
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 42, NO. 9, SEPTEMBER 2023 2603

Mitigating the Limited View Problem in
Photoacoustic Tomography for a Planar

Detection Geometry by Regularized
Iterative Reconstruction

Jiaqi Zhu , Nam Huynh, Olumide Ogunlade , Rehman Ansari, Felix Lucka , Ben Cox , and Paul Beard

Abstract— The use of a planar detection geometry in pho-
toacoustic tomography results in the so-called limited-view
problem due to the finite extent of the acoustic detection
aperture. When images are reconstructed using one-step
reconstruction algorithms, image quality is compromised
by the presence of streaking artefacts, reduced contrast,
image distortion and reduced signal-to-noise ratio. To miti-
gate this, model-based iterative reconstruction approaches
based on least squares minimisation with and without
total variation regularization were evaluated using in-silico,
experimental phantom, ex vivo and in vivo data. Compared
to one-step reconstruction methods, it has been shown
that iterative methods provide better image quality in terms
of enhanced signal-to-artefact ratio, signal-to-noise ratio,
amplitude accuracy and spatial fidelity. For the total varia-
tion approaches, the impact of the regularization parameter
on image feature scale and amplitude distribution was eval-
uated. In addition, the extent to which the use of Bregman
iterations can compensate for the systematic amplitude
bias introduced by total variation was studied. This inves-
tigation is expected to inform the practical application of
model-based iterative image reconstruction approaches for
improving photoacoustic image quality when using finite
aperture planar detection geometries.

Index Terms— Photoacoustic image reconstruction, pla-
nar detection geometry, iterative image reconstruction, total
variation regularization, Bregman iteration.
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I. INTRODUCTION

PHOTOACOUSTIC imaging which utilises both optical
and ultrasound energy is an emerging modality [1], [2],

[3] with a broad range of potential pre-clinical [4], [5], [6],
[7], [8], [9], [10] and clinical applications [11], [12], [13],
[14], [15]. In photoacoustic tomography, widefield pulsed laser
light is delivered through the surface of tissue and absorbed
by light-absorbing chromophores. The optical absorption pro-
duces a temperature rise and a corresponding pressure increase
resulting in the generation of acoustic waves. The induced
acoustic waves then propagate to the surface of the tissue and
are detected at different spatial points with point-like detectors.
The image reconstructed from the detected acoustic waves
provides a representation of the distribution of absorbed optical
energy density.

Theoretically, an exact photoacoustic image can be recon-
structed when the detector array fully encloses the object.
If the object is partially enclosed and there exists a so-called
‘visible’ region [16] where the normal ray from any point on
the boundary of an absorbing feature intersects the detector
array, it is also possible in principle to reconstruct an exact
image in that region. However, many practical in vivo appli-
cations do not permit enclosure of the target tissue or organ
and require the use of a planar detection array of limited
aperture. In this case, the photoacoustic signals can only be
recorded over a limited solid angular aperture and there is
no visible region so an exact image can never be found.
In this “limited view” scenario, image quality is compromised
by artefacts [17], blurring, structural distortion and amplitude
scaling errors. The extent of this image degradation depends
on the image reconstruction algorithm used. Commonly used
one-step (i.e. non-iterative) reconstruction algorithms for a
planar detection geometry such as those based on k-space
[18] or time reversal methods [19], [20], [21] can only give
the exact solution if the detection surface has an infinite
detection aperture. When data from a finite aperture is used to
reconstruct the image, image quality is compromised. Model-
based iterative methods form an image by iteratively adjusting
the reconstructed image until it best matches the measured
photoacoustic times series. They can be regarded as finding
the image that best “explains” the data acquired over a finite
aperture. In doing so, they implicitly account for the limited
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TABLE I
ABBREVIATIONS OF RECONSTRUCTION METHODS

view in a way that single-step methods do not and offer the
prospect of improved image accuracy.

Model-based iterative image reconstruction methods have
been investigated for removing artefacts and improving image
quality of photoacoustic tomography for semi-circular [22],
hemispherical [22], cylindrical [22], [23], arc-shape [24], [25]
and linear [26], [27] detection geometries. For a planar detec-
tion geometry, iterative methods have been used to reconstruct
images using spatially sub-sampled data [28], [29]. However,
for fully sampled data, there remains a need for a comprehen-
sive investigation of iterative reconstruction approaches and a
rigorous assessment of their performance in terms of artefact
level, geometrical distortion, amplitude accuracy and robust-
ness to noise. In addition, an understanding of the impact of
regularization parameters on image fidelity and signal-to-noise
ratio (SNR) as a function of the target geometry and instrument
noise is required. The aim of this study is to explore these
factors and advance the practical application of model-based
iterative reconstruction methods for improving the quality
of images acquired using a planar detection geometry. This
involved evaluating the efficacy and limitations of model-based
iterative image reconstruction techniques using both numerical
and experimental datasets and comparing them to an existing
one-step reconstruction algorithm based on time-reversal.

II. METHODS

Iterative and non-iterative (i.e. one-step) reconstruction
approaches were applied to various in-silico, phantom, ex-vivo
and in-vivo data sets. Their performances were compared
visually and evaluated quantitatively using a set of metrics.

