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Classical and Learned MR to Pseudo-CT
Mappings for Accurate Transcranial

Ultrasound Simulation
Maria Miscouridou , José A. Pineda-Pardo, Charlotte J. Stagg, Bradley E. Treeby ,

and Antonio Stanziola

Abstract— Model-based treatment planning for transcra-1

nial ultrasound therapy typically involves mapping the2

acoustic properties of the skull from an X-ray computed3

tomography (CT) image of the head. Here, three methods4

for generating pseudo-CT (pCT) images from magnetic res-5

onance (MR) images were compared as an alternative to6

CT. A convolutional neural network (U-Net) was trained on7

paired MR-CT images to generate pCT T images from either8

T1-weighted or zero-echo time (ZTE) MR images (denoted9

tCT and zCT, respectively). A direct mapping from ZTE to10

pCT was also implemented (denoted cCT). When comparing11

the pCT and ground-truth CT images for the test set, the12

mean absolute error was 133, 83, and 145 Hounsfield units13

(HU) across the whole head, and 398, 222, and 336 HU within14

the skull for the tCT, zCT, and cCT images, respectively.15

Ultrasound simulations were also performed using the gen-16

erated pCT images and compared to simulations based17

on CT. An annular array transducer was used targeting18

the visual or motor cortex. The mean differences in the19

simulated focal pressure, focal position, and focal volume20

were 9.9%, 1.5 mm, and 15.1% for simulations based on the21

tCT images; 5.7%, 0.6 mm, and 5.7% for the zCT; and 6.7%,22

0.9 mm, and 12.1% for the cCT. The improved results for23

images mapped from ZTE highlight the advantage of using24

imaging sequences, which improves the contrast of the25

skull bone. Overall, these results demonstrate that acoustic26

simulations based on MR images can give comparable27

accuracy to those based on CT.28

Index Terms— Acoustic simulation, computed tomog-29

raphy (CT), convolutional neural network, deep learning,30
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MRI, pseudo-CT (pCT), transcranial ultrasound stimulation 31

(TUS). 32

I. INTRODUCTION 33

TRANSCRANIAL ultrasound therapy is a class of non- 34

invasive techniques that leverage ultrasound energy to 35

modify the structure or function of the brain, for example, 36

to ablate brain tissue [1], modulate brain activity [2], or deliver 37

therapeutic agents through the blood–brain barrier [3]. The 38

major challenge is the delivery of ultrasound through the intact 39

skull bone, which can significantly aberrate and attenuate 40

the transmitted ultrasound waves. To counter the effect of 41

the skull, computer simulations are often used to predict the 42

intracranial pressure field [4] or to adjust phase delays to 43

ensure a coherent focus [5]. Conventionally, these simulations 44

are based on acoustic material property maps extracted from 45

X-ray computed tomography (CT) images [6]. For clinical 46

treatments in a hospital environment, obtaining pretreatment 47

CT images does not necessarily pose significant challenges. 48

However, for transcranial ultrasound stimulation (TUS), which 49

is being widely explored as a neuroscientific tool in addition 50

to its potential clinical applications [7], obtaining CT images 51

for healthy volunteer studies can be more problematic. In the 52

current work, the use of pseudo-CT (pCT) images for com- 53

puter simulations of transcranial ultrasound propagation in a 54

TUS setting is investigated. Three different methods of pCT 55

generation are compared: 1) using a deep neural network based 56

on T1-weighted (T1w) magnetic resonance (MR) images; 2) 57

using a deep neural network based on zero-echo time (ZTE) 58

MR images; and 3) directly mapping from ZTE MR images 59

using classical image processing techniques following [8]. 60

The image-to-image translation (I2IT) of MR to pCT images 61

of the brain and skull has been widely explored in the 62

imaging literature, particularly in the context of positron 63

emission tomography (PET)-MR, where the pCT images are 64

used for PET attenuation correction [9] and radiotherapy 65

planning [10]. In many cases, deep learning has been shown 66

to outperform classical techniques [11]. A variety of models 67

and techniques have been used, including generative neural 68

networks (GANs) [12], [13], supervised learning [14], con- 69

trastive learning [15], [16], and denoising diffusion probabilis- 70

tic models [17]. Often, the network architecture accounts for 71

features at multiple scales using a U-Net [11], [18]. The inputs 72
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to the neural network can be the full 3-D image volumes [19],73

