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penetrating wavelengths than the 1,064 nm wavelength of the 1 kHz 
PRF fibre laser used in the current study are available commercially. 
Inevitably however, increasing the PRF incurs an SNR cost due to the 
need to limit the pulse energy to comply with safe laser exposure limits. 

Subsampled acquisition provides an opportunity to address this. As 
shown in Fig. 5b, high-quality images can be reconstructed with even 
highly subsampled data, albeit at the cost of long image reconstruc-
tion computation times although there is the potential to reduce this 
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using learned reconstruction methods60. Taking all of the above into 
account, a 3D frame rate of 10 fps should be achievable without sig-
nificantly compromising image quality via a combination of a factor 
of 2 increase in parallelization and a modest subsampling of a factor 
of 2 or 3. For applications that can tolerate a reduction in image SNR, 
a combination of ×10 subsampling and a 1 kHz PRF could enable 3D 
frame rates in excess of 100 fps to be achieved.

In scenarios where real-time 3D imaging is required, the main 
computational challenge is to achieve sufficiently short latencies, that 
is, the time span between data acquisition and image visualization, 
which is dominated by the image reconstruction time. For fully sampled 
acquisition, the latency of our CPU-based implementation is between 
0.48–0.8 s on a desktop PC. Optimized GPU-based implementations or 
parallelization over multiple computing nodes with the same hardware 
could decrease the latency substantially. In addition, real-time visu-
alization of high-resolution 3D images is not required for some tasks, 
for example, to assist probe placement. This offers the opportunity to 
reduce latencies by employing pseudo-3D backprojection reconstruc-
tion methods, a concept developed for computed tomography (CT) in 
which selected image volumes or planes are computed directly, bypass-
ing the need for a computationally burdensome full 3D reconstruction.

Penetration depth and spatial resolution can be adjusted by modi-
fying the FP sensor design. It has been shown that, by increasing the 
sensor finesse through the use of a plano-concave cavity geometry32,75, 
detection sensitivity can be increased by at least an order of magnitude, 
offering the prospect of increasing imaging depth to 2–3 cm. The 
acoustic bandwidth can readily be increased to 100 MHz by reducing 
the FP polymer film thickness to achieve higher spatial resolution for 
ultra-high-resolution vascular imaging applications, for example, 
visualizing the highly superficial dermal vasculature at capillary level.

Other imaging modalities can readily be incorporated to provide 
complementary anatomical or physiological information. The trans-
parent nature of the sensor allows straightforward integration of pure 
optical imaging techniques such as optical coherence tomography 
(OCT)76 or fluorescence imaging. A 3D ultrasound imaging capability77 
could be implemented by using a dichroic absorptive coating depos-
ited on the sensor. This would enable a dual-mode imaging modality 
in which the ultrasound image provides morphological mechanical 
contrast complementary to the PAT vascular contrast. As well as visu-
alizing anatomical features indistinguishable with PAT, it would aid 
clinical translation by providing an anatomical imaging landscape 
recognizable to clinicians familiar with ultrasound that helps in the 
interpretation of the PAT image.

Finally, the concept lends itself to a multitude of form factors. The 
large size and weight of the current galvanometer-based probe head 
makes it somewhat cumbersome for routine clinical use. By replacing 
the galvanometer scanners with a compact micro-electromechanical 
systems (MEMs) based scanner72, a hand-held probe head of similar 
dimensions, ergonomic shape and weight to a conventional clinical 
ultrasound probe could be realized. Moreover, there is scope to develop 
miniature endoscopic or intracavitary probes by interrogating the 
FP sensor via an optical fibre bundle70,71. Not least, by virtue of the 
all-vacuum deposition fabrication techniques used to manufacture the 
sensor which enables batch fabrication at low unit cost, the technol-
ogy lends itself to minimally invasive applications where single-use 
disposable sensors are required.