A. Image Reconstruction Strategies
To study the performance of model-based iterative image

reconstruction methods for a planar detection geometry, var-
ious non-iterative and iterative methods were used to recon-
struct photoacoustic images (see Table I for abbreviations).
For the non-iterative method, time-reversal (TR) was used
because it uses the same propagation model as the iterative
method, so any differences in the reconstructed images do
not arise from differences in the propagation model but in
the reconstruction approach only [30], [31], [32]. We used
two variants: (i) TR with a non-negativity constraint (TR+)

since physically the initial pressure distribution is not negative
[33], [34] and (ii) TR with total variation de-noising [35]
implemented as a post-processing step on the reconstructed
image (TR+TVdenoising);

For the model-based iterative methods, the image recon-
struction was posed as a regularized non-negative least-squares
minimisation problem which matches the solution to the
measurement (equation 1). By using this format, it provides a
flexible framework for incorporating prior knowledge.

p0 = argmin
p0≥0

1
2

∥Ap0 − f ∥
2
2 + λR (p0) (1)

The first part of equation 1 is the data fidelity term which
matches the estimate of the initial pressure distribution p0
to the measured photoacoustic time series f . The forward
operator A describes the mapping of the pressure distribution
to the pressure time series. A more detailed discussion of the
operator A and its adjoint can be found in [36]. The forward
and adjoint models were implemented using the k-Wave
Matlab Toolbox [18]. The second term in equation 1 is the
regularization functional R which encodes a-priori knowledge
about the solution. The regularization parameter λ controls
the balance between the data fidelity term and the regular-
ization functional. The final prediction of the initial pressure
distribution p0 is then achieved by iteratively minimizing the
difference between the measured time series and the modelled
time series.

Three model-based iterative image reconstruction methods
based on equation 1 were explored.

(i) Iterative least squares (iLS+) with a non-negativity
constraint but no regularization;

Thus, iLS+ is equation 1 with λR (p0) =0.
(ii) Iterative regularization term and a non-negativity

constraint (TV+) [28];
TV+ is equation 1 with R (p0) set to T V (p0) where the

discrete generalization of the isotropic T V (p0) is given by
as in (2), shown at the bottom of the page. T V (p0) is a
measure of the L1 norm of the amplitude of the gradient field
of p0. In general, it quantifies how much an image varies
across pixels. A highly textured or noisy image will have a
large TV energy, while a smooth or piecewise constant image
would have a relatively small TV. Hence, TV regularization
encourages piecewise smooth regions yet preserves their edges
while rejecting noise. TV regularization has previously been
used in the reconstruction of photoacoustic images from
incomplete data to suppress limited view artefacts [22], [37]
and minimise image degradation [28], [38].

(iii) Bregman iteration enhanced TV (TV+Bregman);
A potential drawback of TV is that it can lead to regulariza-

tion bias resulting in amplitude error and loss of fine structures
[39]. To overcome this drawback, an iterative enhancement of
variational solutions by the Bregman iteration [40], [41] was
applied with the following reformulated form:

pk+1
0 = argmin

p0≥0

1
2

∥∥∥Apk
0 − ( f + bk)

∥∥∥2

2
+ λR

(
pk

0

)
(3)

bk+1
= bk

+ ( f −Apk+1
0 ) (4)

TV (p0) =

∑
(i, j,k)

√
p0(i+1, j,k) − p0(i, j,k)

)2
+

(
p 0(i, j+1,k)) − p0(i, j,k)

)2
+

(
p0(i, j,k+1)

− p 0(i, j,k))

)2
(2)
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Fig. 1. Illustration of the numerical phantom geometries: a, 10-cylinder
phantom; b, 20-cylinder phantom; c, vascular-like phantom. The planes
on the top of each image illustrate the planar region over which the
photoacoustic waves are detected.

As can be seen from equation (3) & (4), unlike TV+, the time
series is iteratively updated by adding the difference between
the measured and the simulated time series. By adding the
difference back, the amplitude error and loss of fine structures
can be mitigated. In each Bregman iteration, TV+ iteration is
re-run to update the estimate of p0.

To solve the optimisation problem (equation 1), an accel-
erated proximal gradient descent scheme was used because
the proximal operator (here the operator that solves the 3D
non-negativity constrained TV denoising problem) is cheap to
compute compared to the forward A and adjoint AT opera-
tions [28]. The basic proximal gradient scheme is represented
by

pi+1
0 = proxT V +,ηλ

(
pi

0 − ηAT
(
Api

0 − f
))

,

p0
0 = 0, i = 1, . . . , L

A FISTA-type acceleration extends this scheme [42]. The
positivity-constrained TV denoising is implemented by a
primal-dual hybrid gradient algorithm as described in [43].
More details about the optimisation algorithms can be found
in [28].

B. Experiments
In-silico, phantom, ex-vivo and in-vivo studies were under-

taken to examine the performance of the different reconstruc-
tion methods.

1) In-Silico Studies: To evaluate the different image
reconstruction methods, a range of 3D numerical phantoms
comprising cylinders of different dimensions and vascular-like
structures were used in conjunction with an acoustic propaga-
tion model to generate photoacoustic time series data.

As shown in Fig1a-c, three phantom geometries were used:
10-cylinder phantom, 20-cylinder phantom and vascular-like
phantom. In the 10-cylinder phantom, ten cylindrical targets
with identical radii of 0.4 mm were equally spaced in depth.
The 20-cylinder phantom comprised twenty equally spaced
cylinders with different radii of 0.4, 0.3, 0.2 and 0.1 mm.
The vascular-like phantom was based on a segmentation of a
micro-CT scan of a rabbit lymph node. The initial pressure
p0 was set to be constant within the cylinders (or vessels) and
zero elsewhere.

