
SoftwareX 22 (2023) 101338

a

b

t
e
p
p
a
M
b
r
a

t

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

j-Wave: An open-source differentiablewave simulator
Antonio Stanziola a,∗, Simon R. Arridge b, Ben T. Cox a, Bradley E. Treeby a

Department of Medical Physics and Biomedical Engineering, University College of London, Gower Street, London WC1E 6BT, UK
Department of Computer Science, University College of London, Gower Street, London WC1E 6BT, UK

a r t i c l e i n f o

Article history:
Received 16 August 2022
Received in revised form 22 January 2023
Accepted 7 February 2023

Keywords:
Differentiable simulator
Acoustics
Machine learning
GPU acceleration
Wave equation
Helmholtz equation
JAX

a b s t r a c t

We present an open-source differentiable acoustic simulator, j-Wave, which can solve time-varying
and time-harmonic acoustic problems. It supports automatic differentiation, which is a program
transformation technique that has many applications, especially in machine learning and scientific
computing. j-Wave is composed of modular components that can be easily customized and reused. At
the same time, it is compatible with some of the most popular machine learning libraries, such as JAX
and TensorFlow. The accuracy of the simulation results for known configurations is evaluated against
the widely used k-Wave toolbox and a cohort of acoustic simulation software. j-Wave is available from
https://github.com/ucl-bug/jwave.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version 0.0.4
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-22-00241
Legal Code License LGPL-3.0
Code versioning system used git
Software code languages, tools, and services used Python 3
Compilation requirements, operating environments & dependencies jax, plum-dispatch, jaxdf
If available Link to developer documentation/manual https://ucl-bug.github.io/jwave/
Support email for questions a.stanziola@ucl.ac.uk

1. Motivation and significance

1.1. Background

The accurate simulation of wave phenomena has many in-
eresting applications, from medical physics to seismology and
lectromagnetics. The aim is usually either forecasting, such as
redicting an ultrasound field inside the brain [1], or performing
arametric inference, such as recovering material properties from
coustic measurements using full-waveform inversion (FWI) [2].
any numerical techniques for solving the wave equation have
een developed over the years, including pseudospectral algo-
ithms [3], finite differences [4,5], angular spectrum methods [6]
nd boundary element methods [7], to name a few.
Recently, there has been a growing body of research at the in-

ersection of numerical simulation and machine learning [8–10].

∗ Corresponding author.
E-mail address: a.stanziola@ucl.ac.uk (Antonio Stanziola).

The critical observation is that the machine learning community
has developed many tools and techniques for high-dimensional
inference. In particular, automatic differentiation, the class of
algorithms often employed for neural network training and gen-
erally for automatic analytical gradient estimation, can be used to
differentiate for any continuous parameter involved in a simula-
tor [11,12]. This enables optimization or parameter identification
of all simulator parameters, including the simulated field and
other parameters that appear in the governing partial differential
equation (PDE), as well as numerical parameters such as the finite
difference stencil used to compute gradients.

Simulators that allow for automatic differentiation can also
be used inside a machine learning model. Examples include im-
plementing implicit layers [13], reinforcement learning [14,15],
parameter identification [16], inverse problems [17], optimal con-
trol [18], construction of physics-based loss functions [18–20],
and research into novel discretizations or neural network aug-
mented simulators [21].
ttps://doi.org/10.1016/j.softx.2023.101338
352-7110/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2023.101338
https://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2023.101338&domain=pdf
https://github.com/ucl-bug/jwave
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00241
https://ucl-bug.github.io/jwave/
mailto:a.stanziola@ucl.ac.uk
mailto:a.stanziola@ucl.ac.uk
https://doi.org/10.1016/j.softx.2023.101338
http://creativecommons.org/licenses/by/4.0/

Antonio Stanziola, Simon R. Arridge, Ben T. Cox et al. SoftwareX 22 (2023) 101338

1

w
f
a
h
d
m
t
J
f
S
t
t
o

1

u
c
h
a
l
a
t
e
p
m
w
t
s
r
l
d

2

2

t
F
c
a

A
w

.2. Aim

Here we present j-Wave: a customizable Python simulator,
ritten on top of the JAX library [12] and the discretization

ramework JaxDF [22], for fast, parallelizable, and differentiable
coustic simulations. j-Wave solves both time-varying and time-
armonic forms of the wave equation with support for multiple
iscretizations, including finite differences and Fourier spectral
ethods, in 1D, 2D and 3D. Custom discretizations, including

hose based on neural networks, can also be utilized via the
axDF framework. The use of the JAX library gives direct support
or program transformations, such as automatic differentiation,
ingle-Program Multiple-Data (SPMD) parallelism, and just-in-
ime compilation. Lastly, since j-Wave is written in a language
hat follows the NumPy [23] syntax, it is easy to adapt, enhance
r re-implement any simulator stage.

.3. Related software

There is a range of related software that can be used to sim-
late acoustic fields, and that can be used as an alternative or to
omplement j-Wave. In the Julia language, the SciML ecosystem
as a variety of tools that can be used to construct differentiable
coustic simulators [9]. In particular, the ADSeismic.jl [24]
ibrary focuses on seismic wave propagation and several inversion
lgorithms commonly used in the seismic field, and also includes
he support for neural network representation of velocity mod-
ls [25]. In Python, the Devito package [26] and the recently
ublished Stride [27] library can be used to solve acoustic opti-
ization problems that scale over large super computing clusters,
hile SimPEG [28] can be used for geophysical parameter es-
imation. In JAX, several recent works have developed tools for
imulation-based inference and differentiable simulations. These
ange from integrating it with FEniCS for finite elements simu-
ations [29], to differentiable molecular dynamics [30] and fluid
ynamics [31] simulators.

