05 and y ¼ 1:9 as between sensors one and two.

Red plots correspond to a0 ¼ 0:125 and y ¼ 1:5, as used between sensors

three and five. Blue plots use a0 ¼ 0:25, y ¼ 1:1, as for sensors five and six.
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even the first arrival time, the amplitudes of the waves are dif-

ferent. Which signal is greater, however, is not consistent with

time. This variation between the signal with greater amplitude

highlights that the two signals are decaying at different rates.

While it should be noted that the homogeneous case would

illustrate some additional errors, since the same CFL has been

used for both simulations and the homogeneous cases use the

k-Wave toolbox with the fractional-Laplacian loss, which was

seen to have greater error in Fig. 4. It is clear that the differ-

ences between the two signals are mostly produced by the dif-

ference in the absorption, while the absorption used in the

homogeneous case is chosen to match the absorption observed

in most of the domain. As such, the waves will travel through

regions with both higher and lower absorption with earlier

arriving waves mainly travelling through the skin, and the lat-

ter travelling through more regions of fat, which has a lower

absorption power-law exponent.

IV. DISCUSSION

The time-fractional static memory approach to the

Caputo time-fractional derivative given in this paper has

been previously detailed by Gutleb and Carrillo (2023)

where it was compared against a variety of model problems

in order to illustrate the effectiveness of the method. In their

work, the fractional time derivative was applied to a second

order differential equation for acoustic loss, although this is

not the same acoustic loss as used in this work, even when

transformed into the second order equations. Further distin-

guishing the works is the approach taken to the spatial

dimensions, with the work here applying the time-fractional

derivative on a uniform spatial grid. This may be considered

a loss in problem generality; however, it allows the method

to be more directly compared to the aforementioned numeri-

cal implementations of the fractional-Laplacian while also

allowing easy treatment of the spatial domain.

The Caputo fractional derivative is defined by an inte-

gral over the full problem history. In order to avoid having

to store the problem history within the numerical implemen-

tation, as is used for the static memory and logarithmic

memory principles, here the problem history is stored in an

iteratively defined /qðtÞ, which when approximated numeri-

cally only requires a single time step of the problem history.

Storing the problem history in this way does introduce a sec-

ond integral on ð0;1Þ for which a quadrature rule has been

applied with variables relating to the jth quadrature point

indicated with a subscript j, with the total number of quadra-

ture points denoted L, which is free to be chosen within the

implementation of the method.

For a fixed value of L and computational grid of size

NX, the resulting method for approximating the fractional

derivative requires a fixed memory cost, which is why this

method is referred to as a static memory method. Applying

the fractional time derivative to compute the loss operator

only requires the additional storage of LðNX þ 2Þ þ NX sca-

lar variables compared to the memory requirements of the

k-Wave toolbox, having changed only the method for com-

puting the loss.This is a large memory requirement, particu-

larly for 3D computational grids, given that L would

typically be chosen between 80 and 120 in order to have

likely observed convergence in L such that the remaining

error comes from the time step (see Figs. 2 and 3). It is

noted, however, that for many problems, the total number of

time steps to be taken would be much larger than L, and

storing the whole problem memory would require n�
ðNX þ 1Þ variables after n time steps.

The alternative “short term memory” and “logarithmic

memory” principles choose which points of the problem his-

tory to be stored reducing this cost; however, both require a

long history, increasing memory requirements, or lose accu-

racy as the total number of time steps increases. Of these

methods, the logarithmic memory principle is more accurate

for the same computational cost, while the fixed memory

principle is as good or more accurate for a fixed length of

history being considered.

FIG. 10. Plots of three sensor data of the pressure at locations outside the

breast. Plotted: (Red) homogeneous absorption with the fractional-

Laplacian method. (Blue) Heterogeneous absorption with the time-

fractional method.
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In light of this, it is worth considering current high-

performance computing trends where it may be observed

that systems continue to evolve to address memory-bound

applications. As such, methods like the one presented here

may become increasingly attractive for large-scale acous-

tic simulations. The time-fractional approach presented

here offers potential performance benefits for certain com-

puting architectures, despite its increased memory require-

ments, compared to the fractional-Laplacian method.