A variation of the 10-cylinder phantom in which a non-
uniform p0 distribution was produced was also used and is
referred to as the non-constant 10-cylinder phantom in this

TABLE II
OPTICAL PROPERTIES IN LIGHT TRANSPORT MODELLING

Fig. 2. Experimental set-up. a, FP scanner and wall-less agar phantom;
b, In-vivo imaging of human finger joint and wrist.

paper. This was formed by using a Monte Carlo model of light
transport (MCXLAB [44]) to simulate the fluence distribution
in the phantom. The optical coefficients of the cylinders and
the background are given in (Table II) [45]. The optical
properties of the cylinders were set to those of blood. The
background was mimicking a capillary bed, modelled as 55%
water and 45% blood with a total haemoglobin concentration,
cbg

HbT =5.6gl−13 and 60.7% oxygenation (cHbO2 =3.42gl−1

and cHb =2.11gl−1). All optical coefficients were chosen to be
those at a wavelength of 784 nm. The volume was illuminated
from the top with a collimated Gaussian beam with 5 mm waist
radius. The fluence distribution was then multiplied pixel-wise
by an image of the corresponding optical absorption coefficient
to produce images of the absorbed energy distribution and thus
p0 (assuming a Grueneisen coefficient of one).

The same simulation grid consisting of 100×100×100 cubic
voxels of length 20 mm was used in all the simulation studies
and the speed of sound was assumed to be homogeneous
at 1500 m/s. 2D planar sensor arrays with identical size of
20 × 20 mm were positioned at the top of each simulation
grids to acquire the time series data. The distance between
detector elements was 200 µm, the same as the grid size.
The temporal sampling interval was set to be 40 ns. The
sensor bandwidth was not explicitly limited but due to the grid
size, the bandwidth of the photoacoustic signals is limited to
5.5 MHz. The photoacoustic wave propagation from the initial
pressure distribution and its subsequent detection by the 2D
planar array was simulated using k-Wave [18]. Gaussian noise
was added to the detected pressure time series to achieve a
range of SNRs from 10dB to -10dB.

2) Experimental Studies: Measured photoacoustic data was
obtained in a phantom (Fig. 2), ex vivo tissue and in vivo
using a Fabry-Pérot (FP) planar scanner [46]. Fig 2a shows
a schematic of the scanner. The excitation light is emitted by
a fibre coupled, Nd:YAG laser in the phantom experiment or
a OPO laser system in ex-vivo and in-vivo experiments. The
light is transmitted through the sensor head, which is designed
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to be transparent to the excitation wavelengths. The absorption
of the excitation light generates photoacoustic waves, which
propagate to the FP sensor and modulate its optical thickness
and thus its reflectivity. The latter is detected using a focused
interrogation laser beam, that is raster scanned over the sensor
surface. The interrogation beam is reflected from the sensor
and is incident on a photodiode, which is connected to a
digitizer to record the photoacoustic waveforms. The FP sensor
provides a near-uniform broadband frequency response from
50 kHz to 22 MHz (-3dB). The lateral resolution of the FP
scanner is spatially variant. It increases with depth and the
horizontal distance from the centre of the scan. The lateral
resolution is in the range of 50 to 125 µm and the axial
resolution is 27 µm. The scanner was used to image a phantom
comprising a pure agar background containing 10 absorbing
wall-less cylindrical agar inclusions µa = 2mm−1 of diameter
1 mm. The agar background has negligible optical absorption
and optical scattering [47]. The phantom was illuminated with
a 3 cm beam diameter at an excitation wavelength of 1064nm.
An area of 14 mm × 16 mm was scanned, with a step size
of 120 µm, to yield ≈16,000 time series. Each time series
contained 1200 time points, with a temporal resolution of
20 ns. Photoacoustic signals were initially acquired with the
phantom in a single fixed position in order to reconstruct a lim-
ited view image. Thereafter, the phantom was rotated enabling
signals to be acquired from 6 planes equally distributed around
the phantom. The sensor coordinates were obtained from a
registration procedure [48]. The combined time series from
all 6 planes were then used to reconstruct a full view image
for comparison with the single view image.

An image of a human placenta was acquired at a single
plane using the FP planar scanner. The tissue was illuminated
with a 6 mm diameter laser beam at an excitation wavelength
of 850nm. An area of 8.2 mm × 8.1 mm was scanned,
with a step size of 100 µm. Each time series contained
1000 timepoints with a temporal resolution of 20 ns.

The skin vasculature in the finger and wrist region of
a volunteer were imaged at a single plane using the FP
planar scanner (as shown in Fig 2b) [49]. The data was
acquired with an excitation wavelength of 850 nm. An area
of 15.26 mm × 14.95 mm was scanned, with a step size of
106 µm. Each time series contained 500 time points with
a temporal resolution of 16.67 ns. Ethical permission was
granted for this prospective single-centre study by the Uni-
versity College London Research Ethics Committee (Project
ID: 1133/001).