. Software description

.1. Governing equations

j-Wave solves two different forms of the wave equation for
ime-varying and time-harmonic (i.e., single frequency) problems.
or time-varying problems, j-Wave solves a linear system of
oupled first-order PDEs that represent the conservation of mass
nd momentum, and a pressure density relation [32]:
∂u
∂t

= −
1
ρ0

∇p (1)

∂ρ

∂t
= −ρ0∇ · u + SM (2)

p = c20ρ. (3)

Here u is the acoustic particle velocity, p is the acoustic pressure,
and ρ is the acoustic density. The acoustic medium is charac-
terized by a spatially varying background density ρ0 and sound
speed c0. The term SM represents a mass source field.

For time-harmonic simulations, j-Wave solves a form of the
Helmholtz equation constructed from the second-order wave
equation including Stokes absorption:

1
c20

∂2p
∂t2

= ∇
2p −

1
ρ0

∇ρ0 · ∇p +
2α0

c0

∂3p
∂t3

+
∂SM
∂t

(4)

time-harmonic solution is obtained by substituting p = Pe−iωt ,
here ω is frequency in units of rad·s−1, giving

−
ω2

2 P = ∇
2P −

1
∇ρ0 · ∇P +

2iω3α0 P − iωSM . (5)

This equation accounts for acoustic absorption of the form α =

α0ω
2, where the absorption coefficient prefactor α0 has units of

Np(rad/s)−2m−1.

2.2. Numerical methods

Solvers for the two governing equations given in Section 2.1
are constructed using JaxDF [22]. This is a discretization frame-
work that decouples the mathematical definition of the problem
from the underlying discretization. Currently, implementations
of the differential operators are available for spectral and finite
difference discretizations on a regular Cartesian grid. Alterna-
tively, the user can provide a custom discretization compatible
with the underlying operations required by the PDEs. That is,
only linear discretizations are compatible with time-stepping and
Krylov solvers, while non-linear discretizations can be used as
physics informed models [9,10].

For time-varying problems, the wave equation is solved by in-
tegrating the first-order system of equations with a semi-implicit
first-order Euler integrator. If a spectral or finite difference dis-
cretization is used, the fields are defined on a staggered grid to
improve long-range accuracy [33] and avoid checker-board arti-
facts. Radiating boundary conditions are enforced by embedding
the effect of a split-field perfectly matched layer (PML) on the
time-stepping scheme [3]. When using a Fourier discretization,
j-Wave is equivalent to the implementation in the open-source k-
Wave toolbox [32,33], including the use of a dispersion-corrected
finite difference scheme for time integration. The user can fur-
ther specify a generic measurement operator f (u, ρ, p) to extract
instantaneous values from the wavefield at each time step.

For time-harmonic problems, if the underlying discretization
of the Helmholtz operator is linear (for example, using Fourier or
finite difference methods), the solver is a special case of linear
inversion. In this case, j-Wave uses either GMRES or Bi-CGSTAB
to compute the solution. These are matrix-free methods, meaning
that the numerical matrix that represents the linear operator is
never explicitly constructed. Again, radiating boundary conditions
are imposed using a PML, by modifying the spatial gradients as
in [34]:
∂

∂x
→

1
γx

∂

∂x
(6)

where

γx(x) =

{
1, if |x| < a
1 +

i
ω
σ (x) if a ≤ |x|,

(7)

and σ follows a power-law profile.

2.3. JAX and automatic differentiation

The fundamental idea of j-Wave is to provide a suite of dif-
ferentiable, parallelizable and customizable acoustic simulators.
These requirements are accomplished, in first instance, by writ-
ing the simulator in JAX [12], which provides a growing suite
of tools for large-scale differentiable computations, including a
flexible automatic differentiation (AD) engine, single-device par-
allelization, multi-device parallelization, and just-in-time com-
pilation [35]. Furthermore, JAX can be considered an adaptable
Python compiler that translates and transforms code. This al-
lowed us to define a series of custom classes that can be over-
written or adapted by the user, while still being amenable to
transformation.

All forward operators and simulation functions in j-Wave are
differentiable through the use of JaxDF using both forward and
backward AD. This allows the user to obtain gradients for any
continuous parameter in the model. This includes both physical
c0 ρ0 c0

2

Antonio Stanziola, Simon R. Arridge, Ben T. Cox et al. SoftwareX 22 (2023) 101338

p
n
o
c

e
c
t
r
s
a
S
t

2

k

O

e

arameters, such as the acoustic pressure or sound speed, and
umerical parameters, such as the stencils for finite differences
r the filters used in Fourier methods. The gradient rules used for
omputation can also be freely customized.1
Solving a linear system, such as the discretized Helmholtz

quation, using an iterative solver is also beneficial for gradient
alculation. JAX takes advantage of the implicit function theorem
o differentiate through fixed-point algorithms with O(1) memory
equirements (that is, the intermediate steps of the iterative
olver are not stored to compute the gradient). This is a major
dvantage when gradients of large-scale simulations are needed.
ee [36] and references therein for a recent discussion of this
opic.

.4. Software architecture

The architecture of j-Wave can be divided into three main
inds of components: objects, operators, and solvers.

bjects: Objects are variables that contain the numerical data
that is used during the simulations. They are defined as
classes registered to the JAX compiler as a custom pytree
node. The primary objects are:

• Domain: Defines a regular Cartesian grid with the
specified grid spacing and number of points.

• Medium: Defines the sound_speed and density
represented on the specified domain along with the
pml_size.

• Sources: Defines the positions and signals for
time varying mass sources within the specified
domain.

• Sensors: Defines the positions of detectors placed
on the grid.

• TimeAxis: Defines the time steps used for time-
varying simulations.

