
Photoacoustics 37 (2024) 100597

A
2

C
p
J
a

b

c

A

D
n

K
P
C
C
I
S

1

s
w
i
a
i
t
i
m
f
i
h
d
s
k
m
v
c

p
S

h
R

Contents lists available at ScienceDirect

Photoacoustics

journal homepage: www.elsevier.com/locate/pacs

ompensating unknown speed of sound in learned fast 3D limited-view
hotoacoustic tomography
enni Poimala a,∗, Ben Cox b, Andreas Hauptmann a,c

Research Unit of Mathematical Sciences, University of Oulu, Finland
Department of Medical Physics and Biomedical Engineering, University College London, UK
Department of Computer Science, University College London, UK

R T I C L E I N F O

ataset link: https://github.com/jpoimala/lear
edFastPAT

eywords:
hotoacoustic tomography
onvolutional neural networks
omplex valued neural networks

mage reconstruction
peed of sound compensation

A B S T R A C T

Real-time applications in three-dimensional photoacoustic tomography from planar sensors rely on fast
reconstruction algorithms that assume the speed of sound (SoS) in the tissue is homogeneous. Moreover,
the reconstruction quality depends on the correct choice for the constant SoS. In this study, we discuss
the possibility of ameliorating the problem of unknown or heterogeneous SoS distributions by using learned
reconstruction methods. This can be done by modelling the uncertainties in the training data. In addition, a
correction term can be included in the learned reconstruction method. We investigate the influence of both
and while a learned correction component can improve reconstruction quality further, we show that a careful
choice of uncertainties in the training data is the primary factor to overcome unknown SoS. We support our
findings with simulated and in vivo measurements in 3D.
. Introduction

Photoacoustic (PA) imaging is increasingly being used in clinical
ituations [1,2] especially where there are vascular changes, such as
ith some types of cancer or inflammation. In clinical scenarios, PA

maging systems that use linear (1D) or planar (2D) array transducers
re popular (see for example [3–8]). This is because, despite their
nherent limited-view, they fit in well with existing clinical workflows:
hey can be made into small devices, similar to handheld ultrasound
maging probes, and the small amount of data and size of image volume
ean that reconstructions can typically be performed with frame rates

ast enough for real-time imaging. However, there are two challenges
n real-time reconstructions from linear and planar arrays, concerning
ow to deal with (1) the unknown sound speed [9], and (2) the missing
ata from the limited-view detection [10]. The failure to use the correct
ound speed will result in blurring of the image in the form of a
ind-of double-vision artefact in which the measured waves are not
apped back into quite the right place in the image, while the limited-

iew detection gives rise to blurring perpendicular to the array and
haracteristic curved artefacts.
Unknown Speed of Sound
Because of its central importance to PA imaging, a variety of ap-

roaches have been proposed to tackle the problem of the unknown
oS. A spatially-varying SoS could, in principle, be recovered jointly

∗ Corresponding author.
E-mail address: jenni.poimala@oulu.fi (J. Poimala).

with the PAT reconstruction, although this problem is inherently un-
stable and requires additional data or prior knowledge [11–17]. A SoS
image could be found using a separate modality, such as ultrasound
tomography [18–21], but this requires additional time-consuming mea-
surements. Furthermore, PA reconstructions that use a spatially-varying
SoS in general require a numerical model of the wave equation for het-
erogeneous media [22], which are not currently fast enough to facilitate
real time reconstructions. Computationally faster alternatives assume,
for instance, a known two-component SoS-map [23]. Approaches to
exclude the data components that have been strongly aberrated by
truncating measurements in time have been proposed [24,25], as has
the estimation of the acoustic travel time using correlations [26], but
these methods are not applicable to the one-sided measurements of
interest here. In the Bayesian setting, errors due to uncertainties in
the SoS can be compensated for using Bayesian approximation error
modelling [27], but the method is computationally intensive. More
practically, methods have been proposed to estimate the SoS auto-
matically, by maximising an image quality metric or similar [28–33].
However, all of these proposed methods for accounting for SoS hetero-
geneities in PA reconstruction either require additional hardware, prior
knowledge of the target, or cannot be applied in real-time, or are not
applicable to the one-sided measurements of interest here.

Recently, advances in learning-based methods for inverse prob-
lems and tomographic reconstructions [34–38] offer the prospect of
vailable online 17 February 2024
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ameliorating the SoS problem in a data-driven manner. Based on the
model-based approach in [11] that jointly reconstructs and estimates
SoS maps an extension to a learned iterative version has been proposed
in [39]. In [40], the reconstruction operator that takes into account SoS
variations is given by a network architecture. In [41] a variable set of
SoS has been used to create the training data to train a learned iterative
reconstruction. Similarly, in [42], a model correction is performed after
the model evaluation i.e. the reconstructed image is corrected by using
a network that has learned from different SoS distributions. Recently,
the authors in [43] propose to use explicitly one-hot-encoded input SoS
to train and evaluate their network.

