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ABSTRACT
The sensitivity of phase-sensitive detectors, such as piezoelectric
detectors, becomes increasingly directional as the detector ele-
ment size increases. In contrast, pyroelectric sensors, which are
phase-insensitive, retain their omni-directionality even for large ele-
ment sizes, although they have significantly poorer temporal resolu-
tion. This study uses numerical models to examine whether phase-
insensitive detectors can be used advantageously in ultrasound
tomography, specifically absorption tomography, when the number
of detectors is sparse. We present measurement models for phase-
sensitive and phase-insensitive sensors and compare the quality of
the absorption reconstructions between these sensor types based
on relative error and image contrast metrics. We perform the inver-
sion using synthetic data with a Jacobian-based linearized matrix
inversion approach.

ARTICLE HISTORY
Received 25 August 2022
Accepted 14 August 2023

KEYWORDS
Inverse problems; linear
inversion; ultrasound
tomography; frequency
domain ultrasound
tomography; acoustic
absorption; helmholtz
equation

MATHEMATICS SUBJECT
CLASSIFICATIONS
34A55; 65L09; 35J05

1. Introduction

Ultrasound tomography (UST) is an emerging approach for tomographic reconstructions
which functions through the measurement of ultrasound waves after interaction with a
target of interest. UST has found particular interest in the imaging of soft tissues, such as
breasts, where ultrasound transmission tomography has been employed to reconstruct the
absorption and sound speed pro!les of the interior tissue [1–4], since cancerous breast tis-
sue is known to have di"erent absorption and sound speed properties compared to healthy
breast tissue [1, 5]. An important aspect of assessing the performance of UST systems is
the detector type, its size and its directional response. In particular, we consider here the
possibility of using pyroelectic detectors which are phase-insensitive (PI) [6], versus the
better known piezoelectric detectors which are phase-sensitive (PS) [7]. We will consider
ultrasound transmission tomography for the purpose of acoustic absorption reconstruc-
tions only, as it best enables the comparison of PS and PI detector types in the parallel
array geometry, which further allows for comparisons with traditional x-ray tomography
approaches.
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Table 1. Definitions for symbols used throughout this paper.

Symbol Definition

χ , x spatial domain, and spatial variable x ∈ χ
χθ ,m ⊂ χ spatial support ofmth sensor at angle θ
ω,$ source frequency, set of source frequencies
θ ,% array rotation angle, set of array rotation angles
Sωθ ,n nth point source for frequencyω at angle θ
Lω Helmholtz operator for source frequency ω
M pointwise field transformation based on sensor type
Iθ ,m measurement sampling operator formth sensor at angle θ
yM , yMωθ ,nm modelled data and its components for sensor typeM
gM measured data for sensor typeM
ε, εi random noise vector and its components
τ ,α dimensionless and dimensional absorption distributions
τ0 modelled dimensionless absorption distribution
c sound speed of medium
P complex-valued pressure field
η regularization parameter
Lx , Ly pixel dimensions of simulation domain in x and y directions
AM , bM augmented forward matrix and data vector for sensor typeM
FM : L2(χ) → Y forward mapping from solution space L2(χ) to data space Y, for sensor type given

byM
JFM |τ0 , JFM |τ0 (i, x), (JFM |τ0 )ij Jacobian operator of FM at τ0, its discrete-continuous components, and

discretized components
f{i}({z}; {a}) function f with variables {z}, experimental parameters {i}, andmediumparameters

{a}

PI sensors have previously been studied in the context of UST absorption reconstruc-
tions with the use of pyroelectric ultrasound detectors [6, 8], which is the detector type that
wewill use as a reference tomodel PI sensors in this paper. The key aspect of PI sensors that
may prove bene!cial in certain scenarios is their much #atter directional response curve
due to the lack of phase-cancellation [6, 9], which for PS sensors can lead to false absorption
measurements. This is especially true in larger sensors, which have better signal-to-noise
ratios but also su"er from strong directionality in PS sensors.

We evaluate the reconstruction qualities of PS and PI sensors for a parallel array geom-
etry with a varying range of array rotation angles and the number of source frequencies,
for two choices of sensor width. The quality evaluation is done through the relative error
as well as two di"erent contrast metrics: the modulation transfer function (MTF) [10, 11],
and the root-mean-square (RMS) contrast [12]. The MTF provides a contrast measure as
a function of spatial frequency in the reconstructions, whereas the RMS contrast provides
a global contrast measure that is independent of spatial frequencies.