While the additional memory usage may be problematic

for compute-bound systems, like graphics processing units

it is well-suited for emerging central processing unit

(CPU) designs optimized for memory-intensive work-

loads. For example, the NVIDIA Grace CPU Superchip

(Nvidia, Santa Clara, CA) provides up to 960 GB of high-

bandwidth LPDDR5X (Samsung Electronics, Suwon-si,

South Korea) memory, making it capable of handling the

increased memory footprint of this method. Additionally,

by eliminating the need for the additional FFT operations

per time step, this approach reduces computational com-

plexity, which could lead to improved performance on

memory-bound systems, particularly for the varied absorp-

tion case.

In works, such as Chen and Holm (2004), it is suggested

that the fractional-Laplacian lends itself more directly to

modelling variation in the spatial dimensions, being physi-

cally more valid. However, since the operator is derived

globally by spatial Fourier transforms, local changes to the

operator are not easy to account for, as such, the k-Wave

toolbox only allows for a single power-law absorption.

Using a time-fractional loss allows spatial changes in the

derivative to not impact the computation, since each loca-

tion has the corresponding fractional time derivative com-

puted locally. This results in the additional computational

cost of the method being reduced to the pre-computation of

the sj and Aj values for each value of y, with the trade-off

being that the memory requirement is increased to

ð3Lþ 1ÞNX. In cases where the spatial grid is large and only

a few values of y are being considered, it would be possible

to reduce the storage to LðNX þ 2YÞ þ NX, where Y is now

the number of different power-laws. However, this would

have the increased computational cost of Y sums over j of

Ajwj. These methods were used in the generation of Figs. 9

and 10, respectively. Considerations between which

approach to use for a varied absorption power would include

both storage and computation considerations, particularly if

smoothing was performed on y across the domain. In order

to generate Fig. 10, the computational time for the homoge-

neous case was approximately five times lower than that for

the heterogeneous case.

In addition to the memory requirement and the observed

computational time when comparing between loss computed

with the fractional-Laplacian and the time-fractional methods

for the loss, also of importance is the accuracy. In Fig. 4, it is

observable that the time-fractional method produced signifi-

cantly lower orders of magnitude of error than that of the

fractional-Laplacian loss for the same size of time step,

particularly for values of y close to 1. It is possible that as a

result of this, for such values, a time step that is two to four

times larger could be utilised producing the same error for the

absorption. It has not been investigated whether this differ-

ence in time stepping could suitably account for the computa-

tional differences.

V. CONCLUSION

The method for computation of the Caputo time-

fractional derivative as described (Birk and Song, 2010) has

been coded and applied to modelling power-law absorption

within the first order wave equations as equivalent to the

second order equation given by Caputo/Wismer [Eq. (1)]. It

has been verified that the method performs as good or better

at predicting the power-law absorption and dispersive sound

speeds as the methods describing the loss by the fractional-

Laplacian method for the same size of time step under a

suitably chosen L, which describes the number of

Gauss–Jacobi quadrature points used.

The method has then been applied to allow for varied

power-law absorption, which has not previously been

detailed within the literature. This is despite varied absorp-

tion being physically relevant to applications, including for

ultrasound absorption, as the wave propagates through dif-

ferent tissue.

Further work on this topic would include further optimi-

sations to the formulations for Aj, sj, and /jðtÞ, including

lookup tables for the first two. It is, however, of note that the

accurate calculation of the Aj and sj is paramount to the

method working, with higher point precision being required

in the pre-computations performed in the time-fractional

approach in order to retrieve an accurate approximation of

the time-fractional derivative.

Additionally, it is possible that alternative choices of

the quadrature rule for approximating the first order deriva-

tive, @q=@t, within the computation of /j may allow for

even larger time steps, and exact forms of /j are given

within the supplementary material. However, preliminary

tests of these methods have not yielded the expected

improvements but performed worse, even on model prob-

lems. This is possibly due to cancellation errors for the

small time steps, such as the ones used on a fine grid; this

would additionally raise the storage requirement of the

problem.

It is possible that this method could be applied to other

problems with fractional derivatives outside of the range

1 < y < 2, as already detailed in Birk and Song (2010), with

only small changes being made to the specific loss term in

use.

Finally, comparisons could be made directly to existing

methods for evaluation of the time-fractional derivative on

the same model equation with spacial variations, such as the

short term memory principle (Podlubny, 1998), the logarith-

mic memory principle (Ford and Simpson, 2001), and an

approximate method for the equivalent Green’s function

solution (Kelly and McGough, 2016).
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SUPPLEMENTARY MATERIAL

See the supplementary material for breakdowns of

the mathematical formulations for s, the rewriting of the

fractional derivative, and integral evaluation under

interpolation.
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