Limited-View Detection
The challenge presented by limited-view detection has been tackled

in a variety of ways. For example, by making multiple measurements
of a series of initial acoustic pressure distributions patterned such
that they emit wavefronts in the direction of the detector [44,45],
by using reflectors to direct the acoustic energy back to the detector
array [46–48], and many papers that use regularisation or a com-
pressed sensing approach, eg. [49–54]. More recently, there has been
an explosion of learned methods proposed to ameliorate the missing
data and thereby reduce the related artifacts [55–57]. These methods
can be roughly divided into three categories: learning-based direct re-
construction, learning-based post-processing and model-based learned
iterative reconstruction. In the learning-based direct reconstruction, a
network is used to reconstruct an image directly from the sensor data.
Several different networks have been studied including for example
U-Net [58], FPnet [59], Y-Net [60] and Pixel-DL [61]. In the learning-
based post-processing reconstruction method, a network is applied after
a conventional reconstruction method. Most commonly used network
architecture is U-Net [58,62–64], but for example DALnet [65] and
WGAN-GP [66] have been utilised. Model-based learned iterative re-
constructions use a network to learn an iterative update including
a learned regularisation following conventional model-based iterative
methods [67–69]. In addition, neural networks have been used to
extend limited-view data to full-view data, allowing artefact reduction
when conventional reconstruction methods are utilised [70].

Contribution of This Paper
In this paper we propose a data-driven approach to ameliorate both

the limited-view and unknown SoS problems jointly given suitable
training data. In particular, we augment a Fourier domain reconstruc-
tion approach from planar measurements with learned components.
Image reconstruction in the Fourier domain [71,72], assuming a con-
stant SoS, is a popular method for PAT reconstruction when the data
is measured using a linear or planar array. It is fast, because it exploits
the Fast Fourier Transform, and it is exact when the sound speed in
known and in the limit of the array extending to infinity. We note,
that the developed methodology can be applied to measurements from
circular sensor as well, given corresponding fast Fourier reconstruction
methods [73], but is outside the scope of this study.

Correction of SoS and limited-view correction cannot be separated.
Thus, here a learned version of this Fourier-domain reconstruction is
introduced, with two data-trained networks embedded in the standard
Fourier reconstruction: one in image k-space, the second in the image
pace itself, which are trained jointly. The use of two networks is
otivated by the observation that we know a priori that one effect of

an incorrect SoS will be on the mapping from the temporal frequency
to the spatial frequency domain, suggesting a network in k-space. We
lso know that the limited-view geometry will lead to curved streak-
ike artifacts, which motivates the use of a post-processing network in
mage space, known to facilitate the removal of such artifacts.

We then systematically evaluate the influence of the model correc-
ion and training data selection on simulated data with unknown homo-
eneous and heterogeneous SoS distributions, as well as on in vivo data.
e show that while a model correction term can improve reconstruc-

ions quality, ensuring that the uncertainties in SoS are well-captured
2

n the training data is crucial. Consequently, this study provides further
insights into learned reconstructions with (partially) unknown SoS
maps by providing a systematic evaluation of training data selection
and the potential to learn a joint correction in image as well as image
k-space.

2. Methods

2.1. Photoacoustic model and reconstruction

In photoacoustic tomography the acoustic wave propagation is mod-
elled as an initial value problem for the acoustic wave equation. That
is, given the initial acoustic pressure 𝑝0 inside the tissue domain and a
spatially dependent sound speed 𝑐(𝑥), neglecting attenuation and shear

aves, we consider

𝜕𝑡𝑡 − 𝑐(𝑥)2𝛥)𝑝(𝑥, 𝑡) = 0, 𝑝(𝑥, 0) = 𝑝0(𝑥), 𝜕𝑡𝑝(𝑥, 0) = 0. (1)

n our application, the measured pressure wave 𝑝(𝑥, 𝑡) is recorded on the
oundary of the domain, here given as a planar sensor. The measured
ime-series is then modelled by a filtering and mapping operator to the
oundary as

= 𝑝 + 𝜖, (2)

ith measurement noise 𝜖. Eq. (2) will be used in this study as our mea-
urement model for the forward problem. We note that subsampling
ay be applied and included in  as well, but it is omitted in this

tudy. Given the measured time-series 𝑔 one could compute a recon-
truction of 𝑝0 by time reversal using full wave solvers [74]. This allows
eterogeneous SoS distributions to be included, but is computationally
xpensive, especially in three dimensions. Alternatively, many fast
olvers have been proposed over the years, most notably for a planar
etection geometry there are fast Fourier transform based methods
vailable [71,72,75]. Unfortunately, these efficient methods are based
n the assumption of constant homogeneous SoS. The subject of study
ere will be how to include a data-driven correction to compensate for
eterogeneous or unknown SoS, while maintaining the computational
fficiency.