In Section 2, we outline the inverse problem that we are solving in this paper, along
with the source–sensor geometry being considered. Then, in Section 3 we describes the
models used for the forward problem, consisting of the acoustic !eld simulation and the
detector measurement models. Section 4 covers the theoretical description of the image
reconstruction, with a derivation of the Jacobian operator used in our linearized recon-
struction approach. Section 5 explains our numerical simulation setup, how the image
quality is analysed, followed by the results for our comparison of PS and PI sensors with
a focus on sensor size and data sparsity and their a"ect on reconstruction quality for the
two sensor types. Finally, in Section 6 we discuss the results and their implications for UST
and future research, in particular the scenarios in which PI sensors may be able to produce
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Figure 1. Parallel array source and sensor geometry where for a rotation of θ themth sensor occupies a
regionχθ ,m ⊂ χ = R2. Each of theM sensors in the array has a diameter of d, and is located at a distance
D from the source array which consists ofN point sources with continuous-wave signals defined by Sωθ ,n
for the nth source.

better absorption reconstructions than PS sensors. A summary of the symbols and notation
used throughout this paper can be found in Table 1.

2. Inverse problem

Our goal is to reconstruct the acoustic absorption pro!le of a region located between an
array of ultrasound sources and an array of sensors through transmission UST, using the
parallel array geometry shown in Figure 1. This source–sensor geometry can be compared
to previous work in both UST as well as traditional x-ray computed tomography. The par-
allel array consists of a linear array of N point sources Sωθ ,n, n ∈ {1, . . . ,N} opposing a
linear array of M sensors taken to be simply the integral over a !nite support function
χθ ,m ⊂ χ ,m ∈ {1, . . . ,M} of width d. We consider an in!nite Euclidean domain χ = R2,
so there are no boundary conditions a"ecting the sound waves. The source and sensor
arrays are rotated with respect to their centre point over a range of angles θ ∈ %, and the
sources are driven at a range of frequencies ω ∈ $ in order to capture the full data for the
reconstruction problem. The size of the forward model matrix scales linearly with each of
the number of sources, sensors, angles, and frequencies.

3. Forwardmodels

3.1. Acoustic model

The forwardmodel used in this paper is an acousticHelmholtz equationwith an absorption
term implemented through a complex wavenumber, given by the family of equations

Sωθ ,n(x) = Lω(x; τ , c)Pωθ ,n(x; τ , c), (1)
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where x ∈ χ ⊂ R2 is the spatial position, and the equations are parametrized by the source
frequency ω, angle θ , and source index n. Parameters which are controlled are written as
indices, whereas the absorption and sound speed parameters, τ and c, which are de!ned by
themedium arewritten in the function argument. Each constant frequency source Sωθ ,n(x)
gives rise to a complex acoustic pressure solution Pωθ ,n(x; τ , c) through the di"erential
operator Lω(x; τ , c) which has the form

Lω(x; τ , c) =
[
ω(1 + iτ (x))

c(x)

]2
+ ∇2. (2)

The absorption term τ is dimensionless, but can be related to the usual dimensional
absorption coe$cient α with units of dB cm−1 by the relation

τ = 100 [cmm−1]
20 log10(e) [dBNp−1]

c
ω

α, (3)

which is derived by de!ning the absorption coe$cient to be the imaginary part of the
complex wave number in (2). This form for the absorption term assumes a linear power
law with respect to frequency, α = α0ω, where α0 = τ/c.

In this paper, we are only interested in comparing absorption reconstructions, so we
assume that the sound speed c is known and has a constant value throughout the medium
χ for simplicity. Themodel does allow for heterogeneous sound speed and absorption, and
the e"ects of a sound speed heterogeneity in the targetmediumare analysed inAppendixA.

3.2. Measurementmodel

In this paper, we model the output of each PS sensor as proportional to the integral of the
acoustic pressure over the sensor area, for each sensor in the array, and the output of each
PI sensor as proportional to the integral of the squared acoustic pressure amplitude over the
sensor area. These choices are designed to approximate the behaviour of piezoelectric (PS)
sensors, which respond to pressure, and pyroelectric (PI) sensors, which respond to heat-
ing. The use of the squared pressure amplitude to model the pyroelectric sensor response
follows from the observation that the directional response of a pyroelectric sensor corre-
lates strongly with the directional dependence of the total heat deposition in the sensor
with respect to the angle of incidence of an incident ultrasound wave with the sensor [9].
Ultrasonic heat deposition is commonly taken to be proportional to the acoustic pressure
amplitude squared [13].