C. Quantitative Metrics
In order to quantitatively compare the images reconstructed

by the different methods, the following metrics were variously
used. In the simulation studies, mean squared error (MSE) was
calculated to evaluate the extent to which the reconstructed
image differs from the ground truth. MSE was estimated from
the reconstructed solution p and the ground truth phantom p0
as follows:

M SE =
1
N

N∑
i

(pi − p0i )
2
2 (5)

Signal-to-noise ratio (SNR) was estimated to account for the
random noise generated by the acoustic detection instrumen-
tation that is mapped on to the image. SNR is defined as the
ratio of the mean intensities of a reconstructed image feature
and a region of random noise selected such that it does not
overlap with any reconstructed features and their associated
artefacts:

SN R = 20 log
(

mean intensity over feature region
mean intensity over noise region

)
. (6)

Additionally, signal-to-artefact ratio (SAR) was evaluated to
provide a measure of the level of artefacts in the image. SAR
was defined as the ratio between the mean intensities over the
feature region and the artefact region:

S AR = 20log
(

mean intensity over feature region
mean intensity over artefact region

)
(7)

The methods used to identify regions of feature, artefact
and noise differed depending on whether the images were
reconstructed using simulated or experimental data. Fig 3
illustrates the different approaches. Fig 3 a&b show the
cross-sectional image of the initial pressure distribution p0
and the corresponding TR+ reconstructed image. For the
in-silico studies, K-means clustering image segmentation was
applied to identify the feature, artefact and noise regions.
As shown in Fig 3c, the dashed contour indicates the fea-
ture region segmented by K-means method. In Fig 3d&e,
TR reconstructed images are overlaid with masks of arte-
fact and noise ROIs detected by K-means segmentation
[50]. For the images of the experimental phantom, feature
regions were segmented similarly by the K-means method
while artefact and noise regions were manually selected. For
ex-vivo and in-vivo experiments, the feature, artefact and
noise regions were manually identified. An example of the
manual selection of artefact and noise regions is illustrated
in Fig 3f.

The Hausdorff distance was used to evaluate the geomet-
rical distortion, the difference between a distorted feature
and the ground truth [51]. A smaller Hausdorff distance
means the reconstructed geometry is closer to the ground
truth.

III. RESULTS

A. In-Silico Results
1) 10-Cylinder Phantom: The numerical phantom composed

of 10 identical cylinders of uniform p0 was first used to
compare the non-iterative and iterative reconstruction methods.
Fig 4a-e shows the cross-sectional images reconstructed from
simulated pressure time series with an SNR of 5dB. As Fig 4b
shows, the image reconstructed using TR+ exhibits significant
streaking artefacts around the cylinders. The latter are also
distorted, and the amplitudes of the features are far from the
true values. These distortion and amplitude errors increase
with increasing depth. TVdenoising was applied to non-
iterative TR+ to determine whether TV+ achieves more than
just smoothing out the noise which TVdenoising can achieve
with similar effectiveness. As Fig 4c shows, the noise and
the streaking artefacts apparent in TR+ are partially reduced
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Fig. 3. Illustration of image segmentation to quantify artefact and noise
level: a, 1-cylinder phantom; b, TR+ reconstructed image; c, feature
ROI (K-means segmented) indicated by white dashed contour; d, TR+

image overlaid with boundaries of artefact ROI (K-means segmented);
e, TR+ image overlaid with red mask of noise ROI (K-means segmented);
f, manually selected ROIs for artefact (red) and noise (yellow).

by TVdenoising. However, the geometrical distortion and the
reduction in amplitude with depth remain. Both are mitigated
by the two iterative methods., iLS+ exhibits higher noise and
greater artefacts than TV+ (λ = 10−1) which supresses the
streaking artefacts and reduces the geometrical distortion.

Fig 4f-k provides a quantitative comparison of images of the
10-cylinder phantom reconstructed using pressure time-series
data of different SNRs. As shown by the MSE (Fig 4f),
in contrast to TR+ and TR+TVdenoisng, the reconstructions
achieved by the iterative methods (iLS+ and TV+) are closer
to the ground truth for time series SNRs in the range 10dB
to −5dB. It is only at the lowest time series SNR (−10dB)
that TR+TVdenoising provided lower MSE than iLS+. TV+

outperforms the other methods and achieves the lowest MSE at
all time series SNRs. To permit a comparison of the amplitude
accuracy, profiles along the vertical and horizontal dashed lines
shown in Fig 4a are plotted in Fig 4g&h. This plot shows
that, compared to the non-iterative methods, the two iterative
methods (iLS+ and TV+) achieve higher amplitude accuracy,
although both still tend to under-estimate the amplitude. For
TV+, this is likely to be due to the TV regularization bias and
is discussed further in the following section (Enhancement
via Bregman iteration). As shown Fig 4i, iterative methods
provide higher SAR than the non-iterative methods for the
SNRs in the range 10dB to −5dB reflecting higher artefact
suppression. Only at the lowest time series SNR (−10dB) did
TR+TVdenoising achieve higher SAR than iLS+. However,
TV+ outperforms the other methods and obtains the highest
SAR at all time series SNRs.

The Hausdorff distances of the features indicated by the
white dashed boxes in Fig 4a were calculated to evaluate the
geometrical distortion introduced by the different reconstruc-
tion methods. As we can see from Fig 4d & 4e, the correction
of geometrical distortion is less effective with increasing depth.

This is illustrated quantitatively by the Hausdorff distances
in Fig 4j&k. Fig 4j corresponds to the feature in the second

row and shows that the Hausdorff distance of the iterative
reconstruction methods (iLS+ and TV+) are zero at all time
series SNRs. Fig 4k corresponds to the deeper lying feature
in the lowest row and suggests there is no clear advantage of
iLS+ over non-iterative methods. TV+ however, outperforms
the other methods, although is increasingly less effective as
the SNR decreases.