The reconstruction algorithm under consideration here follows [71]
nd assumes constant SoS 𝑐0 inside the tissue and a planar detection
urface, then 𝑝0 can be obtained from the two-dimensional measure-
ent 𝑔(𝑥1, 𝑥2, 𝑡) via

(̃𝑘1, 𝑘2, 𝜔) = 𝐵(𝑘1, 𝑘2, 𝜔)1,2
(

𝑡
(

𝑔(𝑥1, 𝑥2, 𝑡)
))

(3)

𝑝0(𝑥) = −1
𝑘

(

𝑓 (𝑘)
)

(4)

here 𝑓 (𝑘1, 𝑘2, 𝜔) is obtained from 𝑓 (𝑘) via the dispersion relation
𝜔∕𝑐0)2 = 𝑘2𝑥+𝑘

2
𝑦+𝑘

2
𝑧 and  ,  denote the Fourier and Cosine transform

n the respective variables. The weighting factor 𝐵 is given by,

(𝑘1, 𝑘2, 𝜔) =
(√

(𝜔∕𝑐0)2 − 𝑘2𝑥 − 𝑘2𝑦
)

∕𝜔. (5)

Thus, a reconstruction of the initial pressure 𝑝0 can be efficiently com-
puted by applying the FFT on the detection surface, a multiplication in
k-space, an interpolation, followed by an inverse FFT. Nevertheless, this
procedure comes with two major limitations, namely the assumption
of constant SoS as well as the restriction to planar detection surfaces.
In the following we will propose one way to augment the inversion
algorithm in Eqs. (3) and (4), such that these limitations could be
overcome by learning a correction in image k-space as well as image
space.

2.2. Introducing a learnable SoS correction

Even though the FFT reconstruction assumes some simplifications
in the model, it is desirable to use due to its efficient implementation.
The aim in the following is to correct for some of the simplifying

assumptions. In particular, in the constant case if the SoS is not known a
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wrong choice of SoS can lead to severe reconstruction artefacts and thus
SoS would need tuning to obtain the best imaging quality [28,29,32].
A more severe limitation is the lack of handling heterogeneous SoS
distributions. To implement the correction, we note that the SoS 𝑐0 is
involved in the weighting factor and the interpolation from Eq. (3) to
Eq. (4). Thus, it would be natural to either include a step before or
after the interpolation to the k-grid to compensate for the inaccurate
assumption. Here, we chose to perform the interpolation first and then
correct potential errors. For this purpose we introduce a convolutional
neural network 𝜓 in the reconstruction process, such that the full
reconstruction becomes

𝑓 (𝑘1, 𝑘2, 𝜔) = 𝐵(𝑘1, 𝑘2, 𝜔)1,2
(

𝑡
(

𝑔(𝑥1, 𝑥2, 𝑡)
))

(6)

𝑓 (𝑘1, 𝑘2, 𝜔) ⟶ 𝑓 (𝑘) (7)

𝑓 (𝑘) = 𝜓 (𝑓 (𝑘)) (8)

𝑝0(𝑥) = −1
𝑘 (𝑓 ). (9)

We will denote the above learned reconstruction procedure Eqs. (6)–(9)
by †

𝜓 , with the learnable network parameters 𝜓 . That is, we obtain the
reconstruction 𝑝0 from the measured data 𝑔 as 𝑝0 = †

𝜓 (𝑔), after training
as we will discuss below. The purpose of the correction network 𝜓
is to locally adjust the misaligned frequency information to its correct
form. This misalignement is caused by using the wrong SoS to define
the mapping from temporal frequency to spatial frequency and in the
weighting factor 𝐵. Since the network 𝜓 corrects for incorrect model
assumptions in the inversion process, we will refer to it as a model
correction in the following.

Finally, we point out that the network 𝜓 operates here in k-space
and as such works on complex data. There are two ways to achieve this,
either separating real and imaginary parts and train separate networks
or utilising complex convolutional neural networks. In the former, the
interaction between real and complex part is lost, consequently it is
natural to consider networks that operate on the complex values as
described below. Additionally, it has been reported in the literature
that improved performance can be achieved by using complex valued
networks on k-space data in magnetic resonance imaging [76,77].

2.2.1. Complex convolutional neural networks
In complex convolutional neural networks [78], inputs, weights and

activation functions are complex. Let the complex input be ℎ = 𝑥 + 𝑖𝑦
where 𝑥 and 𝑦 are real vectors. In the complex weight, we allocate the
first half of the feature maps to represent the real components and the
remaining half to represent the imaginary ones e.g. complex weight is
𝑊 = 𝐴 + 𝑖𝐵 where 𝐴 and 𝐵 are real matrices. When convolving the
weight 𝑊 with the input ℎ, the output is given by

𝑊 ∗ ℎ = (𝐴 ∗ 𝑥 − 𝐵 ∗ 𝑦) + 𝑖(𝐵 ∗ 𝑥 + 𝐴 ∗ 𝑦).

Numerous activation functions have been proposed for complex
networks, but complex numbers are shown to be especially sensitive to
the choice of non-linearity [78]. A good choice for the non-linearity is
a complex rectified linear unit (ReLu) due to its good convergence and
phase manipulating properties [78], offering a natural equivalent to
real valued architectures. This is defined as the complex activation that
applies separate ReLU activations on both of the real and the imaginary
part of a neuron, i.e

CReLU(𝑧) = ReLU(Re(𝑧)) + 𝑖ReLU(Im(𝑧)).