In general we consider the measurement yMωθ ,nm forM-type sensors at the mth sensor
from the nth source at frequency ω and array angle θ to be modelled as the composition
of three operators as follows,

yMωθ ,nm(τ , c) = [Iθ ,m ◦ M ◦ L−1
ω (x; τ , c)]Sωθ ,n(x), (4)

where Iθ ,m is a sampling operator for themth sensor with rotation θ about the centre,M
is a pointwise !eld transformation dependent on the type of sensor, andL−1

ω (x; τ , c) is the
inverse Helmholtz operator for an absorption map τ . These operators act as follows:

L−1
ω (x; τ , c) : Sωθ ,n(x) '→ Pωθ ,n(x; τ , c), by the Helmholtz equation, (5)



APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING 5

M : Pωθ ,n(x; τ , c) '→
{
Pωθ ,n(x; τ , c) phase − sensitive
|Pωθ ,n(x; τ , c)|2 phase − insensitive

, (6)

Iθ ,m : M[Pωθ ,n(x; τ , c)] '→ yMωθ ,nm(τ , c) =
〈
1χθ ,m ,M[Pωθ ,n(x; τ , c)]

〉
L2(χ)

, (7)

where 1χθ ,m is the indicator function on themth sensor region at rotation θ , and 〈·, ·〉L2(χ)

is the inner product on the Hilbert space of square-integrable functions, L2(χ).

4. Image reconstruction

4.1. Forward problem

We de!ne a forward mappings

FM : L2(χ) → Y , (8)

τ '→ yM, (9)

which maps the acoustic absorption maps τ to their corresponding measurement vectors
yM with components yMωθ ,nm, as described by the measurement model in Equation (4). PS
and PI measurements are distinguished by the sensor response mappingM. The absorp-
tion maps are described by square-integrable functions over χ , and are thus elements of
the Hilbert space L2(χ). The space of data is the complex space Y = C|$||%|NM , where we
note that for PI sensors the imaginary part of the measurement is always zero.

4.2. Linear reconstruction scheme

Our reconstructions use a linear inversion scheme using the Fréchet derivative of the
measurement model with respect to the parameter of interest, τ [14–16]. The modelled
measurement at a desired absorption distribution τ is related to the modelled measure-
ment at a given absorption distribution τ0 through the Taylor expansion of the modelled
data at τ0:

yMωθ ,nm(τ , c) = yMωθ ,nm(τ0, c) +
∫

χ
dx

δyMωθ ,nm
δτ (x)

∣∣∣∣∣
τ0

h(x)

+ 1
2!

∫

χ
dx′

∫

χ
dx

δ2yMωθ ,nm
δτ (x)δτ (x′)

∣∣∣∣∣
τ0

h(x)h(x′) + . . . , (10)

where h(x) = τ (x) − τ0(x). The !rst-order linear operator
δyMωθ ,nm
δτ (x) |τ0 = F′

M : L2(χ) → Y
is the Fréchet derivative for our system evaluated at τ0, i.e. the linearization of the for-
ward mapping from Equation (8). In the continuous-discrete setting this can be called the
Jacobian operator which we can de!ne explicitly as follows:

JFM
∣∣
τ0

(i, x) = δ(FM)i
δτ (x)

∣∣∣∣
τ0

=
δyMωθ ,nm
δτ (x)

∣∣∣∣∣
τ0

= δ[(Iθ ,m ◦ M)Pωθ ,n]
δτ (x)

∣∣∣∣
τ0

, (11)

where i indexes over the full set of data parametrized by ω, θ , n, and m, and the column
index is given by the continuum of positions x ∈ χ . We utilize the adjoint state method
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to compute the Jacobian operator in Equation (11) one row at a time by taking the varia-
tional derivative of the modelled measurement yωθ ,nm(τ , c) with respect to the absorption
parameter τ .

We begin by taking an arbitrary variation in the absorption τ (x) → τ (x) + δτ (x)
which results in a variation in the pressurePωθ ,n(x; τ ) → Pωθ ,n(x; τ ) + δPωθ ,n(x; τ ), where
δPωθ ,n(x; τ ) = Pωθ ,n(x; τ + δτ ) − Pωθ ,n(x; τ ) = ∂Pωθ ,n(x;τ )

∂τ δτ (x), and apply this variation
to the modelled measurement:

yMωθ ,nm(τ + δτ , c) = (Iθ ,m ◦ M)(Pωθ ,n + δPωθ ,n)

= Iθ ,m
[
M(Pωθ ,n) + M′(Pωθ ,n)δPωθ ,n + O(δP2ωθ ,n)

]

= (Iθ ,m ◦ M)Pωθ ,n + Iθ ,m
[
M′(Pωθ ,n)δPωθ ,n + O(δP2ωθ ,n)

]
(12)

Ignoring higher-order terms, we then have that the di"erence is given by

δyMωθ ,nm(τ , c) = yMωθ ,nm(τ + δτ , c) − yMωθ ,nm(τ , c)