Objects can be used as input variables to any JAX
function and gradients can be taken with respect to
their continuous parameters. They can be unpacked
into their constituent numpy-like arrays using the
jax.tree_util.tree_flatten utility and constructed
inside pure functions.
Some parameters are defined as Field objects from JaxDF
which define underlying discretizations. This includes
medium.sound_speed and the initial conditions p0 and
u0. The discretization used for the input objects governs
the discretization used during the calculations. Currently,
JaxDF supports FourierSeries, FiniteDifferences
and Continuous discretizations. However, it is straight-
forward to define custom field discretizations which are
automatically compiled into their corresponding numerical
implementations.
Note, that whenever possible j-Wave uses duck-typing,
meaning that each kind of object used only needs to pro-
vide specific methods and characteristics to be used. So, for
example, a valid source only needs to provide a method
on_grid(n) that returns the field on the grid at the nth
iteration, as for example does the Sources class. A valid
sensor is instead any object that can be called with the
signature (p: Field, u: Field, rho: Field), as it is
implemented in the Sensors class. An example of using
the flexibility of duck-typing is in the Transducer class,
which can work both as a source and as a sensor object.

1 Gradients obtained using reverse-mode AD have been shown to be
quivalent to the ones obtained using the adjoint-state model [24].

Operators: Operators are defined via JaxDF and implement a
numerical algorithm that translates a mathematical op-
erator into its corresponding numerical implementation,
for a given type of input discretization. The implementa-
tion of the same operator for different discretizations is
done using multiple-dispatch via plum [37], a program-
ming technique that has been heavily popularized by C#,
Lisp and Julia [38], using the operator decorator of JaxDF.

For example, a custom Laplacian operator for a 1D
FiniteDifferences field can be implemented using type
hints, as shown in Listing 1.

1@operator
2def laplacian(u: FiniteDifferences , params

=[1, -2, 1]):
3# Extract the stencil from the parameters
4k = params
5# Get the field on the domain grid
6_u = u.on_grid
7# Add zero-padding
8_u = jnp.pad(_u, (1,1), ’constant’, 0)
9# Apply the stencil
10v = k[0]*_u[:-2] + k[1]*_u[1:-1] + k[0]*_u

[2:]
11# Update the field values and return with

the operator parameters
12return u.replace_params(v), params

Listing 1: Redefining the Laplacian operator for finite differences.

Every function that uses the laplacian function will then
utilize the custom user implementation if the input field is
of the type FiniteDifferences.

Solvers: There are two main solvers in j-Wave which solve the
equations outlined in Section 2.1. These are also imple-
mented as operators for convenience.

• simulate_wave_propagation: Takes a medium ob-
ject (which internally defines the Domain), along with
Sources, Sensors, and TimeAxis objects, and ini-
tial conditions p0 and u0 if non-zero, and computes
the time varying acoustic field over the specified
domain.

• helmholtz_solver: Takes a medium object (which
internally defines the Domain), source field, and
frequency omega and computes the complex field
over the specified domain. The source field for the
helmholtz_solver is a Field defined over the en-
tire domain, and can be extracted from Sources ob-
jects.

Simulations using these functions can be performed on
CPUs, GPUs, and TPUs, with efficient just-in-time compi-
lation, natively compatible with the JAX ecosystem. The
functions are also amenable to same-device or multiple-
device parallelization, via the JAX decorators vmap and
pmap [12]. Check-pointing can also be applied at each step
to reduce the memory requirements for back-propagation.

2.5. Accuracy

The accuracy of the pseudo-spectral and finite difference
solvers has been evaluated both for time-varying and for time-
harmonic problems. In the first case, the pseudo-spectral nu-

merical solver is equivalent to k-Wave [32,33] and numerical

3

Antonio Stanziola, Simon R. Arridge, Ben T. Cox et al. SoftwareX 22 (2023) 101338

T
i

Fig. 1. Comparison of the fields produced by j-Wave using 8th order accurate FiniteDifferences and FourierSeries representations on an initial value problem.
he initial pressure distribution is a smoothed disk, the speed of sound of the medium is 1500 m/s with a rectangular heterogeneity of 2300 m/s, and the simulation
s run until t = 8 µs.

Fig. 2. Comparison of the field amplitudes predicted by j-Wave and k-Wave for a focused transducer after propagation through an aberrating skull layer in 3D.
Source: Adapted from [1].

simulations agree to machine precision. When finite difference
methods are employed, the simulation error is dependent on
many factors, other than the implementation itself, such as the
number of grid points per wavelength, the finite difference coeffi-
cients, etc. An illustrative comparison of the wavefields produced
for an initial value problem in a medium with a heterogeneous
sound speed is shown in Fig. 1.

For the Helmholtz equation, a comprehensive comparison of
j-Wave against other wave models (including k-Wave) was con-
ducted as part of the inter-comparison effort described in [1].
For homogeneous material properties, the maximum difference
against k-Wave is typically much less than 1%. For heterogeneous
properties, the difference depends on which parameters are het-
erogeneous and the strength of the heterogeneity. Differences are
slightly larger for a heterogeneous density (compared to hetero-
geneous sound speed or absorption). This is likely due to the
different way the ambient density term is treated and evaluated
on a staggered grid between the two softwares. A representative
example showing results for a 3D simulation using j-Wave and
k-Wave is given in Fig. 2. This example includes a bone layer
with an incident field produced by a focused transducer driven at
500 kHz (Benchmark 7 of [1]). In this case, the difference between
the two simulations inside the brain is within 3%.