In addition to the activation function, a batch normalisation and
weight initialisation are also key components of complex valued net-
works. Thus, complex valued versions of these algorithms are needed
and they may be formed according to the same principles as their real
valued counterparts. Similarly, complex equivalents can be found for
3

other components of neural networks as well.
2.3. Joint correction and learned reconstructions

The purpose of the correction term in Eq. (8) is primarily to adjust
for mismatches in the SoS distribution. The planar scanning geometry
will still lead to limited-view artefacts in the reconstruction that the
correction alone is not designed to compensate for, as this would
require an interpolation task in the k-space and is a different learning
problem. Here, we rather train the network to shift the k-space data to
compensate for the wrong SoS, this will be also reflected in the chosen
architecture as we discuss below in Section 3.1. Thus, the augmented
reconstruction method still needs to be combined with another data-
driven reconstruction method to achieve state-of-the-art reconstruction
quality by compensating for the limited-view artefacts in the recon-
struction space. For this study, we will concentrate on the approach of a
post-processing network here to maintain the computational efficiency
and potential for real-time applications. That is, given a reconstruction
𝑝0 we train a secondary network 𝛬𝜃 , such that

𝛬𝜃(𝑝0) ≈ 𝑝0 (10)

by minimising a loss function of the form

𝓁(𝑝0; 𝜃) = ‖𝛬𝜃(𝑝0) − 𝑝0‖. (11)

The question remains, how the correction network 𝜓 should be
trained, either separate to 𝛬𝜃 or jointly. In fact, it has been shown in
several studies that an end-to-end approach is more beneficial [79],
i.e., the whole process should be trained jointly. That means, the
mapping now takes in the measurements 𝑔 directly and the trainable
reconstruction operator becomes

𝛬𝜃
(

†
𝜓 (𝑔)

)

≈ 𝑝0 (12)

with the loss function

𝓁𝑗 (𝑔; 𝜃) = ‖𝛬𝜃
(

†
𝜓 (𝑔)

)

− 𝑝0‖. (13)

The crucial part for a successfully training of the joint reconstruction
operator, is that the derivative with respect to 𝜓 inside the model
can be computed (jointly with 𝜃), which in this case only involves the
Fourier transform in Eq. (9). To this end, we want to emphasise that
the network or any learned component can be included anywhere in the
reconstruction procedure in Eqs. (6)–(9), even on the measurement data
itself, as long as the gradient can be computed through the procedure
for training the networks jointly. We achieve this by providing an
implementation that fully supports automatic differentiation as we
discuss in the next section.

Finally, training data for the model correction component will be
crucial, as the network needs to learn how and what needs to be
corrected for. We will discuss the creation and use of training data in
the next section.

3. In silico and in vivo experiments

We use both the numerical simulations and human in vivo data to ex-
amine the performance of the learned based reconstruction approaches
described in Section 2. In addition, time reversal reconstruction and
FFT-based reconstruction were computed as a baseline reconstructions.

Accuracy of the reconstructions was evaluated by computing the
peak signal to-noise ratio (PSNR) and structural similarity index (SSIM)
of the reconstructions with respect to the true initial pressure distribu-
tion.

3.1. Network implementation

All reconstruction methods and networks were implemented in
Python using PyTorch [80]. In the implementation of FFT-based re-
construction, we followed the k-wave implementation [81]. We im-

plemented the FFT reconstruction with native PyTorch functions, for
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full GPU support and to benefit from the inbuilt automatic differenti-
ation and as such backpropagation can be efficiently computed. The
most critical part is the interpolation in Eq. (7) from data k-space to
mage k-space, for which we used the RegularGidIterpolator from the
orch_interpolations class. The codes are published1 along with this
tudy as part of our contribution.

In this work, we considered two different network architectures.
or the model correction network 𝜓 in Eq. (8), we used a very

simple network that had three complex convolutional layers. In the
first two layers, complex convolution was followed by complex batch
normalisation and CReLU. We used a filter size of 3 × 3 and the first two
layers had a width of 32 filters. For the implementation of the complex
network, we used the complexPyTorch package,2 see also [82] for an
application.

For the post-processing network 𝛬𝜃 in Eq. (10), we used a U-Net
type architecture [83,84]. U-Net has demonstrated strong robustness
and a diverse applicability to different research fields. The U-Net
architecture used here consisted of four scales, i.e. three down and up-
sampling layers, with a window size of 2. In each scale, we applied
a two convolutional layers followed by batch normalisation and ReLU.
Here, we have chosen the same size of all convolutional kernels as 3 × 3
and the width in the first scale 32, which in each downsampling was
doubled, that is in the finest scale we used 256 filters.

Finally, let us motivate the choice of architectures for the different
tasks. In the model correction the network 𝜓 primarily needs to
correct for the shifted k-space data. That means, we do not need a
large receptive field as the network should operate locally. Thus, a
small complex convolutional network was a good choice. In the image
domain, this is different. Due to the limited-view nature we needed a
larger receptive field, for which a U-Net is very well suited. We still
used a smaller network version of U-Net with only 3 downsamplings
instead of 4, as we wanted to preserve some of the non-locality of
convolutions.

3.2. Computational details

In the computations, a rectangular domain of size 120 × 120 × 40
with a discretisation of 𝑑𝑥 = 𝑑𝑦 = 𝑑𝑧 = 0.106mm was considered. As
a measurement geometry, we consider a plane detector at the top of
the domain. The sensor pitch was same as the spatial discretisation in
𝑥 axis.