= Iθ ,m[M′(Pωθ ,n)δPωθ ,n]

=
〈
1χθ ,m ,

∂[M(Pωθ ,n)]
∂Pωθ ,n

∂Pωθ ,n
∂τ

δτ (x)
〉

L2(χ)

=
〈(

∂[M(Pωθ ,n)]
∂Pωθ ,n

)∗
1Xθ ,m ,−L−1

ω

∂Lω

∂τ
Pωθ ,nδτ (x)

〉

L2(χ)

= −
〈
(
L−1

ω

)∗
(

∂[M(Pωθ ,n)]
∂Pωθ ,n

)∗
1Xθ ,m

︸ ︷︷ ︸
Zωθ ,nm

,
∂Lω

∂τ
Pωθ ,nδτ (x)

〉

L2(χ)

= −
∫

χ

∂Lω

∂τ
Z∗

ωθ ,nmPωθ ,nδτ (x) dx, (13)

where we have used the relation ∂Pωθ ,n
∂τ = −L−1

ω
∂Lω
∂τ Pωθ ,n, explained in Appendix B. The

functional derivative is thus given by

δyMωθ ,nm(τ , c)
δτ (x)

= −∂Lω(x; τ , c)
∂τ (x)

Z∗
ωθ ,nm(x; τ , c)Pωθ ,n(x; τ , c). (14)

The left argument of the inner product on the penultimate line of (13) can be understood
as the adjoint !eld Zω,nm through the adjoint equation

L∗
ω(x; τ , c)Zωθ ,nm(x; τ , c) =

(
∂{M[Pωθ ,n(x; τ , c)]}

∂Pωθ ,n(x; τ , c)

)∗
1χθ ,m , (15)

where the right-hand side of (15) is the adjoint source term. The partial derivative of the
Helmholtz operatorLω with respect to the absorption parameter τ is the imaging condition
term, which can be evaluated to be

∂Lω(x; τ , c)
∂τ (x)

= 2i
ω2

c(x)2
[1 + iτ (x)]. (16)

Once the Jacobian has been computed at some absorption value of τ0(x) we can use
standard matrix inversion schemes to solve for the absorption τ (x) through the linear
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approximation equation from (10)

yM(τ ) − yM(τ0) = JFM
∣∣
τ0

(τ − τ0) + O(h2), (17)

which de!nes the linearization of our forward model from (8). For the inverse problem we
have data vector gM instead of the modelled data at the true absorption pro!le, yM(τ ), so
we de!ne our inverse problem through the minimization of the residual in (17) along with
a !rst-order Tikhonov regulariser term added to better deal with the ill-posedness,

ĥ = argmin
h

‖ JFM
∣∣
τ0
h − [gM − yM(τ0)]‖2 + η

(
‖∂xh‖2 + ‖∂yh‖2

)
, (18)

where gM is the measured data, yM(τ0) is the modelled data, ĥ is the optimal recon-
structed di"erence in absorption maps τ − τ0, η ≥ 0 is the regularization parameter, and
∂x, ∂y are the spatial partial derivatives in the x- and y-directions, respectively, in the
domain χ .

If we discretize the domain χ to have Lx pixels in the x-direction and Ly pixels in the
y-direction, so that we have a !nite collection of position coordinates {xj}

LxLy
j=1 , then we can

express the Jacobian operator from (11) as a (|$||%|NM) × (LxLy) matrix with discrete
components, (JFM |τ0)ij. We have chosen to use MATLAB’s built-in least-squares solver,
LSQR, through the augmented matrix AM and data vector bM given by:

AM =




JFM

∣∣
τ0√

η∂x√
η∂y



 , bM =




gM − yM(τ0)

0LxLy×1
0LxLy×1



 , (19)

to solve the minimization problem in Equation (18). For each reconstruction ĥ we select
the regularization parameter η which minimizes the relative error (RE) given by:

RE(ĥ) = ‖τ − (ĥ + τ0)‖2
‖τ2‖

. (20)

5. Numerical experiments

Our modelled absorption pro!le is homogeneous with a constant dimensionless absorp-
tion of τ0(x) = 0.003, whereas the true absorption pro!le shown in Figure 2 has an equal
background value of τ (x) = 0.003 for x outside of the square, and a higher value of τ (x) =
0.006 for x within the square region. The sound speed is set to a constant c = 1540m s−1

for both the modelled and measured data, which is a typical sound speed found in human
tissue [17, 18]. Hence, we are assuming that the sound speed and background absorp-
tion are known exactly. From the absorption transformation Equation (3) we can see that
these dimensionless absorption values correspond to α(x)/2πω = 1.06 dB cm−1 MHz−1

for the background, and α(x)/2πω = 2.13 dB cm−1 MHz−1 for the square target, which
are comparable to the absorption values measured in human tissue [17, 19, 20].