3. Illustrative examples

3.1. Initial value problems and image reconstruction using time
reversal

To demonstrate the process of defining and running a simu-

in a homogeneous medium as encountered in, e.g., photoacous-
tics [39]. Similarly to k-Wave [33], j-Wave requires the user
to specify a computational domain where the simulation takes
place. This is done using the Domain data class inherited from
JaxDF as shown in Listing 2. The inputs for the constructor are
the size of the domain in grid points in each spatial direction and
the corresponding discretization step.

1from jwave.geometry import Domain
2
3N, dx = (256, 256), (0.1e-3, 0.1e-3)
4domain = Domain(N, dx)

Listing 2: Defining the simulation domain.

The next step is to define the medium properties. This is done
using the Medium class as shown in Listing 3.

1from jwave.geometry import Medium
2
3medium = Medium(domain=domain, sound_speed

=1500.0)

Listing 3: Defining the medium properties.

For time-varying problems, a TimeAxis object also needs to
be defined, which sets the time steps used in the time-stepping
scheme of the numerical simulation. This object can be con-
structed from the medium for a given Courant–Friedrichs–Lewy
(CFL) number as shown in Listing 4 to ensure that the time-
stepping scheme is stable.
lation using j-Wave, we start with a simple initial value problem

4

Antonio Stanziola, Simon R. Arridge, Ben T. Cox et al. SoftwareX 22 (2023) 101338

f
s

i
t
t
s
T
w
l
a
o
s

p
L
t
j
m
G
d
i

1from jwave.geometry import TimeAxis
2
3time_axis = TimeAxis.from_medium(medium, cfl=0.3)

Listing 4: Defining the time axis.

The next optional step is to define some sensors. Any kind
of sensor can be used, where a custom sensor is any object
or function that can be called. When called, it must take the
current velocity, density and pressure fields as inputs, and return
a PyTree. For convenience, j-Wave provides the Sensors class
or defining sensors on grid-points, as shown in Listing 5. If no
ensors are defined, the code returns a Field for each time-step.

1from jwave.geometry import _points_on_circle ,
Sensors

2
3num_sensors , radius, center = 48, 100, (128, 128)
4x, y = _points_on_circle(num_sensors , radius,

center)
5sensors = Sensors(positions=(jnp.array(x), jnp.

array(y)))

Listing 5: Defining sensors.

Finally, the initial pressure distribution must be defined. This
s done by populating a jax.numpy.ndarray the same size as
he domain, and then passing this to the appropriate discretiza-
ion. In Listing 6, the initial pressure is set to the weighted
um of four binary disks and defined as a FourierSeries field.
he disks are generated using the custom function _circ_mask
hich generates circular binary masks of a given radius and

ocation, but any numpy array (however constructed) can be used
s the initial pressure. The field information is used when calling
perators to choose the correct numerical implementations. The
imulation setup is depicted in Fig. 3 (left).

1from jwave.geometry import _circ_mask
2from jwave import FourierSeries
3
4mask1 = _circ_mask(N, 16, (100, 100))
5mask2 = _circ_mask(N, 10, (160, 120))
6mask3 = _circ_mask(N, 20, (128, 128))
7mask4 = _circ_mask(N, 60, (128, 128))
8p0 = 5.*mask1 + 3.*mask2 + 4.*mask3 + 0.5*mask4
9p0 = FourierSeries(p0, domain)

Listing 6: Defining the initial pressure distribution as a Fourier
series Field.

To run the simulation, the solver simulate_wave_
ropagation is called with the appropriate inputs as shown in
isting 7. Here, a wrapper is defined around it, to highlight how
o create arbitrary callables that are just-in-time compiled using
ax.jit. The jit compilation of the entire computational graph
akes the solver computationally very efficient: on a modern
PU, the user can expect to run 1000 time-steps on a 128 × 128
omain in about 50 ms. The recorded acoustic signals are shown
n Fig. 3 (center).

1from jwave.acoustics import
simulate_wave_propagation

2
3@jit
4def compiled_simulator(medium, p0):
5return simulate_wave_propagation(
6medium, time_axis , p0=p0, sensors=sensors)
7
8sensors_data = compiled_simulator(medium, p0)

Listing 7: Just-in-time compiling and running the simulation.

3.2. Automatic differentiation

As mentioned, gradients can be evaluated with respect to any
input parameters: all that is needed is to define a scalar loss
function. In Listing 8, the use of the wave equation adjoint as a
simple imaging algorithm for the forward problem defined in Sec-
tion 3.1 is demonstrated following the discretize-then-optimize
approach [9,40]. Note that the user can always define a custom
adjoint function for the forward operator if required.

Gradients for the initial pressure alone can be easily computed
by wrapping a new function around the simulator and using the
jax.grad decorator. In this example, noise is added to the data
before inverting the model.

1def solver(p0):
2return simulate_wave_propagation(
3medium, time_axis , p0=p0, sensors=sensors)
4
5@jit # Compile the whole algorithm
6def lazy_imaging_algorithm(measurements):
7def mse_loss(p0, measurements):
8p_pred = solver(p0)
9return 0.5 * jnp.sum((p_pred - measurements)

**2)
10
11# Start from an empty field
12p0 = FourierSeries.empty(domain)
13# Take the gradient
14p_grad = grad(mse_loss)(p0, measurements)
15return -p_grad
16
17# Reconstruct initial pressure distribution
18recon_image = lazy_time_reversal(noisy_data)

Listing 8: Use of the adjoint model as a simple imaging
algorithm.

The reconstructed initial pressure is shown in Fig. 3 (right).

3.3. Prototyping full-waveform inversion algorithms

One of the most exciting features of j-Wave is the possibility
to obtain gradients with respect to any continuous real parameter
of the computational graph directly exposed to the user. Besides
applications in machine learning, differentiability means that full
waveform inversion methods can be easily prototyped. For ex-
ample, to mitigate cycle skipping it has been proposed to use
an ℓ2 loss on the modulus of the complex analytic signal associ-
ated with the data residual [41,42]. This can be implemented by
defining an appropriate objective function as shown in Listing 9.