2) Impact of Regularization Parameter: For TV+, the regu-
larization parameter λ controls the balance between the data
fidelity term and the regularization functional and thus has a
significant impact on image fidelity. Small λ values can result
in a reconstruction result similar to that achieved by iLS+

where noise and artefacts remain. On the other hand, if λ is
too large, fine structures can be lost and amplitude accuracy
compromised. To explore this, three numerical phantoms were
used to evaluate the impact of the regularization parameter on
image fidelity and contrast as a function of the target geometry
and intensity distribution. In Fig 5, images reconstructed using
TV+ for four different λ values (λ1 > λ2 > λ3 > λ4) are
compared qualitatively and quantitatively.

The first numerical phantom was the 10-cylinder phantom
where each cylinder is assigned the same p0. The corre-
sponding reconstructed cross-sectional images are shown in
the first subgroup (i) of Fig 5(Fig 5(i)a-e). This shows that
the suppression of noise and artefacts as well as the correction
of distortion are less effective for smaller λ values. Fig 5(i)f-h
show the corresponding MSE, SAR and Hausdorff distance.
These results show that the lowest MSE is achieved with
the largest λ value (Fig 5(i)f) while the SAR reduces with
decreasing λ (Fig 5(i)g) due to the reduced artefact suppression
associated with small λ. The feature used to calculate the
Hausdorff distance is indicated by the white dashed box in
Fig 5 (i)a. The higher level of geometrical distortion produced
by λ3 & λ4 is reflected by the larger Hausdorff distance values
in Fig 5(i)h.

In the above simple 10-cylinder phantom where the image
features are identical and of large dimensions, the use of a
large λ is optimal and a relatively straightforward choice.
However, in images comprising different sized features the
selection of λ can be more nuanced and challenging. This
is because TV can suppress small features on account of
their relatively higher edge-densities which result in higher
TV energy [52]. When the TV energy of the entire image
is minimised, such features are at higher risk of partial or
complete removal by regularization while large-scale features
remain relatively unaffected.

To assess the scale-dependent nature of TV regularization
[52], the effect of varying λ was studied using the 20-cylinder
phantom which comprises differently sized cylinders. The
reconstructed images are shown in the second subgroup (ii) of
Figs 5 (Fig 5(ii)a-e). As λ increases, targets of smaller size or
at greater depth are poorly reconstructed or missing altogether.
As Fig 5(ii)b (largest λ value) shows, if we compare cylinders
at the same depth, targets of smaller size are poorly recon-
structed or missing, a consequence of the above mentioned
scale-dependent property of TV regularization. For cylinders
of the same size and at different depths (each column), those
at greater depth were poorly reconstructed or missing due
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Fig. 4. Cross-sectional single-slice image of the 10-cylinder phantom: a, phantom p0; b, TR+; c, TR+TVdenoising; d, iLS+; e, TV+; Quantitative
comparison of reconstructed images achieved by non-iterative and iterative methods for different pressure time series SNRs: f, mean squared error
(MSE); g, h, intensity profiles; i, SAR; j, k, Hausdorff distance.

to the lower SNR associated with them. The MSE values
(Fig 5(ii)f) suggest that λ3is the optimal regularization param-
eter value for this phantom. This is further evidenced by the
amplitude profiles along the dashed lines (Fig 5(ii)a) shown in
Fig 5(ii)g & h which are the most accurate for λ3. By contrast
the larger λ1 results in significant amplitude errors and the
smaller cylinders and cylinders at greater depth are invisible.
λ4 enables all features to be visualised but yielded the highest
noise as well as lower amplitude accuracy than λ3. These
results show that choosing a value of λ that is too large results
in the loss of small features. However, selecting λ that is too
small results not only in more noise but greater amplitude
errors. Hence there is a compromise to be made to find the
best trade-off between small feature visibility and amplitude
accuracy.

Furthermore, it is known that TV encourages piece-wise
smooth regions. The 10-cylinder and 20-cylinder phantoms,
where the image features have a uniform amplitude dis-
tribution, may not therefore be a sufficient test since real
photoacoustic images are rarely piece-wise constant, not least
because of the spatially varying light fluence. Under these
conditions, there is risk of TV regularization biasing the

reconstruction towards constant p0 and reducing image ampli-
tude accuracy. To investigate this, the non-constant 10-cylinder
phantom described in section B was used; with this phantom
the light fluence is simulated resulting in a non-uniform p0
both within each cylinder and the background. Fig 5(iii)a
shows the p0 distribution. Since the volume was illuminated
from the top, the light fluence decreases with depth. Hence,
a depth dependent decrease in p0 within each cylinder can be
observed. Fig 5(iii)a-e shows the corresponding cross-sectional
images obtained for different λ values. For the smallest λ

used (λ4), the image shown in Fig 5(iii)e and the profiles in
Figs 5(iii)g & h suggest the amplitude accuracy is high,
although for the deeper cylinders there is significant noise and
evidence of streaking artefacts. As λ increases to λ3the ampli-
tude accuracy increases and the noise decreases, as evidenced
not only by the profiles in Fig 5(iii)g & h but also by the
MSE which is the lowest for all λ (fig 5(iii)f). For higher λ,
the noise and streaking artefacts decrease further but at the
cost of amplitude accuracy and the visibility of deeper lying
features. For example, for the highest λ value (λ1), the top
row of cylinders are almost piecewise constant and thus do not
reflect the variation of p0 within each cylinder while the deeper
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Fig. 5. Comparison of images reconstructed using TV+ for different regularization parameters: (i), 10-cylinder phantom λ1 = 10−1, λ2 = 10−2,
λ3 = 10−3, λ4 = 10−4; (ii), 20-cylinder phantom λ1 = 5 × 10−1, λ2 = 10−1, λ3 = 10−2, λ4 = 10−3; (iii), Non-constant 10-cylinder λ1 = 10−2,
λ2 = 10−3, λ3 = 10−4, λ4 = 10−5.