A carefully designed training regime has been devised to provide
algorithm dependent convergence, which was used for all experiments.
In particular, a sufficiently large number of training iterations was
needed for the model correction to generalise, we ensured convergence
of the training by using PyTorch’s Adam algorithm with a cosine decay.
We observed dependence of results based on learning rates and thus we
chose 3 different initial learning rates 10−4, 10−3, 10−2. Finally, due
to memory limitations a batch size of 1 was used. We note, that we
did not use a validation set to choose locally optimal training points,
but rather let the training convergence and report the best performing
result on the test data. Training of the post-processing network took
around 3.5 h, but training of model correction and post-processing
networks together took around 12 h. Although training of networks
is time consuming, computation of reconstructions after the training
is fast. Post-processed reconstruction can be obtained in 0.016 s and
model-corrected and post-processed reconstruction takes 0.020 s, we
note that this is the full reconstruction time in 3D. All training and
image reconstructions were performed using a workstation with a
Nvidia Quadro RTX 6000 GPU with 24 GB memory.

In terms of computational complexity, the complex convolutions are
four times more expensive to evaluate than real valued convolutions.

1 https://github.com/jpoimala/learnedFastPAT
2 https://github.com/wavefrontshaping/complexPyTorch
4

This can also be seen in the memory consumption of the methods. The
post-processing approach consumed around 3.7 GB memory whereas
model correction and post-processing consumed around 8.5 GB due to
an additional network in image k-space, although the neural network of
he model correction was much smaller. We note, that larger imaging
olumes can be considered and require primarily more memory.

.3. Simulation experiments

In the simulations, two problems containing different acoustical
roperties were considered. In the first problem, a numerical phantom
hat possessed a constant SoS was studied. In the second problem, two
umerical phantoms that consisted of three regions with varying SoS
ere examined. The considered problems are illustrated in Fig. 1. In the
ach problem, the true SoS was assumed to be unknown and therefore
commonly chosen constant SoS of 1500m∕s for soft tissue imaging
as used in the reconstruction. The goal of simulations, especially

n the first problem, was not only to compare the performance of
econstruction methods but also to study the impact of the choice of
he training data.

.3.1. Unknown SoS

In PAT we are often interested in imaging vasculature, so we used
numerical vessel mimicking phantom (see Fig. 1) to test approaches.
he numerical vessel phantoms were obtained by segmenting vessels
rom lung CT scans previously used in [85] and smoothing them
ith a Gaussian filter. These smoothed vessels phantoms were used
s ground truth images (true initial pressure distribution) and they
ere divided to train and test images. Training images included 300

amples and test images included 45 samples. We note that due to the
ocality of convolutional neural networks and the 3D volume sizes the
raining data does contain in fact more information than the number
f samples suggests. This is in contrast to image classification, where
ach sample image only maps to a single class. Nevertheless, the U-
et architecture includes down and up-sampling operations, which
ombined with the nonlinearities allows the network to learn global
ependencies necessary for the compensation of limited-view artefacts
n the deep tissue area. We note, that the provided sample size, while
till of limited size, proved sufficiently large in our training procedure
o achieve generalisation to the testing data.

To simulate the corresponding synthetic measurement data we have
sed the k-Wave MATLAB toolbox [81]. The pairs of ground truth
mage and synthetic measurement data was collected to form train and
est set. In the case of test set, a constant SoS for the whole domain
as uniformly randomly chosen from the range of [1400, 1600]m∕s for
ach test image. In the case of training, we created three train sets,
o that each set had a different range from which a constant SoS was
niformly randomly chosen for each training image. The ranges were
1400]m∕s, [1500]m∕s and [1400, 1600]m∕s. For all sets, the pressure
ignals were recorded for 200 time steps at a temporal sampling rate
f 20MHz and a Gaussian noise with a standard deviation of 1% of the
aximum value of the synthetic measurement data was added to the

imulated pressure signals. In the reconstruction, a fixed constant value
or the SoS of 1500m∕s was used.

.3.2. Heterogeneous SoS distribution
In practice, the SoS of tissue is rarely constant. Thus, we also

onsidered two phantoms that have heterogeneous SoS distributions.
he phantoms included three layers with flat boundaries and a varying
oS. Although this is a simplistic model for real cases, we consider it
ufficient because variations in the speed of sound cause similar phase
ariations as irregularly shaped boundaries.

The first phantom was a numerical skin phantom. The first layer
as an epidermis of thickness 0.212mm and the SoS values were on

he interval [1635, 1655]m∕s. The second layer was a dermis of thickness

https://github.com/jpoimala/learnedFastPAT
https://github.com/wavefrontshaping/complexPyTorch
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Fig. 1. Phantoms used in the simulations. Top three rows show different acoustical properties of the phantoms. In each region, the speed of sound of the voxel is randomly chosen
from uniform distribution of the given interval. Bottom row shows an example 3D volume of the vessel mimicking initial pressure distribution. In the case of the skin phantom,
parts of the vessel phantom that are located to epidermis were excluded. In the case of the skull phantom, only parts of the vessel phantom that are located in the brain tissue
are included. The sensor was in acoustic contact with the tissue.
2.12mm and the SoS values were on the interval [1585, 1605]m∕s. The
third layer was a hypodermis of thickness 1.696mm and the SoS values
were on the interval [1440, 1460]m∕s. The initial pressure distribution
was again the same vessel phantom. This time the phantom was zero-
filled so that no nonzero values were located on the epidermis after the
smoothing.