The simulation domain is a 40mm × 40mm square which is discretized into a
256 × 256 pixel grid, so we have that Lx = Ly = 256 and dx = dy = 0.15625mm. The
square target region in the true absorption pro!le τ has a side length of 50 pixels or
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Figure 2. The true absorption difference profile, -τ = τ − τ0, that we wish to reconstruct. Region of
interest for contrast analysis is indicated by the dashed red line box with the edge of the square-shaped
absorption target acting as the mid-line. The parallel array with 10 point sources (white circles on the
left) and 10 line sensors with 1mm diameter (white lines on the right) are shown for the zero rotation
case,-θ = 0◦.

7.8125mm, spanning the range [100, 150] × [150, 200] in pixels or [−4.4706, 3.3725] ×
[3.3725, 11.2157]mm in the spatial domainχ . The perfectlymatched layer (PML) is imple-
mented as a quadratic absorbing function [21] spanning 5 pixels (≈ 0.78mm) on all sides
of the domain.

Our parallel array consists of 10 point sources spanning a distance of 30mm and an
array of 10 sensors of width d spanning the same 30mm distance. The source and sensor
arrays are 30mm apart. The point sources each have an amplitude of 1 Pa, although this
choice is arbitrary in the numerical setting as it only a"ects the scale of the measurements.

Our choices of τ0 and c exhibit rotational symmetry, since they are both spatially con-
stant, and hence we only need to compute the rows of our Jacobian using (14) for a single
angle θ ∈ %. The rest of the rows can be computed by taking the sensitivity map from the
computed row i ≡ ω, θ , n,m, and rotating it by an angle θ ′ − θ about the centre of the par-
allel array to get the corresponding sensitivitymap for row i′ ≡ ω, θ ′, n,m. This reduces the
number of forward (P) and adjoint (Z) !eld computations by a factor of |%|. Formediawith
translation and re#ection symmetry, in the case of identical sources and sensors, further
optimisations may be made by computing a sensitivity map between source n and sensor
m, and then performing the appropriate translation and re#ection to get the correspond-
ing sensitivity map between source n′ and sensorm′ that have the same, up to a re#ection,
relative displacement from each other as the original pair. This latter optimization was not
done for our computations, but it could further reduce the number of forward and adjoint
!eld computations by a factor of N.
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Table 2. Model parameters used for simulations.

Parameter (units) Value(s)

Source frequency ω/2π (MHz) 1.5, 1.75, 2, 2.25, 2.5
Diameter of sensor d (mm) 1, 5
Rotation increment-θ (degrees) 7.5, 15, 30, 60
Source amplitude (Pa) 1
Source – sensor array separation D (mm) 30
Source array length (mm) 30
Sensor array length (mm) 30
Domain spatial dimensions x, y (mm) 40, 40
Domain pixel dimensions Lx , Ly (pixels) 256, 256
Domain spatial increment dx = dy (mm) 0.15625
PML pixel width (pixels) 5

We want to compare the quality of the absorption reconstructions as three parameters
are varied for each of the two sensor types: number of angles, number of source frequen-
cies, and sensor size. The number of angles and frequencies control for the amount of data
provided by the measurements, and hence give us information about how the reconstruc-
tion qualities scalewith varying levels of data sparsity. The sensor size a"ects the directional
response of the detector as well as the signal strength, and thus varying this parameter pro-
vides us with information about how well each sensor responds to an increase in sensor
size.

The sets of angles are constant increment subsets of θ ∈ [0◦, 180◦), for the increments
-θ = 7.5◦, 15◦, 30◦, and 60◦. The source frequencies are an odd number of constant
increment frequencies centred around 2MHz; we consider the two sets of frequencies
$/MHz = {2} and $/MHz = {1.5, 1.75, 2, 2.25, 2.5}. Sensors of width 1mm and 5mm
are considered, arranged into a linear array of 10 sensors spanning a distance of 30mm.
The 5mm sensor array contains overlapping sensors, which can be realized physically
by spatially translating a non-overlapping sensor array. Key simulation parameters are
summarized in Table 2.

Both noise-free and noisy data are used for reconstructions. For noisy data, additive
Gaussian noise scaled by a factor of 1% of the maximum sensor signal has been applied.
This assumes that the noise originates from the sensor devices themselves in such a way
that the noise-level is proportional to the maximum signal response of the sensor:

gM '→ gM + 0.01 · max |gM| · ε, (21)

where gM is the measured data for sensor typeM, and ε is a vector of random numbers
with the same size as the measured data vector gM, and components εi ∈ N (0, 1) that
follow the standard normal distribution.