lying features are invisible. For this example, λ3 appears to
provide the best compromise in terms of noise reduction,

artefact suppression and amplitude accuracy. Notably, these
results show that, although TV promotes a piece-wise constant
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Fig. 6. Total variation regularization enhanced by Bregman iteration:
a-c, visual comparison of cross-sectional reconstructed images; d, inten-
sity profile along 1st column. λTV+ = 10−1, λTV+Breg = 5 × 10−1.

solution, a realistic non-uniform p0 distribution can still be
accurately recovered with a carefully selected regularization
parameter.

3) Enhancement via Bregman Iteration: The amplitude errors
(observed in Fig 4g & h) introduced by TV regularization
can be compensated through the use of Bregman iteration
(equations (3) & (4)). The effectiveness of this approach
was investigated using the 10-cylinder phantom with uniform
pressure distribution. Fig 6 compares the results achieved by
TV+ and TV+Breg. As illustrated by Figs 6a-c, Bregman
iterations act to reduce the amplitude errors due to TV
regularization. This further evidenced by the profiles along
the dashed line in Fig 6a which are plotted in Fig 6d. The
images reconstructed with Bregman iterations achieved the
most accurate amplitude, although the improvement decreases
at the greater depth. A total of 5 Bregman iterations were
performed in this and all the following experiments.

4) Vascular-Like Phantom: In the previous simulation stud-
ies, numerical phantoms composed of simple cylindrical
objects were used. Although they can provide insights in the
basic properties of reconstruction methods, it is often unclear
how their results will translate to more complex targets. Hence,
the vascular-like phantom described in section IIB(1) was
used to study how the different image reconstruction methods
are likely to perform when imaging blood vessels. Fig 7a-f
show the depth colour-coded x-y en-faceMIP images. In the
images reconstructed by non-iterative methods (TR+ and
TR+TVdenoising), only large vessels are clearly visualised
while the iterative methods (iLS+, TV+ and TV+Bregman)
permit visualisation of smaller vessels. Fig 7g-l shows cross-
sectional x-z single-slice images. In the images reconstructed
by TR+, TR+TVdenoising and iLS+, the true vascular
structure is not visualised due to the artefacts. TV+ and
TV+Bregman provides images with significantly fewer arte-
facts and thus a vascular structure that corresponds more
closely to the ground truth. Furthermore, the size of the vessel

Fig. 7. Comparison of non-iterative and iterative reconstruction methods
using vascular-like phantom: a-f, x-y MIP; g-l, cross-sectional x-z single
slice images. λTV+ = 10−1, λTV+Breg = 10−1. White dotted rectangle
indicates vessel selected for size measurement provided in Table III.

TABLE III
FULL WIDTH HALF MAXIMUM (FWHM) VALUE MEASURED THE SIZE

OF THE VESSEL IN THE WHITE DASHED BOX IN FIG 7 g-l

in the white dashed box was quantified by the full width
half maximum (FWHM). As we can see from Table III,
TV+Bregman achieves the most accurate FWHM.

B. Experimental Phantom

To evaluate the reconstruction methods using experimental
data, the wall-less agar phantom containing 10 absorbing
cylindrical inclusions each of diameter 1 mm shown in Fig2a
was used. The phantom is located in front of the sensor
and rotated by a stepper motor to obtain photoacoustic time
series data over 6 different planes as shown in Fig 8. A full-
view image was then reconstructed using time-reversal from
this data. This image does not suffer from limited view
artefacts. Hence, it is taken to represent the ground truth
but only in terms of the image structure – the amplitude
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Fig. 8. Cross-sectional single-slice images of the agar phantom. a-e, single slice images with ROI contours: white dashed boxes indicated the
three features used to compare hausdorff distance. In the white dashed boxes, red dashed contours indicate artefact region, white dashed contours
indicate feature region. Outside the white dashed boxes, yellow contours indicate noise region; f-j, corresponding zoomed-in images of the white
dashed boxes in a-e; k, SAR comparison; l, SNR comparison; m, Hausdorff distance comparison. λTV+ = 10−2, λTV+Breg = 5 × 10−2.

distribution is subject to errors because the illumination of
the phantom is not the same for each plane. Thereafter
images were reconstructed from photoacoustic time series data
acquired over a single plane using non-iterative and iterative
methods. The regularization parameter λ was chosen to be
large enough to suppress most visible artefacts and the most
visually apparent geometrical distortion without compromising
the visualisation of low SNR features. Fig 8a-e show the
cross-sectional single-slice images of the entire phantom while
Fig 8f-j show the zoomed-in images of the top three features
within the white dashed boxes. Compared to TR+, iLS+

enhances the visibility of deeper targets but the artefacts
and geometrical distortion remain. TV+ and TV+Bregman
suppress the artefacts and reduce the geometrical distortion,
albeit with reduced effectiveness with increasing depth. From
the zoomed-in images (Fig 8g-j) it is apparent that the large
streaking artefact region indicated by the white arrow has been

transformed to a relatively high amplitude uniform feature by
TV regularization. This is because the artefact region is of
similar scale as the image feature from which it originates.
Furthermore, the artefact region has higher intensity than
the image features at deeper depth. If a larger regularization
parameter is used to suppress the artefact, image features at
deeper depth will be removed as well.