1from jwave.signal_processing import
analytic_signal

2
3def loss_func(params, source_num):
4# This contains the simulator function
5p = single_source_simulation(get_sound_speed(

params), source_num)
6
7# Get envelopes of data and simulated signals
8p = jnp.abs(analytic_signal(p, 0))
9pred = jnp.abs(analytic_signal(p_data[

source_num], 0))
10
11# MSE on envelopes
12return jnp.sum(jnp.abs(p - pred)**2)
13
14loss_with_grad = jax.value_and_grad(loss_func)

Listing 9: Defining an objective function for full-wave inversion.
5

Antonio Stanziola, Simon R. Arridge, Ben T. Cox et al. SoftwareX 22 (2023) 101338
Fig. 3. Example of workflow to simulate an initial value problem and invert it using automatic differentiation. From left to right: Simulation setup; Recorded acoustic
signals with additive colored noise; Reconstructed initial pressure distribution from noisy data.

Because it is possible to differentiate through arbitrary com-
putations, evaluating the gradient of this expression is done using
backward-mode AD. Low-pass filtering of the speed of sound gra-
dients can also be used to improve the convergence towards the
true speed of sound distribution [43]. Again, we can seamlessly
include smoothing of the gradients in the update function that is
run at each iteration of gradient descent as shown in Listing 10.

1@jax.jit
2def update(opt_state , key, k):
3# Get the parameters from the optimizer
4v = get_params(opt_state)
5# Sample a random source
6src_num = random.choice(key, num_sources)
7
8# Find the value of the loss and its gradient
9loss_with_grad = jax.value_and_grad(loss_func ,

argnums=0)
10lossval, gradient = loss_with_grad(v, src_num)
11
12# Smooth the gradient
13gradient = smooth_fun(gradient)
14
15# Update the parameters using the gradient and

return with loss value
16return lossval, update_fun(k, gradient,

opt_state)

Listing 10: Gradient descent using AD.

The results of this FWI algorithm on a noisy synthetic dataset
are given in Fig. 4. Note that this example is only intended to
highlight the ability to take gradients of arbitrary computations
using a discretize-then-optimize approach.

3.4. Focusing of time-harmonic simulations

As another example, we demonstrate the differentiability of
the time-harmonic solver. We transmit waves from a set of n
transducers, that act as monopole sources: that means that we
can define a complex weighting vector, that defines the amplitude
and phase of the sources

a = (a0, . . . , an), ai ∈ C, ∥ai∥ < 1 (8)

such that φ(a) is the transmitted wavefield. The unit norm con-
straint is needed to enforce the fact that each transducer has an
upper limit on the maximum power it can transmit. One could
use several methods to represent this vector and its constraint.
Here, we use the following parameterization:

aj(ρj, θj) =
eiθj

2 , (9)

where ρj and θh are real variables.
Often, one wants to find an apodization vector which returns

a field having certain properties. For example, in transcranial
neurostimulation one may want to maximize the acoustic power
delivered to a certain location: this is the setup that we will use
in this example (see Fig. 5(a)).

Let us call p ∈ R2 the point where we want to maximize the
wavefield. For a field φ(x, a) generated by the apodization a, the
optimal apodization is then given by

â = argmax
a

∥φ(p, a)∥. (10)

This defines the loss function that we are going to minimize using
gradient descent. The full code for this example is given in the
notebook helmholtz_solver_differentiable.ipynb, in the
examples folder. The resulting wavefield after the optimization is
shown in Fig. 5(b).

Time harmonic solvers also benefit from the jit compilation
capabilities. For example, the time required to solve a 128 × 256
problem on a modern GPU is about 200 ms. However, due to the
use of matrix-free operations, currently j-Wave does not imple-
ment preconditioning for the solution of the Helmholtz solver.
Therefore the performance of the GMRES solver will degrade
for large 3D problems. This could be amended by using domain
decomposition methods [44], which will be the focus of future
package releases.

4. Impact

j-Wave combines several ideas from the machine learning
and inverse problems communities, and can be used to investi-
gate numerical and physical problems revolving around acoustic
phenomena. The software is open-source and is based on JAX,
which uses an interface that closely follows the widely used
NumPy package [23]. This means that interested researchers can
customize the software to their needs using a familiar syntax.

As a forward solver, j-Wave can be used as a simple acous-
tic simulator to perform numerical acoustic experiments. The
software can simulate wave propagation in homogeneous and
heterogeneous media, both in the frequency domain and in the
time domain.

The differentiability of the solver can be exploited for a variety
of tasks. By taking gradients with respect to the acoustic param-
eters, j-Wave can perform discrete sensitivity analyses or can
be used to learn machine-learning models that perform model-
based image inversion. Similarly, gradients with respect to the
source parameters can be used for model-based optimal control
and training reinforcement learning agents that interact with an
acoustic setup.

j-Wave as a differentiable forward model can also be exploited
for uncertainty quantification. Besides Monte Carlo methods that
1 + ρj

6

Antonio Stanziola, Simon R. Arridge, Ben T. Cox et al. SoftwareX 22 (2023) 101338

a

c
d
n
f
u
m
u
S
i
t
t
L
p

p
a
c
m
i
t
t
c

Fig. 4. Full -waveform inversion using an envelope-based objective function and speed of sound gradient smoothing. The first row from the left shows the data
acquisition setup, the initial guess and the evolution of the loss function for each gradient descent step. The second row shows the estimated speed of sound map
at several steps.