2-D slices along one or multiple planes [20], or small 3-D74

patches [21].75

The performance of the trained network is heavily influ-76

enced by the quality of the training dataset and choice of77

loss function. Ideally, the loss function should be directly78

related to the final performance of interest: in our case, the79

acoustic properties of the generated fields from the pCT80

(see Section II-E). However, in the absence of an efficient81

differentiable acoustic simulator, the corresponding training82

regime is often inefficient and losses are therefore defined83

in image space. Simple voxel-based metrics, such as mean84

absolute error (MAE) and mean squared error (MSE), are often85

used when registered image pairs are available [22].86

Unpaired images can also be used for successfully training87

I2IT models, often by relying on some form of cycle-88

consistency loss [23], [24], [25] implemented using a discrim-89

inator neural network [26]. While theoretically effective and90

often capable of training complex models, such as ones that91

disentangle geometrical features and imaging modality [27],92

training GANs against a discriminator can be challenging and93

often unstable [28].94

Several previous works have investigated the use of learned95

pCTs for transcranial ultrasound simulation. In the con-96

text of high-intensity focused ultrasound (HIFU) ablation,97

Su et al. [29] used a 2-D U-Net trained on transverse slices98

from a dataset of 41 paired dual-echo ultrashort echo time99

(UTE) MR images and segmented CT images (only the100

segmented skull bone was used for training). Within the skull,101

the pCT images generated from the test set had an MAE of102

105 ± 21 HU and showed a good correlation with CT in terms103

of skull thickness and skull density ratio. Coupled acoustic-104

thermal simulations were performed for a 1024 multielement105

array and a deep brain target. Differences in the simulated106

acoustic field were not reported, but differences in the pre-107

dicted peak temperature were less than 2 ◦C.108

In a related study, Liu et al. [30] used a 3-D conditional109

generative adversarial network (cGAN) trained on patches110

from a dataset of 86 paired T1w and segmented CT skull111

images. Within the skull, the pCT images generated from the112

test set had an MAE of 191 ± 22 HU and similarly showed a113

good correlation with CT in terms of skull thickness and skull114

density ratio. Acoustic simulations for a 1024 multielement115

array and deep brain target showed an average 23 ± 6.5%116

difference in the simulated intracranial spatial-peak pressure117

when using pCT versus CT and 0.35 ± 0.40 mm difference118

in the focal position.119

In the context of TUS, Koh et al. [31] used a 3-D cGAN120

trained on 3-D patches from a dataset of 33 paired T1w121

and CT images. The generated pCT images had an MAE of122

86 ± 9 HU within the head and 280 ± 24 HU within the123

skull. Acoustic simulations were performed using a single-124

element bowl transducer driven at 200 kHz targeted at three125

brain regions (motor cortex, visual cortex, and dorsal anterior126

cingulate cortex). Across all targets for the test set, the mean127

difference in the simulated intracranial peak pressure was128

3.11 ± 2.79% and the mean difference in the focal position129

was 0.86 ± 0.52 mm. However, aberrations to the ultrasound130

waves are known to be significantly reduced at low transmit 131

frequencies [32], [33], and thus, the performance of learned 132

pCTs at higher frequencies more commonly used for TUS 133

remains an open question. 134

Several studies have also explored directly mapping the 135

skull acoustic properties from T1w [34], UTE [35], [36], 136

[37], or ZTE [38] images. Wintermark et al. [34] generated 137

virtual CTs from three different MR sequences and used a 138

Bayesian segmentation strategy using a skull mask (obtained 139

by CT thresholding) as a prior. Linear regression was used 140

to estimate skull thickness and density, with the mappings 141

from T1w images performing best. Acoustic simulations using 142

calculated phase correction values from virtual CT showed 143

good agreement with those from real CT. Phantom HIFU 144

experiments were also performed where the difference in max- 145

imum temperature was 1 ◦C when using MR-based correction 146

compared to CT-based correction. 147

In a similar study, Miller et al. [35] investigated using UTE 148

images instead of CT to apply aberration corrections for HIFU 149

treatments. Three ex vivo skull phantoms were imaged by 150

UTE and CT, and the UTE was segmented into a binary skull 151

mask. Experimental transcranial sonications were performed 152

on each skull using aberration corrections derived from MR, 153

CT, and using no corrections. The measured temperature rises 154

with aberration corrections were 45% higher than noncorrected 155

sonications, while there was no significant difference between 156

the results from MR and CT-calculated corrections. UTE has 157