5.1. Contrast analysis

In order to quantitatively judge the quality of the reconstructions, we use two di"erent con-
trast metrics: the modulation transfer function (MTF), and the weighted root mean square
(RMS) contrast weighted by themaximum value of the reconstruction. See Appendix C for
more details on these contrast metrics. To make the computation of these contrast met-
rics as easy as possible, the reconstruction target under consideration here is a square of
constant absorption, shown in Figure 2.
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Figure 3. Reconstructions for PS and PI sensor types with 3 angles, 1 frequency ($/MHz = {2}), and
d = 5mm sensors. (a) PS reconstruction with 0% noise. (b) PI reconstruction with 0% noise. (c) PS
reconstruction with 1% noise. (d) PI reconstruction with 1% noise.

TheMTF full width at halfmaximum(FWHM) for the true absorption di"erence pro!le
is in!nite, since the edge is a perfect step function in theory. The maximumweighted RMS
contrast is 0.5 for the true absorption di"erence pro!le in a region of interest where half the
region consists of the background pro!le, and the second half consists of the target pro!le,
as indicated by the dashed-line box in Figure 2.

5.2. Results

We !nd that in the noise-free cases the PS sensors are typically dominant in MTF FWHM,
RMS contrast, and relative error, except for some of the 3-angle reconstructions. In par-
ticular, PI sensors outperform PS sensors in the noise-free case for all metrics when the
sensor array has 5mm sensors and only one frequency is measured for 3 angles of the par-
allel array. There is also an outlier case of PI sensors outperforming PS sensors with 1mm
sensors for 5 frequencies and 3 angles. When 1% noise is added, the PI sensors perform
closer to the PS sensors under these metrics, and outperform them for more cases than in
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Figure 4. Reconstructions for PS and PI sensor types with 24 angles, 5 frequencies ($/MHz =
{1.5, 1.75, 2, 2.25, 2.5}), and d = 1mm sensors. (a) PS reconstructionwith 0%noise. (b) PI reconstruction
with 0% noise. (c) PS reconstruction with 1% noise. (d) PI reconstruction with 1% noise.

the noise-free case. Now, PI sensors outperform PS sensors for all three metrics when the
sensor array has 5mm sensors for both 1 or 5 frequencies and for 3 angles for the parallel
array; the RE andMTF FWHMmetrics are also superior for the PI sensors in the case of 6
angles for the previous conditions. For 1mm sensors with 1% noise added, the cases where
PI sensors outperform PS sensors it less ordered, but still mostly limited to the sparse data
regime. With 1mm sensors and only one frequency, all three metrics are better for PI sen-
sors for the case of 3 angles, with RE remaining better for PI sensors in the case of 6 angles
as well, andMTF FWHM remaining better for PI sensors for the case of 5 frequencies. The
RMS contrast favours PI sensors in the 5 frequency case for 3, 6, and 12 angles. We can
see examples of these sparse data reconstructions for 5mm sensors in Figure 3. In the full
data regime, where we have 24 angles and 5 frequencies, the PS sensors beat or match the
PI sensors in all metrics. The full data reconstructions for the 1mm sensors can be seen in
Figure 4.

The contrast metrics for the di"erent cases are summarized in Figures 5 and 6. The
greatest advantage for PI sensors is achieved with noisy data when the sensor is large in the
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Figure 5. Contrast analysis and error curves for 5mm sensors. The plots on the left column show quan-
tities for single-frequency reconstructions, whereas the right column shows the same quantities for
5-frequency reconstructions. (a)–(b) show the MTF FWHM, (c)–(d) show the maximum normalized con-
trasts, and (e)–(f ) show the relative errors. The solid curves correspond to PS reconstructions whereas
the dashed curves correspond to the PI reconstructions. Themarkers along the curves correspond to the
noise-free (l) and noisy (!) cases. (a) MTF FWHM, |$| = 1, (b) MTF FWHM, |$| = 5, (c) Cmax, |$| = 1, (d)
Cmax, |$| = 5, (e) RE, |$| = 1 and (f )RE, |$| = 5.
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Figure 6. Contrast analysis and error curves for 1mm sensors. The plots on the left column show quan-
tities for single frequency reconstructions, whereas the right column shows the same quantities for
5-frequency reconstructions. (a)–(b) show the MTF FWHM, (c)–(d) show the maximum normalized con-
trasts, and (e)–(f ) show the relative errors. The solid curves correspond to PS reconstructions whereas
the dashed curves correspond to the PI reconstructions. Themarkers along the curves correspond to the
noise-free (l) and noisy (!) cases. (a) MTF FWHM, |$| = 1. (b) MTF FWHM, |$| = 5. (c) Cmax, |$| = 1. (d)
Cmax, |$| = 5. (e) RE, |$| = 1 and (f )RE, |$| = 5.
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sparse data regime, which we can see visually in Figure 5(a), (c), and (e). In these sparse
data scenarios it is likely that the phase-cancellations arising from the summing of the rel-
ative phases across the sensor for PS sensors leads to a loss of information that cannot be
corrected due to the lack of enough data, leading to a loss of quality in the reconstruction.
This idea is supported by the observation that all three of the considered quality metrics
are much closer between the PI and PS sensors in the sparse data regime when using 1mm
sensors, as seen in Figure 6(a), (c), and (e), which will cause less phase-cancellation com-
pared to the larger 5mm sensors. When the data has been sampled su$ciently densely,
then the PS sensors overcome the phase-cancellation issue and are able to surpass the PI
sensors due to having access to both amplitude and phase data, rather than only amplitude
data.