Fig. 5. Example where the differentiability of the time-harmonic simulator is used. (a) Simulation setup, with a line of point transducers, heterogeneous sound speed
nd a focusing target; the sources frequency is 1.7MHz. (b) The amplitude of the acoustic field after optimizing the transmit apodization.

an be accelerated in j-Wave using single-device and multiple-
evice parallel transformations, there is a growing body of tech-
iques that are being developed to exploit simulation gradients
or simulation-based inference [8,45]. For example, in [46], the
se of linear uncertainty propagation (LUP) was proposed as a
eta-programming method to endow arbitrary (differential) sim-
lations with uncertainty propagation in the Julia language [47].
upporting forward automatic differentiation allows LUP to be
mplemented with minimal memory requirements for simula-
ions that depend on a small number of parameters (e.g., uncer-
ainty on the background speed of sound). An example of using
UP with j-Wave is included in one of the example notebooks
rovided with the package.
Since the operators relevant for acoustic simulations are im-

lemented with JaxDF [22], it is possible to experiment with
rbitrary discretizations that contain tunable parameters. This
ould be leveraged for a variety of tasks such as reduction of
emory requirements, computational acceleration, or parameter

nference. This is further aided by the possibility of overriding
he behavior of operators for existing or user-defined discretiza-
ions. For example, a similar approach has been used recently in
omputational fluid dynamics, where the authors trained a neural

network-based adaptive finite-difference scheme to perform ac-
curate simulations on coarser collocation grids [31]. Alternatively,
one could employ learned error-correction schemes [21], directly
optimize the stencils of a finite difference scheme [48], or learn
a preconditioner for the discretized Helmholtz equation [49].

Operators that represent a PDE, such as the Helmholtz opera-
tor, can also be constructed for arbitrary nonlinear discretizations,
allowing the application of Physics Informed Neural Networks to
solve the acoustic problem [10].

While the software offers a complete set of tools for accurately
simulating wave phenomena, the user should remember that
it has been designed mainly to allow flexible experimentation
in the context of learned algorithms, such as machine learning.
Therefore, it is likely prohibitive to use the software out of the box
for large-scale problems such as 3D seismic imaging and medical
tomography on real data, as it would require a prohibitive amount
of memory for a consumer computer. However, it is possible
to use the components of j-Wave to research algorithms for
reducing memory requirements.

Similarly, in its current state, j-Wave does not support
MPI [35], although some operations could be easily implemented
using the MPI protocol. Also, domain decomposition methods are
7

Antonio Stanziola, Simon R. Arridge, Ben T. Cox et al. SoftwareX 22 (2023) 101338

n
f

o
o
t
t
f
o
d
s
a
c
u

5

j
v
i
d
o
w
e
(
l
s
t
t
i

D

c
t

D

A

S
n

R

ot implemented; hence multi-GPU hosts can only be exploited
or the concurrent solution of distinct problems.

Lastly, even though the iterative solvers used for the solution
f harmonic problems allow for the use of preconditioners, most
f the acoustic operators are implemented as matrix-free and
herefore do not allow for immediate applications of precondi-
ioners, especially for the back-propagation step. This means that
or large-scale problems, the solvers will require a large number
f iterations to converge, which may justify switching to a time-
omain solver run to a steady state. We, however, note that the
atisfactory preconditioning of the Helmholtz equation is still an
ctive area of research [50], and each computation step in j-Wave
an always be overwritten with a more effective algorithm by the
ser.

. Conclusions

An open-source differentiable acoustic simulator called
-Wave is presented that solves both time-harmonic and time-
arying forms of the wave equation, with potential applications
n medical ultrasound, non-destructive testing, acoustic material
esign, seismic modeling and general machine learning research
n acoustics. The simulator is written in JAX and is compatible
ith machine learning libraries. Furthermore, it provides a differ-
ntiable implementation of the time-harmonic acoustic operator
Helmholtz operator) that can be used with both linear and non-
inear arbitrary discretizations, including ones depending on a
et of tunable parameters. We expect j-Wave to be a useful
ool for a wide range of acoustic-related lines of research: from
he investigation of numerical algorithms and machine learning
deas, to the design of acoustic imaging techniques and materials.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

No data was used for the research described in the article.

cknowledgments

This work was supported by the Engineering and Physical
ciences Research Council, United Kingdom (EPSRC), UK, grant
umbers EP/S026371/1, EP/V026259/1 and EP/T022280/1.

eferences

[1] Aubry J-F, Bates O, Boehm C, Pauly KB, Christensen D, Cueto C, et al. Bench-
mark problems for transcranial ultrasound simulation: Intercomparison of
compressional wave models. J Acoust Soc Am 2022;152:1003–19.

[2] Virieux J, Operto S. An overview of full-waveform inversion in exploration
geophysics. Geophysics 2009;74(6):WCC1–26.

[3] Tabei M, Mast TD, Waag RC. A k-space method for coupled first-order
acoustic propagation equations. J Acoust Soc Am 2002;111(1):53–63.

[4] Pinton GF, Dahl J, Rosenzweig S, Trahey GE. A heterogeneous nonlinear
attenuating full-wave model of ultrasound. IEEE Trans Ultrason Ferroelectr
Freq Control 2009;56(3):474–88.

[5] Pichardo S, Moreno-Hernández C, Drainville RA, Sin V, Curiel L, Hynynen K.
A viscoelastic model for the prediction of transcranial ultrasound propa-
gation: Application for the estimation of shear acoustic properties in the
human skull. Phys Med Biol 2017;62(17):6938.

[6] Vyas U, Christensen D. Ultrasound beam simulations in inhomogeneous
tissue geometries using the hybrid angular spectrum method. IEEE Trans
Ultrason Ferroelectr Freq Control 2012;59(6):1093–100.