The second phantom was a numerical skull phantom. Three layers
were skin, skull and brain, respectively. The skin layer had a thickness
of 0.212mm and the SoS values were on the interval [1580, 1620]m∕s.
The skull had a thickness of 0.428mm and the SoS values were on the
interval [2780, 2820]m∕s. In this simple skull model, shear effects and
scattering from the diploë were not considered. The rest of the domain
was considered to be brain and the SoS values were on the interval
[1520, 1560]m∕s. Also in this case, the same vessel phantom was used
as the initial pressure distribution, but this time nonzero values were
located only on the brain area.

The measurement data was simulated from both phantoms in the
same way as in the case of the homogeneous SoS. In the data simu-
lation, the SoS distribution for each layer in the test and training set
were drawn from the same range as mentioned above. That is, in each
layer, each voxel had uniformly randomly a value from the SoS interval
of that layer. Otherwise the generation of training and test sets was as
5

in the previous simulations. In the reconstruction, a constant SoS of
1500m∕s was used.

3.4. In vivo measurements

The approaches were tested with experimental data obtained from
human hands using a photoacoustic scanner based on a Fabry–Pérot
interferometer. In the measurements, different parts of the hands of
several subjects were imaged. More details on the experimental setup
and measurements can be found in Ref. [86].

With real data, gold standard reconstructions from a highly sampled
complete data set are typically used as ground truth images. In this
case, such reconstructions are not available, as the data is measured
on one side of the object only. Thus, we use total variation (TV)
constrained reconstructions [87] as our reference reconstructions. We
note, that although these reconstructions are high-quality and rep-
resent our gold-standard, they do not completely correspond to the
ground truth. Reference images were obtained by computing TV re-
constructions using the SoS of 1585m∕s. In the TV reconstruction, the
regularisation parameter was chosen so that noise and regularisation
artifacts were as minimal as possible. This was achieved by computing
a set of reconstructions with small regularisation parameter and manual
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Fig. 2. Maximum intensity projections of reconstructions obtained using time reversal (TR), FFT-based reconstruction method (FFT), FFT-based reconstruction method + post-
processing (FFT+PP) and FFT-based reconstruction method with model correction + post-processing (FFT+MC+PP) in the case of the unknown homogeneous SoS. The SoS in the
training was 1400m∕s. Each reconstruction is presented in its own colourmap.
selection of best reconstructions by visual inspection. The measured
data and corresponding computed reference images were divided to
test and train set, so that train set included 25 samples and test set
included 4 samples. This further training data limitation, compared to
the simulated case, is natural for applications in 3D in vivo imaging,
where high quality data is limitedly available. In addition, the sound
speed of the medium was set to 1500m∕s in the reconstructions.

4. Results and discussion

4.1. Homogenous speed of sound

The results obtained for the unknown SoS case are displayed in
Figs. 2, 3 4, 5 and in Table 1. These reflect the different training
scenarios of fixed SoS at 1400m∕s in Fig. 2, 1500m∕s in Fig. 3, and
variable SoS between [1400, 1600]m∕s in Fig. 4, and a summary of errors
is shown in Fig. 5. The time reversal and FFT-based reconstruction
method produce similar reconstructions. Both of these reconstruction
methods suffer as expected from limited-view and model mismatch er-
rors due to wrong SoS used. Interestingly, the FFT-based reconstruction
method exhibits more sensitivity to the mismatch in the chosen SoS
values than time reversal. This can be seen especially clearly in the
areas that are far from the sensor plane and in the vessels that are
vertical to the sensor plane. In addition, quantitative values in these
reconstructions are reduced. In contrast, learning-based reconstruction
methods can improve both the quality and quantitative values of the re-
constructions significantly. Nevertheless, the post-processing and model
6

Table 1
The average peak signal to noise ratio (PSNR) and structural similarity index
(SSIM) with standard deviation over the test set for time reversal (TR), FFT-based
reconstruction method (FFT), FFT-based reconstruction method + post-processing
(FFT+PP) and FFT-based reconstruction method with model correction + post-
processing (FFT+MC+PP) obtained using different SoS distributions 𝑐𝑡𝑟𝑎𝑖𝑛 in training
set in the case of the unknown homogeneous SoS data set.
𝑐𝑡𝑟𝑎𝑖𝑛(m∕s) TR FFT FFT+PP FFT+MC+PP

1400
PSNR 23.9 ± 2.8 22.7 ± 2.8 25.9 ± 4.2 25.8 ± 4.2
SSIM 0.75 ± 0.10 0.72 ± 0.12 0.90 ± 0.06 0.90 ± 0.06

1500
PSNR 23.9 ± 2.8 22.7 ± 2.8 28.9 ± 3.8 29.1 ± 3.9
SSIM 0.75 ± 0.10 0.72 ± 0.12 0.95 ± 0.04 0.95 ± 0.03

[1400, 1600]
PSNR 23.9 ± 2.8 22.7 ± 2.8 29.4 ± 3.0 30.0 ± 3.3
SSIM 0.75 ± 0.10 0.72 ± 0.12 0.95 ± 0.03 0.96 ± 0.02

correction approach produce very similar reconstructions. However,
overall results of model correction approach provides a slight improve-
ment, especially in the areas were vessels were missing in the FFT
reconstruction. Both learning-based methods can reduce limited-view
and model mismatch errors successfully.