6. Conclusion

We have shown that phase-insensitive ultrasound sensors can outperform traditional
phase-sensitive sensors in limited data situations, especially with large sensors – producing
superior contrast in absorption reconstructions both globally and across di"erent spatial
frequencies, and having a smaller relative error in the reconstruction compared to the
ground truth absorption pro!le.

Some uncertainty does arise from the choice of regulariser as well as regularization
parameter for the reconstructions. We chose a standard Tikhonov regulariser that penal-
izes higher magnitude gradients, which does a good job of making the reconstructions
stable especially with the presence of noise. However, the amount of regularization needs
to be carefully balanced in order tomake fair comparisons across di"erent reconstructions.
Greater regularization smooths out the reconstruction which improves global contrast at
the cost of losing edge sharpness, and hence reducing the MTF FWHM. Similarly, lower
regularization leavesmore artifacts in the reconstruction which decrease contrast, but gen-
erally leaves the edge pro!le more sharp, leading to a better MTF FWHM measure. The
relative error minimizer approach was quite e"ective at picking a regularization param-
eter that balanced these factors quite well. Selecting the regularization parameter as the
maximizer of the global contrast producedmarginal improvements in that particular mea-
sure, while generally decreasing the MTF FWHMmetric as well as the relative error of the
reconstruction.

There is also a possibility that our simple linear inversion approach leaves one of the sen-
sor types at a comparative disadvantage in certain situations. Nonlinear inversion schemes
could be tested in select cases to see if notable relative di"erences in these contrastmeasures
arise.
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Appendices

Appendix 1. Jacobian robustness to sound speed heterogeneity
For the purpose of contrast analysis the Jacobians corresponding to the linearized forward problem
are computed with the assumption of a homogeneous medium in both sound speed and acoustic
absorption. Inverting measurements from mediums that deviate signi!cantly from the lineariza-
tion point leads to errors in the reconstruction, the magnitude of which depends on the degree of
deviation. Here we investigate the robustness of the Jacobian approach by considering a simple cir-
cular perturbation in sound speed in the true medium with a radius of 3.91mm (25 pixels), and
we attempt to reconstruct the square-shaped absorption region with this additional perturbation in
sound speed. The pro!le for the acoustic medium is shown in Figure A1.

For brevity, we consider only the single frequency Jacobians for 3 and 12 angles corresponding
to a source frequency of 2MHz, with a sensor array with 1mm width sensors. The Jacobians have
been computed with a homogeneous background medium in both absorption and sound speed.
We ignore noise and perform reconstructions for two regularization cases: where the regulariza-
tion parameter minimizes the relative error, and where it is set to zero. Both PI and PS sensors
are tested in all cases. We consider sound speed perturbations of varying magnitude, -c/[m/s] ∈
{0, 10, 20, 30, 40}, and compute the relative error of the corresponding reconstructions to get the
error curves shown in Figure A2.

The reconstructions for PI and PS sensors for perturbations of-c = 0, 20, and 40m/s are shown
in Figure A3 for the case of 3 angles with optimal regularization parameter, Figure A4 for 12 angles
with optimal regularization parameter, Figure A5 for 3 angles without regularization, and Figure A6
for 12 angles without regularization.

Figure A1. Profile for acoustic medium used for testing Jacobian robustness for sound speed hetero-
geneities. (a) Binary image of disk-shaped sound speed and square-shaped absorption perturbations
in the acoustic medium and (b) Disk-shaped sound speed perturbation for the case of a sound speed
deviation-c = 30 [m/s] from the background value.

https://doi.org/10.1016/0301-5629(75)90038-1
https://doi.org/10.1016/j.jcp.2006.09.018
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Figure A2. Relative .2 error for reconstructions with increasing sound speed perturbation magnitude
for a disk-shaped sound speedperturbationwith a radius of 3.91mm (25pixels). (a) 3 angles, 1 frequency
and(b) 12 angles, 1 frequency

Figure A3. 3 angle minimum error reconstructions for the square-shaped absorption perturbation for
varying magnitudes of the disk-shaped sound speed perturbation.