[7] van’t Wout E, Gélat P, Betcke T, Arridge S. A fast boundary element method
for the scattering analysis of high-intensity focused ultrasound. J Acoust
Soc Am 2015;138(5):2726–37.

[8] Cranmer K, Brehmer J, Louppe G. The frontier of simulation-based
inference. Proc Natl Acad Sci 2020;117(48):30055–62.

[9] Rackauckas C, Ma Y, Martensen J, Warner C, Zubov K, Supekar R, et al.
Universal differential equations for scientific machine learning. 2020, arXiv
preprint arXiv:2001.04385.

[10] Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural net-
works: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations. J Comput Phys
2019;378:686–707.

[11] Innes M, Edelman A, Fischer K, Rackauckas C, Saba E, Shah VB, et al.
A differentiable programming system to bridge machine learning and
scientific computing. 2019, arXiv preprint arXiv:1907.07587.

[12] Bradbury J, Frostig R, Hawkins P, Johnson MJ, Leary C, Maclaurin D, et
al. [JAX]: composable transformations of Python+NumPy programs. 2018,
http://github.com/google/jax.

[13] Chen RT, Rubanova Y, Bettencourt J, Duvenaud D. Neural ordinary
differential equations. 2018, arXiv preprint arXiv:1806.07366.

[14] Lutter M, Silberbauer J, Watson J, Peters J. Differentiable physics models
for real-world offline model-based reinforcement learning. In: 2021 IEEE
international conference on robotics and automation. ICRA, IEEE; 2021, p.
4163–70.

[15] Murthy JK, Macklin M, Golemo F, Voleti V, Petrini L, Weiss M, et al. grad-
sim: Differentiable simulation for system identification and visuomotor
control. In: International conference on learning representations, 2020.

[16] Heiden E, Denniston CE, Millard D, Ramos F, Sukhatme GS. Probabilistic
inference of simulation parameters via parallel differentiable simulation.
2021, arXiv preprint arXiv:2109.08815.

[17] Liang J, Lin M, Koltun V. Differentiable cloth simulation for inverse
problems. Adv Neural Inf Process Syst 2019;32.

[18] Hu Y, Anderson L, Li T-M, Sun Q, Carr N, Ragan-Kelley J, et al. Difftaichi:
Differentiable programming for physical simulation. 2019, arXiv preprint
arXiv:1910.00935.

[19] Karpatne A, Watkins W, Read J, Kumar V. Physics-guided neural networks
(pgnn): An application in lake temperature modeling. 2017, arXiv preprint
arXiv:1710.11431.

[20] Holl P, Koltun V, Thuerey N. Learning to control pdes with differentiable
physics. 2020, arXiv preprint arXiv:2001.07457.

[21] Siahkoohi A, Louboutin M, Herrmann FJ. Neural network augmented
wave-equation simulation. 2019, arXiv preprint arXiv:1910.00925.

[22] Stanziola A, Arridge S, Cox BT, Treeby BE. A research framework for writing
differentiable pde discretizations in jax. In: Differentiable programming
workshop at neural information processing systems 2021, 2021.

[23] Harris CR, Millman KJ, Van Der Walt SJ, Gommers R, Virtanen P,
Cournapeau D, et al. Array programming with numpy. Nature
2020;585(7825):357–62.

[24] Zhu W, Xu K, Darve E, Beroza GC. A general approach to seismic inversion
with automatic differentiation. Comput Geosci 2021;104751.

[25] Zhu W, Xu K, Darve E, Biondi B, Beroza GC. Integrating deep neural
networks with full-waveform inversion: Reparametrization, regularization,
and uncertainty quantification. Geophysics 2021;87(1):1–103.

[26] Lange M, Kukreja N, Louboutin M, Luporini F, Vieira F, Pandolfo V, et al.
Devito: Towards a generic finite difference dsl using symbolic python.
In: 2016 6th workshop on python for high-performance and scientific
computing (PyHPC). IEEE; 2016, p. 67–75.

[27] Cueto C, Bates O, Strong G, Cudeiro J, Luporini F, Calderón Agudo Ò,
et al. Stride: A flexible software platform for high-performance ul-
trasound computed tomography. Comput Methods Programs Biomed
2022;221:106855.

[28] Cockett R, Kang S, Heagy LJ, Pidlisecky A, Oldenburg DW. Simpeg: An open
source framework for simulation and gradient based parameter estimation
in geophysical applications. Comput Geosci 2015;85:142–54.

[29] Yashchuk I. Bringing PDEs to JAX with forward and reverse modes
automatic differentiation. In: ICLR 2020 workshop on integration of deep
neural models and differential equations, 2020.

[30] Schoenholz SS, Cubuk ED. JAX m.d. a framework for differentiable physics.
In: Advances in neural information processing systems. Vol. 33, Curran
Associates, Inc.; 2020.

[31] Kochkov D, Smith JA, Alieva A, Wang Q, Brenner MP, Hoyer S. Machine
learning–accelerated computational fluid dynamics. Proc Natl Acad Sci
2021;118(21).

[32] Treeby BE, Jaros J, Rendell AP, Cox B. Modeling nonlinear ultrasound
propagation in heterogeneous media with power law absorption using
ak-space pseudospectral method. J Acoust Soc Am 2012;131(6):4324–36.

[33] Treeby BE, Cox BT. K-wave: Matlab toolbox for the simulation
and reconstruction of photoacoustic wave fields. J Biomed Opt
2010;15(2):021314.