However, the corrective effect of these methods depends largely on
the quality of the training data. The better the training data describes
the object being imaged and the potential model mismatch (here by
different SoS), the better the trained methods will be able to correct
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Fig. 3. Maximum intensity projections of reconstruction obtained using time reversal (TR), FFT-based reconstruction method (FFT), FFT-based reconstruction method + post-
processing (FFT+PP) and FFT-based reconstruction method with model correction + post-processing (FFT+MC+PP) in the case of the unknown homogeneous SoS. The SoS in the
training was 1500m∕s. Each reconstruction is presented in its own colourmap.
these errors. This is especially so for the modelling errors. This effect in
illustrated in Fig. 5 and the error Table 1. When the correct SoS is close
to 1400m∕s, the best results are obtained using the training set were
SoS was chosen only as 1400m∕s. Correspondingly, if the correct SoS is
close to 1500m∕s, the training set with SoS of 1500m∕s produces best
results. However, if we consider all the samples in the test set where SoS
varies between 1400 and 1600, then in general the best result is obtained
with the test set that has SoS in range [1400, 1600]m∕s. Most notably,
when the model correction network is only trained with 1400m∕s,
moving away from this ideal value degrades reconstruction quality
significantly. In fact, when the network trained on 1400m∕s is applied
to values over 1500m∕s the reconstruction quality becomes similar to
time reversal. This underlines the importance of the training data to
reflect the model mismatch. A similar trend can be seen in Table 1,
when only one fixed SoS is used for the training model correction and
post-processing only perform very similar, only when we consider the
larger range of variable SoS an improvement can be observed of the
model-correction and post-processing approach. This suggests a crucial
role of the training data.

4.2. Heterogeneous speed of sound

For the heterogeneous SoS, the results for the skin data set are
shown in Fig. 6 and in Table 2. Correspondingly, Fig. 7 and Table 3
show the results for the skull data set. Both results are in line with the
observations from the homogeneous but unknown SoS described above.
The FFT-based reconstruction method gives the worst reconstruction
7

Table 2
The average peak signal to noise ratio (PSNR) and structural simi-
larity index (SSIM) with standard deviation over the test set for time
reversal (TR), FFT-based reconstruction method (FFT), FFT-based
reconstruction method + post-processing (FFT+PP) and FFT-based
reconstruction method with model correction + post-processing
(FFT+MC+PP) in the case of the skin dataset.

Method PSNR SSIM

TR 23.6 ± 2.7 0.77 ± 0.09
FFT 22.9 ± 2.8 0.74 ± 0.11
FFT+PP 32.8 ± 3.0 0.98 ± 0.01
FFT+MC+PP 32.4 ± 3.1 0.98 ± 0.01

that suffers from strong errors and hence can be highly improved with
the learning-based methods. The results of the learned methods are
very similar and difference between these two approach is even smaller
than in the case of the unknown SoS. In the case of the skin data
sets, modelling errors are quite small and both learned approaches can
correct these errors successfully. However, in the case of the skull data
set, the effect of modelling errors is emphasised. Interestingly in this
case, the learned methods both cannot correct the error as successfully
as in the case of the skin data even though the SoS is modelled properly
in the training set. This seems to be a limiting case and further research
to compensate such strong mismatch is needed.
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Fig. 4. Maximum intensity projections of reconstruction obtained using time reversal (TR), FFT-based reconstruction method (FFT), FFT-based reconstruction method + post-
processing (FFT+PP) and FFT-based reconstruction method with model correction + post-processing (FFT+MC+PP) in the case of the unknown homogeneous SoS. The SoS in the
training was from range [1400, 1600]m∕s. Each reconstruction is presented in its own colourmap.
Fig. 5. Peak signal to noise ratio (PSNR) as function of SoS for time reversal (TR), FFT-
based reconstruction method (FFT) and FFT-based reconstruction method with model
correction + post-processing (FFT+MC+PP) obtained using different SoS in training set
in the case of the unknown homogeneous SoS.
8

Table 3
The average peak signal to noise ratio (PSNR) and structural simi-
larity index (SSIM) with standard deviation over the test set for time
reversal (TR), FFT-based reconstruction method (FFT), FFT-based
reconstruction method + post-processing (FFT+PP) and FFT-based
reconstruction method with model correction + post-processing
(FFT+MC+PP) in the case of the skull dataset.

Method PSNR SSIM

TR 23.6 ± 2.9 0.77 ± 0.10
FFT 23.2 ± 3.0 0.78 ± 0.10
FFT+PP 29.0 ± 3.1 0.95 ± 0.02
FFT+MC+PP 29.0 ± 3.1 0.95 ± 0.02

Table 4
The average peak signal to noise ratio (PSNR) and structural simi-
larity index (SSIM) with standard deviation over the test set for time
reversal (TR), FFT-based reconstruction method (FFT), FFT-based
reconstruction method + post-processing (FFT+PP) and FFT-based
reconstruction method with model correction + post-processing
(FFT+MC+PP) in the case of the in vivo measurements.