The SAR and SNR were measured within the ROIs
indicated in Fig 8a-e. The white, red and yellow dotted
line contours represent the feature, artefact and noise ROIs
respectively. As shown in Fig 8k, TV+ achieves the best
SAR as it most effectively suppresses the artefacts whereas
TV+Bregman provides highest SNR (Fig 8l). The Hausdorff
distance for the top three features was calculated using the
full-view image as the reference image. As can be seen
from Fig 8m, TV+ and TV+Bregman provide more accurate
target geometry while iLS+ achieves the least accurate target
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Fig. 9. Ex-vivo placenta images; a, x-y MIP image reconstructed from
signals acquired over the full aperture (8 × 8 mm), b-e, y-z cross-
sectional single-slice full aperture images of region indicated by white line
in (a), f-i, corresponding y-z images reconstructed from signals acquired
over the reduced 2 × 2 mm aperture indicated by yellow rectangle in (a).
λTV+ = 10−3, λTV+Breg = 5.5 × 10−3.

geometry. MSE and intensity profiles are not provided.
As mentioned above this is because, for the full-view image,
the ground truth amplitude distribution in the cylindrical
inclusions is unknown.

C. Ex-Vivo and In-Vivo Results
The performance of the iterative reconstruction methods was

further evaluated by acquiring measured data from an ex vivo
human placenta and the superficial vasculature in the finger
and wrist of a human volunteer. There is no absolute ground
truth in these examples. However, they can still provide an
insight into the effectiveness of the different reconstruction
methods if reasonable assumptions are made about the tissue
anatomy; for example, that vessels are near cylindrical in
shape. To quantify the suppression of noise and artefacts,
metrics such as SNR and SAR can still be used to evaluate
performance.

From the simulation and experimental phantom results, it is
clear that the regularization parameter λ must be appropriately
chosen. This was performed by selecting a value of λ that
was large enough to 1) suppress most visible reconstruction
artefacts 2) retain most visible small vessels and 3) correct
the most obvious geometrical distortion of clearly visualised
vessels.

Fig 9 shows the ex-vivo human placenta images. Fig 9a
shows the image reconstructed by TR+ using the photoa-
coustic signals acquired over the full detection aperture of
8 mm x 8 mm. Signals from a reduced aperture of 2mm x
2mm (indicated by the yellow box in Fig 9a) were then
extracted from the full aperture data set. This was done

Fig. 10. In-vivo human finger joint images: a-d, x-y MIP images
reconstructed by non-iterative and iterative methods; e-h, cross-sectional
single-slice images reconstructed by non-iterative and iterative methods.
The arrows indicate the same small vessel. The dotted white line in
(a) indicates the location of the single-slice images e-h. λTV+ = 10−3,
λTV+Breg = 5.5 × 10−3.

because, when using the full detection aperture, the image
distortion and artefact level due to limited view was found to
be modest, a consequence of the superficial nature of the blood
vessels in the tissue sample used. By artificially reducing the
detection aperture, the limited view problem is exacerbated.
The artefacts therefore become more severe and thus the extent
to which they are reduced by the iterative methods more
obvious.

Fig 9b-e show cross-sectional single-slice images of a blood
vessel taken from the full aperture while Fig 9f-i show images
of the same region from the reduced aperture image. The white
line in Fig 9a indicates the location of the single slice. As we
can see from the comparison between Fig 9b and Fig 9f,
the TR+ image obtained from the reduced aperture exhibits
more distortion than the full aperture image. In both cases the
iterative reconstruction methods reduce the distortion although
it is more apparent in the reduced aperture images.

The in-vivo images of the finger vasculature are shown in
Fig 10. Fig 10a-d show the x-y MIP images. The small vessel
indicated by the white arrow can be clearly visualised in the
images reconstructed by iterative methods (iLS+, TV+ and
TV+Bregman), while the same vessel is poorly visualised
in TR+. Fig 10e-h show cross-sectional single-slice images
extracted from the reconstructed 3D image at the location
indicated by the dotted horizontal white line in Fig 10a. For
the large vessel in the middle of the single slice images, the
iterative methods (iLS+, TV+ and TV+Bregman) correct the
geometrical distortion apparent in the TR+ image. Addition-
ally, the visibility of the small vessel indicated by the white
arrows is enhanced by the TV+ and TV+Bregman methods.

Fig 9 and Fig 10 demonstrate the advantages of itera-
tive reconstruction methods in the correction of geometrical
distortion. Fig 11 shows the performance of the iterative
reconstruction methods in artefact reduction and enhancement.
In the TR+ image (Fig 11a), the streaking artefacts are
indicated by the red arrow. As can be seen from Fig 11c&d,
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Fig. 11. In-vivo human wrist images; a-d, cross-sectional single-slice
images achieved by non-iterative and iterative methods; ROI indication,
white, red and yellow arrows and boxes indicate the feature, artefact
and noise ROIs; e, SAR comparison; f, signal-noise-ratio comparison.
λTV+ = 10−3, λTV+Breg = 5.5 × 10−3.

TV+ and TV+Bregman significantly remove the artefacts.
SAR and SNR were measured using the ROIs indicated in
Fig 11a. The white, red and yellow arrows and line contours
represent the feature, artefact and noise ROIs respectively.
As can be seen from Fig 11e& f, the results agree with that
of the phantom experimental results. TV+ achieves the best
SAR while TV+Bregman provides the highest SNR.