In summary, we have reported a high-fidelity 3D PAT scanner that 
can provide rapid, detailed in vivo 3D images of superficial vascular 
anatomy in clinically acceptable acquisition times. The level of image 
detail that it provides suggests that it could find application as a tool for 
the clinical detection, diagnosis and treatment monitoring of diseases 
such as diabetes or cancer that are characterized by microcircula-
tory abnormalities. The demonstrated combination of high image 
fidelity, fast acquisition, design versatility and the practical nature of 
the technology sets the scene for its clinical translation in oncology, 

cardiovascular medicine, dermatology, image guided surgery and 
other medical specialties.

Methods
Fabry–Perot ultrasound sensor
The FPI spacer was formed by the vacuum deposition of Parylene C78. 
The mirrors of the FPI comprised a dichroic dielectric stack trans-
parent between 560 nm and 1,300 nm and highly reflective between 
1,460 nm and 1,630 nm (see Supplementary Fig. 1). A Parylene C layer 
a few microns thick was deposited over the FPI to protect it from water 
ingress and mechanical damage. Two different sensors of similar design 
were used: for the volunteer studies, the sensor spacer thickness was 
26.6 µm, providing an estimated -3 dB bandwidth of 31.5 MHz. For the 
clinical case studies, the sensor spacer thickness was 29.6 µm provid-
ing an estimated -3 dB acoustic bandwidth of 27.6 MHz. The effective 
signal bandwidth was the same irrespective of the sensor used since 
a digital 50 kHz–20 MHz bandpass filter was applied to the detected 
photoacoustic waveforms in all cases, except for the spatial resolution 
measurements and high-resolution scan-mode images (Fig. 4) for which 
the filter bandwidth was 50 kHz–30 MHz. For the 26.6 µm sensor, the 
reflectivity finesse was F = 76.6, the fringe visibility V = 0.78 and the free 
spectral range FSR = 26.6 nm. For the 29.6 µm sensor, F = 33.8, V = 1.00 
and FSR = 23.6 nm.

Scanner hardware
The interrogation laser system comprised a Santec external cavity 
laser, tunable between 1,500 nm and 1,630 nm and amplified by a pair 
of C-band erbium-doped fibre amplifiers. To record the output of the 
FP sensor, custom-designed InGaAs photodiode-transimpedance 
units with AC and DC-coupled outputs were used; the bandwidth of 
the AC-coupled output was 50 kHz–75 MHz. Each photodiode unit 
was connected to an input of a multichannel RF acquisition system 
of up to 64 channels with 60 Ms s−1 (megasamples per second) sam-
pling rate. The interrogation beams were scanned using a conjugate 
galvanometer-based scanner (Supplementary Fig. 2). The maximum 
scanning angle used was 15.2°, the focused interrogation beam spot 
diameter (1/e2) was 49 µm and the Rayleigh range 2.47 mm. The system 
crosstalk was evaluated by delivering light to one of the optical fibres 
close to the centre of the 64-fibre bundle at the same optical power 
that was used when imaging while simultaneously monitoring the 
photodiode signals of the remaining 63 channels. On the channels 
immediately adjacent to the illuminated one, the crosstalk was 0.5%. 
On all other channels, no crosstalk could be detected.

Three excitation laser systems were variously used depending on 
the PRF requirements. Two were Type II 532 nm pumped OPO-based 
laser systems. One was an Ekspla Photosonus-X operating at 100 Hz 
(depicted in Fig. 1b) and the other was an Innolas EVO 200 that could 
operate at either 100 Hz or 200 Hz. Both provided pulse energies in 
excess of 10 mJ, pulse durations of 5 ns and a signal wavelength range 
between 660 nm and 1,300 nm. The outputs of both systems were 
coupled into 1.5-mm-diameter optical fibres. The third excitation 
laser was a large-core Yb pulsed fibre laser based on a master oscilla-
tor power amplifier architecture49 custom designed and built by the 
Optoelectronics Research Centre, Southampton University. It provided 
a 1,064 nm output, a pulse energy of 10 mJ, adjustable pulse duration 
(10–500 ns) and PRFs of 100–1 kHz. In this study, the pulse energy and 
duration used were 2.7 mJ and 20 ns, respectively.