[34] Bermúdez A, Hervella-Nieto L, Prieto A, Rodrı R, et al. An optimal perfectly
matched layer with unbounded absorbing function for time-harmonic
acoustic scattering problems. J Comput Phys 2007;223(2):469–88.
8

http://refhub.elsevier.com/S2352-7110(23)00034-1/sb1
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb1
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb1
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb1
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb1
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb2
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb2
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb2
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb3
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb3
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb3
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb4
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb4
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb4
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb4
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb4
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb5
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb5
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb5
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb5
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb5
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb5
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb5
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb6
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb6
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb6
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb6
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb6
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb7
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb7
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb7
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb7
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb7
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb8
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb8
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb8
http://arxiv.org/abs/2001.04385
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb10
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb10
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb10
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb10
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb10
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb10
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb10
http://arxiv.org/abs/1907.07587
http://github.com/google/jax
http://arxiv.org/abs/1806.07366
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb14
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb14
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb14
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb14
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb14
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb14
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb14
http://arxiv.org/abs/2109.08815
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb17
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb17
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb17
http://arxiv.org/abs/1910.00935
http://arxiv.org/abs/1710.11431
http://arxiv.org/abs/2001.07457
http://arxiv.org/abs/1910.00925
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb23
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb23
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb23
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb23
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb23
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb24
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb24
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb24
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb25
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb25
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb25
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb25
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb25
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb26
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb26
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb26
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb26
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb26
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb26
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb26
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb27
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb27
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb27
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb27
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb27
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb27
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb27
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb28
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb28
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb28
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb28
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb28
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb30
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb30
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb30
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb30
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb30
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb31
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb31
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb31
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb31
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb31
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb32
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb32
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb32
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb32
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb32
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb33
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb33
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb33
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb33
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb33
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb34
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb34
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb34
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb34
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb34

Antonio Stanziola, Simon R. Arridge, Ben T. Cox et al. SoftwareX 22 (2023) 101338
[35] Häfner D, Vicentini F. Mpi4jax: Zero-copy mpi communication of jax
arrays. J Open Source Softw 2021;6(65):3419. http://dx.doi.org/10.21105/
joss.03419.

[36] Blondel M, Berthet Q, Cuturi M, Frostig R, Hoyer S, Llinares-López F,
et al. Efficient and modular implicit differentiation. 2021, arXiv preprint
arXiv:2105.15183.

[37] Wessel, Vicentini F, Comelli R. invenia blog, wesselb/plum: v1.6. 2022,
http://dx.doi.org/10.5281/zenodo.6627180.

[38] Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: A fresh approach to
numerical computing. SIAM Rev 2017;59(1):65–98.

[39] Cox BT, Beard PC. Fast calculation of pulsed photoacoustic fields in fluids
using k-space methods. J Acoust Soc Am 2005;117(6):3616–27.

[40] Betts JT, Campbell SL. Discretize then optimize. In: Mathematics for
industry: challenges and frontiers. 2005, p. 140–57.

[41] Bedrosian E. The analytic signal representation of modulated waveforms.
Proc IRE 1962;50(10):2071–6.

[42] Chi B, Dong L, Liu Y. Full waveform inversion method using enve-
lope objective function without low frequency data. J Appl Geophys
2014;109:36–46.

[43] Alkhalifah T. Scattering-angle based filtering of the waveform inversion
gradients. Geophys J Int 2014;200(1):363–73.

[44] Royer A, Geuzaine C, Béchet E, Modave A. A non-overlapping domain
decomposition method with perfectly matched layer transmission con-
ditions for the helmholtz equation. Comput Methods Appl Mech Engrg
2022;395:115006.

[45] Gerlach AR, Leonard A, Rogers J, Rackauckas C. The Koopman expectation:
An operator theoretic method for efficient analysis and optimization of
uncertain hybrid dynamical systems. 2020, arXiv preprint arXiv:2008.
08737.

[46] Giordano M. Uncertainty propagation with functionally correlated
quantities. 2016, arXiv preprint arXiv:1610.08716.

[47] Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: A fresh approach to
numerical computing. SIAM Rev 2017;59(1):65–98.

[48] Jo C-H, Shin C, Suh JH. An optimal 9-point, finite-difference, frequency-
space, 2-d scalar wave extrapolator. Geophysics 1996;61(2):529–37.

[49] Azulay Y, Treister E. Multigrid-augmented deep learning preconditioners
for the helmholtz equation. In: The symbiosis of deep learning and
differential equations, 2021.

[50] Gander MJ, Zhang H. A class of iterative solvers for the helmholtz
equation: Factorizations, sweeping preconditioners, source transfer, single
layer potentials, polarized traces, and optimized schwarz methods. Siam
Rev 2019;61(1):3–76.
9

http://dx.doi.org/10.21105/joss.03419
http://dx.doi.org/10.21105/joss.03419
http://dx.doi.org/10.21105/joss.03419
http://arxiv.org/abs/2105.15183
http://dx.doi.org/10.5281/zenodo.6627180
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb38
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb38
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb38
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb39
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb39
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb39
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb40
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb40
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb40
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb41
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb41
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb41
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb42
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb42
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb42
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb42
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb42
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb43
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb43
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb43
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb44
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb44
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb44
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb44
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb44
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb44
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb44
http://arxiv.org/abs/2008.08737
http://arxiv.org/abs/2008.08737
http://arxiv.org/abs/2008.08737
http://arxiv.org/abs/1610.08716
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb47
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb47
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb47
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb48
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb48
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb48
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb50
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb50
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb50
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb50
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb50
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb50
http://refhub.elsevier.com/S2352-7110(23)00034-1/sb50

	j-Wave: An open-source differentiable wave simulator
	Motivation and significance
	Background
	Aim
	Related software

	Software description
	Governing equations
	Numerical methods
	JAX and automatic differentiation
	Software architecture
	Accuracy

	Illustrative Examples
	Initial value problems and image reconstruction using time reversal
	Automatic differentiation
	Prototyping full-waveform inversion algorithms
	Focusing of time-harmonic simulations

	Impact
	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