We see that the relative error in the reconstruction is quite small for small sound speed pertur-
bation magnitudes, but the false absorption reconstruction becomes apparent even for the small
perturbations when the Jacobian has been computed with the assumption of a homogeneous sound
speed distribution.

Appendix 2. Operator derivative relation
The di"erential operatorLω is linear, andwe assume the boundary conditions allow for unique solu-
tions such that the operator inverse L−1

ω exists and is well-de!ned. We can then write the following
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Figure A4. 12 angle minimum error reconstructions for the square-shaped absorption perturbation for
varying magnitudes of the disk-shaped sound speed perturbation.

Figure A5. 3 angle unregularised reconstructions for the square-shaped absorption perturbation for
varying magnitudes of the disk-shaped sound speed perturbation.
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Figure A6. 12 angle unregularised reconstructions for the square-shaped absorption perturbation for
varying magnitudes of the disk-shaped sound speed perturbation.

for the derivative with respect to τ (x):

0 =
∂IdL2(χ)

∂τ (x)
=

∂
{
L−1

ω (x; τ , c)Lω(x; τ , c)
}

∂τ (x)
(A1)

= ∂L−1
ω (x; τ , c)
∂τ (x)

Lω(x; τ , c) + L−1
ω (x; τ , c)

∂Lω(x; τ , c)
∂τ (x)

. (A2)

By rearranging this expression we get the following:

∂L−1
ω (x; τ , c)
∂τ (x)

= −L−1
ω (x; τ , c)

∂Lω(x; τ , c)
∂τ (x)

L−1
ω (x; τ , c). (A3)

It thus follows from (1) that since the sources Sωθ ,n(x) are independent of the absorption distribution
τ , that

∂Pωθ ,n(x; τ , c)
∂τ (x)

= ∂[L−1
ω (x; τ , c)Sωθ ,n(x)]

∂τ (x)
= ∂L−1

ω (x; τ , c)
∂τ (x)

Sωθ ,n(x) (A4)

= L−1
ω (x; τ , c)

∂Lω(x; τ , c)
∂τ (x)

Pωθ ,n(x; τ , c). (A5)

Appendix 3. Contrast analysis
We use the MTF de!nition from [10], given as the normalized Fourier transform of the line spread
function (LSF),

MTF(k) =
|
∫ ∞
−∞ LSF(x) e2π ikx dx|

∫ ∞
−∞ LSF(x) dx

, (A6)

where the LSF is de!ned as the spatial derivative of the edge spread function (ESF), LSF(x) =
d
dxESF(x) in the axial direction.
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Figure A7. Error function f (red dashed line) fitted to the ensemble average of ESFs (solid black line) for
the cases of (a) d = 5mm PS sensors with 3 angles, 1 frequency, and 1% noise, and (b) d = 1mm PS
sensors with 24 angles, 5 frequencies, and 1% noise.

We compute the MTF by !tting an error function to the ESF, de!ned by the expression

f (x) = B
2
erf

(
x − µ√

2σ

)
+ r, (A7)

where B, µ, σ , and r are the !tting parameters. We !t f to the ensemble average of the ESFs com-
prising the interface between the background medium and the square target in the absorption
reconstruction, as seen in Figure A7. By !tting an error function to the ESF we are assuming that
the LSF is Gaussian, and hence by (A6) the MTF is a Gaussian of the form

MTF(k) = exp(−2π2σ 2k2). (A8)

The full width at half maximum (FWHM) of theMTF function in (A8) gives us a single number that
can quantify how well a given reconstruction can recover the target across multiple levels of detail,
and it is given by the equation

FWHM(σ ) = 2 ln 2
πσ

, (A9)

which means that we can compute the FWHM directly from the σ parameter of the !tted error
function in (A7).

The weighted RMS contrast is de!ned as the standard deviation in the weighted pixel intensities
of the reconstruction ĥ in a region of interest. Two examples of constant weights are the mean value,
wmean = 〈ĥ(x)〉X , and the maximum value, wmax = maxX ĥ(x). In this paper we use wmax. With
both choices of weighting the weighted RMS contrast is given by:

Cw =

√√√√√ 1
LxLy

Lx∑

i=1

Ly∑

j=1

(
ĥij − 〈ĥ〉

)2

w2 . (A10)
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