Method PSNR SSIM

TR 32.0 ± 2.5 0.839 ± 0.006
FFT 31.8 ± 2.5 0.835 ± 0.008
FFT+PP 36.6 ± 2.5 0.925 ± 0.006
FFT+MC+PP 36.8 ± 2.4 0.926 ± 0.006
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Fig. 6. Maximum intensity projections of reconstruction obtained using time reversal (TR), FFT-based reconstruction method (FFT), FFT-based reconstruction method + post-
processing (FFT+PP) and FFT-based reconstruction method with model correction + post-processing (FFT+MC+PP) in the case of the skin data set. Each reconstruction is presented
in its own colourmap.
4.3. In vivo measurements

The results for in vivo measurements are presented in Fig. 8 and
Table 4. Also the result of the in vivo measurements conform with the
previous results. We can obtain clear improvement in the reconstruc-
tions by using either of the learning-based reconstruction methods. We
can see, that the reconstructions obtained by the post-processing and
model correction approach are visually very similar and the model
correction does provide only a slight improvement in quantitative
measures. This improvement could be explained by the cross-section in
Fig. 8, where the post-processing approach seems to under or overshoot
the absorption values in the vessels and profile of the model correction
approach is closer to the absorption values from the reference recon-
struction. Nevertheless, for the experimental data the model correction
could not provide a significant improvement over post-processing. Fi-
nally, in the training, a slower convergence of training error has been
observed, which may be due to smaller training data size.

4.4. Extensions and limitations

Overall, we can conclude that the examined learning-based methods
are powerful for correcting limited-view artefacts and modelling errors
due to SoS variations. The post-processing alone already provides good
results but with the model correction we can gain slight improve-
ments both in quality with respect to recovered quantitative values.
Nevertheless, most of the improvements are dependent on the right
choice of training data. However, improvements gained with the model
9

correction come with a cost. Training the model-corrected approach
is approximately four times slower than training of just the post-
processing due to an expensive network in the complex k-space. In
addition, we also noticed that training of the model correction approach
is harder, in the sense that longer training is needed for convergence
and to provide good generalisation to the test set. This may be because
of the training in the model correction is done in k-space and small
changes in k-space can have large impact in image space. Other reasons
could be the limited size of the training sets, especially in the case of the
in vivo measurements, which is a common limitation for applications
of learned methods to in vivo measurements. The potential influence
of training data size may be a thus an interesting area for future
investigation.

In the model correction approach, we used a quite simple network
architecture, as we postulated that only local changes are needed and
hence a large receptive field is not required. To confirm this, we
also tested a complex U-Net, with same architecture as for the post-
processing, and indeed no significant improvements were observed. It
is worth mentioning that we have also examined the performance of
the model correction alone without a post-processing network, where
small improvements can be observed, but the network in k-space alone
did not manage to correct for the limited-view artefacts, thus the
performance gain was not significant enough. In the future, differ-
ent networks could be investigated to see if one could improve the
performance of the model correction approach. For this purpose one
would need to train a network to interpolate the missing k-space data
to compensate for the limited-view geometry. We can take inspiration
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Fig. 7. Maximum intensity projections of reconstruction obtained using time reversal (TR), FFT-based reconstruction method (FFT), FFT-based reconstruction method + post-
processing (FFT+PP) and FFT-based reconstruction method with model correction + post-processing (FFT+MC+PP) in the case of the skull data set. Each reconstruction is
presented in its own colourmap.
.

here from research in magnetic resonance imaging. For instance com-
plex valued generative adversarial networks [88], multi-scale residual
networks using dual frame U-Net [89] and complex dense fully con-
volutional networks [90] have been used to process the k-space data.
However, increased complexity of the model correction network also
rapidly increases memory requirements.

Finally, we have observed when introducing an additional compo-
nent that is designated to correct for modelling errors the choice of
training data becomes even more crucial. We have observed that results
are more sensitive to the information encoded in the training data,
as the model correction component needs to be able to learn a good
correction procedure. In other words, more complexity in the model
needs to be properly reflected in the choice of training data.

5. Conclusions

We have studied the possibility of compensating for modelling
errors given by a mismatch of SoS distributions in fast FFT-based recon-
structions for limited-view 3D photoacoustic tomography. We proposed
a model-correction term in k-space to compensate for wrong SoS that
can be trained jointly with a post-processing network to improve
image quality and compensate for limited-view artefacts. Additionally,
we have examined the influence of the training data on the task to
compensate for modelling errors.

We have shown that one can successfully compensate for model
errors due to wrong SoS choices, by both a model-correction term and
post-processing alone, if the training data provides a good representa-
tion of the errors that need to compensated. In particular, a learnable
correction does require a carefully designed training data to train the
10
introduced correction term and the performance is dependent on a good
choice of training data.

In conclusion, based on the presented results, first and foremost a
careful choice of training data is of great importance when correcting
modelling errors in a supervised training. The training data should not
only give a good representation of the relevant structures in the image
domain but also well resemble potential modelling errors that can occur
in the imaging problem.
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Fig. 8. Maximum intensity projections of reconstruction obtained using time reversal (TR), FFT-based reconstruction method (FFT), FFT-based reconstruction method + post-
processing (FFT+PP) and FFT-based reconstruction method with model correction + post-processing (FFT+MC+PP) in the case of the in vivo measurements. Each reconstruction is
presented in its own colourmap.
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