System characterization
The system was characterized using similar methods to those 
described in ref. 37. The NEP distribution shown in Fig. 1e was obtained 
by measuring the FP sensor signal at 34,560 scan points on the sen-
sor in response to a plane wave of known peak pressure emitted 
by a calibrated planar 3.5 MHz piezoelectric transducer37. At each 
scan point, the signal amplitude and root mean square noise (over a 
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20 MHz measurement bandwidth) were measured to estimate the NEP.  
To obtain the NEP distribution for a single-beam scanner for compari-
son, light from the interrogation laser was coupled into only a single 
fibre within the 64-beam array. NEP measurements were then acquired 
at 34,560 scan points, with the bias wavelength optimally set at each 
scan position.

The sensor frequency response (Fig. 1c) was obtained using a 
substitution method based on a broadband laser-generated ultra-
sound source and a calibrated reference detector of known frequency 
response37. The in vivo acoustic frequency tissue spectrum shown in 
Fig. 1c (dashed line) was obtained by averaging the frequency spectra 
of 34,560 A-lines acquired in a scan of the human palm. The spatial 
resolution as a function of position was estimated by scanning over 
21 × 9.5 mm2 a grid of plastic line absorbers immersed in Intralipid 
and reconstructing images of the phantom for three scan step sizes: 
dx = dy = 54 µm, dx = dy = 108 µm and dx = dy = 162 µm (Supplementary 
Figs. 3 and 4). To estimate the lateral and vertical resolution, the edge 
spread and line spread functions respectively were measured37.

Signal processing, image reconstruction and visualization
Before image reconstruction, the raw photoacoustic waveforms were 
preprocessed by applying a bandpass filter; 50 kHz–20 MHz was used 
in most cases. For the high-resolution scan mode and spatial resolution 
measurements, the upper cut-off frequency was increased to 30 MHz. 
For the image in Extended Data Fig. 2, a 2–20 MHz filter was used. 
The recorded pressure time-series data were spatially interpolated 
onto a ×2 finer grid, except for the dynamic imaging examples (Fig. 6) 
for which a factor of ×3 interpolation was used79. The tissue sound 
speed was then estimated using an autofocus method80 and input 
to the reconstruction algorithm. All images, except the subsampled 
images in Fig. 5b, were reconstructed using a k-space backprojection 
algorithm51. The reconstructed image was then interpolated onto a ×2 
finer grid. The image reconstruction was implemented using k-Wave, 
an open-source toolbox developed at UCL for the time-domain simula-
tion and reconstruction of photoacoustic and ultrasound wave fields 
(www.k-wave.org; ref. 81).

By employing a fast C++ CPU optimized computational imple-
mentation, image reconstruction time has been reduced by a factor 
of 5 over a previous MATLAB implementation81. Reconstruction time 
depends on scan area, spatial sampling interval and the number of 
points in the time record. For example, for a scan area of 21 × 19.5 mm2, 
dx = dy = 108 µm and a record length of 600 time points, the reconstruc-
tion time was 0.8 s, decreasing to 0.48 s for a 15 × 15 mm2 scan for the 
same spatial-temporal sampling intervals using a desktop PC.