IV. DISCUSSION AND CONCLUSION

In conclusion, we have investigated the application of
model-based iterative reconstruction methods in photoacoustic
tomography for a planar detection geometry. The performance
was assessed objectively and quantitatively using simulated
and experimental datasets. Furthermore, the impact of regular-
ization was studied and the compensation of TV regularization
bias by Bregman iteration was evaluated. It has been demon-
strated that the iterative reconstruction methods can provide
better image quality and suppress artefacts due to the incom-
plete data acquired using a finite detection aperture. Amongst
the iterative methods, iLS+ is unregularized so avoids the
challenges involved in selecting the regularization parameter λ.
However, it is least effective in reducing noise and artefacts
as well as the correction of geometrical distortion. TV+

achieves better SAR by suppressing limited view artefacts
while TV+Bregman achieves more accurate amplitude accu-
racy and better SNR but incurs additional computational cost.
Both require regularization and thus involve the non-trivial
task of selecting an appropriate λ as discussed below. The
choice of iterative reconstruction method for any particular
situation will therefore depend on requirements. iLS+ lends
itself to scenarios where few assumptions about the imaging
target can be made. TV+ is applicable where spatial fidelity is
key and sufficient prior information exists to make an informed
choice of λ. The higher amplitude accuracy of TV+Bregman
could lend it to quantitative photoacoustic imaging [53] where

an accurate representation of the fluence-encoded image con-
trast distribution is an important requirement.

Appropriate choice of λ is clearly key to the effective use
of TV+ and TV+Bregman. In the absence of a ground truth,
as is invariably the case in practice, this presents a challenge.
As evidenced by Fig 5, when λ is too high, the scale-dependent
and piecewise constant nature of TV regularization means
smaller features or subtle variations in p0 can be removed.
On the other hand, when λ is set too small, the artefacts
and noise remain high, and the geometrical distortion cannot
be effectively corrected. The challenge becomes particularly
acute when there is significant geometrical and SNR diversity
in the image as the trade-off between retaining small feature
visibility, minimising noise and maximising amplitude accu-
racy becomes finely balanced. Knowledge of the expected
imaging scenario can be used to pragmatically inform the
selection of λ. For example, if the anticipated target is a
vascularised tumour, in-silico studies using numerical phan-
toms with tumour-realistic vascular architectures can be used
to identify a regularization parameter space from which a
hand-crafted value of λ can be selected for a specific in vivo
data set. The demands of the specific application will further
inform the choice of λ. If suppressing artefacts and minimizing
spatial distortion is important in order to achieve high struc-
tural accuracy, a relatively large λ might be used. However,
if high amplitude accuracy is the priority, as is the case for
quantitative imaging, selecting a smaller λ may be prudent to
avoid the promotion of an inappropriately piece-wise constant
image, albeit at the cost of increased noise. Although this
somewhat ad hoc approach has the advantages of simplicity
and pragmatism, it suffers from several limitations. Firstly,
it relies on the use of a global regularization parameter which
will compromise image quality if there is a range of differently
sized image features. To address this, a scheme could be
developed to spatially adapt the regularization parameter [54].
Secondly, it requires an element of prior knowledge which
may not always be available and the hand-crafting element
associated with selecting λ is subjective to some extent. More
objective selection of λ without the need for priors could
potentially be achieved using selection methods based on the
statistical properties of the data [55].

The model-based framework discussed in our study can
incorporate frequency and directional responses of arbitrary
complexity. While we focused on broadband, omni-directional
detectors in this work, an interesting extension would be
to consider more realistic detector models, e.g., directional,
narrow-band ones and see how this affect the choice of
regularization parameter. In the specific case of narrowband
detectors with a peaked frequency response, TV regularization
could mitigate reconstruction artefacts, such as the loss of the
contrast in the interior of objects as well as limited view.

It has been shown that the iterative model-based approach
described in this study can accommodate the large data sets
(>106) associated with high resolution 3D PAT. In principle,
iterative matrix-based model inversion schemes could also be
used but at present are intractable for the large number of
voxels encountered in high resolution 3D imaging. They are
better suited to the much smaller data sets (<103) associated
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with 2D PAT and have been used with the aim of mitigating
the limited view problem for a linear array geometry [27]. For
this geometry they may be faster than the current approach,
albeit at the cost of flexibility since the model matrix has to be
pre-computed for a specific set of imaging parameters. If the
latter change, then matrix has to be re-computed at significant
computational cost.

A limitation of iterative model-based reconstruction meth-
ods is that they are typically computationally intensive,
especially for 3D image reconstruction. For example, com-
puting the reconstruction of the finger joint images in
Fig 10(486∗71∗71 voxels) took 1h18m using TV+ (50 iter-
ations) and 4h22m using TV+Breg (71 iterations). Each
iteration takes 95s using the optimized CUDA code on a
NVIDIA Titan×Maxwell GPU. We computed a maximum of
50 iterations for all iLS+ and TV+ except for TV+Breg.
A total of 5 Bregman iterations were performed. Within each
Bregman iteration, the TV+ iterations were stopped when
either relative or normalised residual falls below a tolerance
of 0.01. A more detailed discussion of the stopping condition
can be found in [56]. In order to reduce the computation time,
deep learning provides opportunities to accelerate the forward
model calculations by enabling the use of fast but approximate
forward models [57] or increasing the rate of convergence [58].

The current study is expected to inform the practical
application of model-based iterative image reconstruction
approaches for improving photoacoustic image quality when
using finite aperture planar detection geometries.
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