The subsampled images in Fig. 5b were reconstructed using 
an iterative model-based reconstruction algorithm based on least 
squares minimization with a total variation regularization term and a 
non-negativity constraint, described further in Supplementary Note 
3 and ref. 50. Regularization parameters were chosen to (1) suppress 
the most visible reconstruction artefacts, (2) retain most visible small 
vessels and (3) correct the most obvious geometrical distortion of 
clearly visualized vessels. The regularization parameter for the fully 
sampled image was λ = 12 × 10−4. The regularization parameter for each 
subsampled image50 was λ multiplied by the respective subsampling 
factor. A maximum of 50 iterations were computed for each example. 
Computing the reconstruction of the images in Fig. 5b (192 × 180 × 396 
voxels) took 17, 22, 23 and 25 min for 100, 50, 25 and 12.5% subsampling 
factors, respectively, by using optimized CUDA code on a Supermicro 
SuperServer SYS-420GP-TNR: it has 2 × 16-core Intel Xeon Silver 4314 
2.40 GHz CPUs (Ice Lake), 1,024 GB of 3,200 MHz DDR4 memory, and 
3× NVIDIA Tesla A100 Ampere GPUs each with 6,912 CUDA cores and 
80 GB of memory.

Since the excitation beam diameter was larger than the scan area, 
in some cases, images were reconstructed slightly outside the scan 
footprint to increase the lateral FOV; for example, the images in Fig. 2c,d 

were reconstructed over a 22 × 22 mm area although the physical scan 
area was 21 × 19.5 mm2. To aid the visualization of deeper-lying features, 
a first-order correction for optical and acoustic attenuation was used79. 
This was implemented by scaling the image intensity in the depth 
direction with an exponential function, the exponent of which was 
in the range 100–150 m−1. All MIPs are displayed using a linear image 
intensity scale. The intensity scale used for all greyscale images was 
linear from black (0) to white (1).

Unless otherwise indicated, all colour-to-depth encoded 
MIPs are full-thickness projections, whereas greyscale MIPs are 
reduced-thickness projections; tx and ty denote the x and y slice thick-
nesses, respectively, in these MIPs.

Image quantitation
Image CNR was estimated as follows. To determine the contrast, the 
mean pixel intensity at each x-y plane was first computed to obtain a 
measure of the background. The background was then subtracted from 
all pixels throughout the image volume and the peak value of the mean 
intensity as a function of depth taken to represent the contrast. For 
the images in Fig. 5a, the contrast was determined within the volume 
demarcated by the dashed white rectangles as these define the com-
mon anatomical ROI for each case. In all other cases, the entire image 
volume was used to estimate the contrast. The noise was determined 
by selecting a volume devoid of image features and calculating the root 
mean square value of the pixel intensities within it.

To quantify vascular contrast, two metrics were used. When indi-
vidual vessels could be resolved (as in Fig. 8a,b), the vascular density 
Vs which represents the percentage of the image volume occupied 
by resolvable vessels was used. Vs was determined by segmenting 
the vasculature, forming a 3D skeleton visualization and estimating 
the number of non-zero pixels as a percentage of the total number of 
pixels in the image. The segmentation of the vasculature was achieved 
using K-means clustering82, implemented with the MATLAB function 
‘imsegkmeans3’. This approach classifies image pixels on the basis of 
intensity by forming clusters in intensity space where pixel intensities 
within each cluster are maximally close to each other and distant from 
pixel intensities in other clusters. This provided effective segmentation 
of the resolvable vasculature without the need to define a threshold. 
To quantify subresolution vascular contrast (as in Fig. 8c), the number 
of voxels above the background within the volume of interest was 
estimated and denoted VI. The tortuosity index (Fig. 7) is given by the 
ratio of the vessel length to the straight-line distance between two 
points along the vessel67.

Volunteer and patient studies
Volunteers were recruited from the Department of Medical Physics 
and Biomedical Engineering at UCL with ethical permission granted 
by University College London Research Ethics Committee (Project ID: 
1133/001). Patients were recruited from relevant clinics at UCL Hospi-
tals NHS Trust under NHS Research Ethics Committee approval (IRAS 
Project ID number: 206196). Written informed consent was obtained 
from all participants.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The raw image data sets and reconstructed-image data are available 
from the authors for research purposes on reasonable request.

Code availability
All custom MATLAB scripts used to process and analyse the data 
are available from the authors for research purposes on reasonable 
request.
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Extended Data Fig. 1 | PAT image of index finger-tip vasculature. Left; x-y and 
x-z depth-to-colour encoded MIPs. Right, expanded view greyscale MIPs showing 
x-z and y-z cross sectional views. Scale bars: 1mm. tx and ty: slice thicknesses 

of x-z and y-z greyscale MIPs respectively. Imaging parameters: λ=850nm, 
dx=dy=108µm, dt=16.67ns, PRF=100Hz, N=64, A-line rate: 6400 A lines/s, scan-
time: T=5.4s.
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Extended Data Fig. 2 | PAT image of the wrist vasculature acquired in high-
resolution scan mode. (i) x-y depth-to-colour encoded MIP. (ii-iii) depth-to-
colour encoded y-z and x-z MIPs of the regions denoted by the blue and red 
dotted line in (i). The y-z and x-z MIPs show the epidermis (E) with a thickness 

of 250µm, the fine dermal microvasculature (DM), a venous valve (VV) and 
the large wrist veins. Scale bars: 1mm. tx and ty: slice thicknesses of y-z and x-z 
MIPs respectively. Imaging parameters: λ=850nm, dx=dy=54µm, dt=16.67ns, 
PRF=100Hz, N=64, A-line rate=6400 A lines/s, scan-time T=29s.
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Extended Data Fig. 3 | Images of right breast with tumour. (i) Photograph, MRI 
and (ii) ultrasound (US) images of tumour and approximate region of PAT scan 
(red dotted box. (iii) PAT images of different slice thicknesses showing presumed 
tumour (T) boundary and feeding vessels (FV). The tumour region exhibits low 

photoacoustic contrast suggesting lower vascular density than surrounding 
tissue. Imaging parameters: λ=850, dx=dy=108µm, dt=16.67ns, PRF=100Hz, 
N=16, A-line rate: 1400 A lines/s, scan-time T=15s.

http://www.nature.com/natbiomedeng


1

nature portfolio  |  reporting sum
m

ary
April 2023

Corresponding author(s): Paul Beard

Last updated by author(s): Jul 2, 2024

Reporting Summary
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in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection The photoacoustic image datasets were collected using custom Labview 2017 (64 bit) acquisition software

Data analysis All image datasets were processed and analysed using custom Matlab (R2017b and R2020b.) or C++ scripts. They are are available from the 
authors for research purposes on reasonable request.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The raw image datasets and reconstructed-image data are available from the authors for research purposes on reasonable request.
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Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender 20 participants in total were recruited: 8 heathy volunteers (5 male, 3 female) and 12 patients (4 male, 8 female). Sex and 
gender were not considered in the study design.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

The participants were not categorized according to race, ethnicity or any other groupings.

Population characteristics See above.

Recruitment The volunteers were recruited from the Department of Medical Physics and Biomedical Engineering, UCL. Patients were 
recruited from UCL Hospitals NHS trust. Written informed consent was obtained from all participants.

Ethics oversight Ethical permission was granted by University College London Research Ethics Committee (Project ID: 1133/001) for the 
volunteer studies. Ethical permission was granted by NHS Research Ethics Committee approval (IRAS Project ID number: 
206196) for the patient studies.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size 15 healthy volunteers and 16 patients were recruited. No sample-size calculation was performed, as the study was largely focused on 
technology evaluation and was designed as an initial technical proof-of-concept.

Data exclusions Imaging data was acquired on multiple occasions on most participants, but only one representative image is typically shown for each 
anatomical location or clinical condition, to illustrate technical proof-of-concept.

Replication Data acquisition was performed on most participants multiple times to ensure correct device functioning. All attempts at replication were 
successful.

Randomization The study is a technical proof-of-concept, so randomization was not relevant.

Blinding The investigators were not blinded to the study. Blinding was not relevant to the study owing to its technical proof-of-concept nature.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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