also been shown to produce images with bone contrast highly 158

correlated with that in CT images [36]. 159

Guo et al. [37] also investigated the use of UTE images 160

using a series of linear mappings and thresholding operations 161

to derive pCT images. A linear regression model comparing 162

skull density from UTE and CT showed that they were highly 163

correlated. Acoustic properties of the skull derived from the 164

UTE and CT images had less than 5% error and were used 165

to run acoustic and thermal simulations. The temperature rise 166

was 1 ◦C higher in CT-based simulations compared to UTE 167

simulations and the focal location was usually within 1 pixel 168

(1.33 mm). 169

Finally, Caballero et al. [38] extracted the bone from ZTE 170

and CT images with a series of thresholding and mor- 171

phological operators and used the bone maps to extract 172

skull measures, such as skull thickness and skull den- 173

sity ratio. It was demonstrated with linear regression that 174

the skull measures derived from the two modalities highly 175

correlate to each other and also correlate with treatment 176

efficiency. 177

The recent studies outlined above clearly demonstrate the 178

feasibility of using pCT images for treatment planning in 179

transcranial ultrasound therapy. Here, the previous results are 180

extended in two ways. First, the ability to generate pCT 181

images from T1w and ZTE images is directly compared using 182

a unique dataset with high-resolution multimodality imaging 183

data. While T1w images are widely available, they suffer 184

from poor skull contrast, particularly compared to specialized 185

bone imaging sequences that enable visualization of the bony 186

anatomy [8]. Second, acoustic simulations are performed in the 187

context of TUS using a commonly used transducer geometry 188
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and a 500 kHz transmit frequency for both motor [39], [40]189

and visual [41] targets.190

II. METHODS191

A. Multimodality Dataset192

The dataset used for the study consisted of paired high-193

resolution CT and MR images. Subjects had previously been194

scheduled for transcranial MR-guided focused ultrasound195

surgery (tcMRgFUS) thalamotomy. The study protocol was196

approved by the HM Hospitales Ethics Committee for Clinical197

Research and all participants provided written consent forms.198

Each subject had a CT and T1w (fast-spoiled gradient echo)199

MR image, and a subset of them also had a ZTE MR200

image, giving a total of 171 paired CT-T1w datasets and201

90 paired CT-ZTE datasets. The CT images were reconstructed202

using a bone-edge enhancement filter (FC30) and had a slice203

thickness of 1 mm and an in-plane resolution of approximately204

0.45 mm × 0.45 mm. The in-plane resolution varied slightly205

between subjects due to the selected field-of-view (the number206

of pixels was fixed at 512 × 512).207

The MR images were acquired using a 3T GE Discovery208

750 with an isotropic voxel size of 1 mm. Image acquisition209

parameters are described in detail in [38].210

The images were processed as follows. First, a bias-field211

correction was performed on the MR images using FAST [42]212

to reduce image intensity nonuniformities resulting from trans-213

mit RF inhomogeneities and receive coil sensitivities. The214

CT images were then registered to the corresponding MR215

images using FLIRT [43], [44], using affine transformation216

with 12 degrees of freedom and a mutual-information cost217

function. As part of the registration step, CT images were218

resampled to match the resolution (1-mm isotropic) and field-219

of-view of the MR images. After registration, all volumes220

were padded to a cube with an edge length of 256 voxels.221

Following Han et al. [11], the MR image intensities were222

then processed using midway histogram equalization [45].223

The reference histogram was computed using images from224

the training set only (see Section II-B) and was computed225

separately for the ZTE and T1w images. The images were226

also normalized using the mean and standard deviation of the227

corresponding training set.228

To remove image artifacts (such as dental implants, equip-229

ment, and headphones) and the bones outside the neuro-230

cranium (which are not relevant to TUS), a binary mask231

was manually annotated on the MNI152_T1_1mm template232

brain [46], [47]. The Montreal Neurological Institute (MNI)233

mask excluded the nasal and oral cavities, as well as every-234

thing below the foramen magnum. The MNI mask was then235

mapped to subject space by registering the MR images to the236

MNI template using FLIRT. The registered MNI mask was237

combined with a head mask (obtained by thresholding and238

filling the MR) to give a subject-specific mask that was used239

during training as described in the following. An example is240

given in Fig. 1. Note that the generation of the subject-specific241

mask does not require a ground-truth CT, so it can be applied242

to any new subject data during inference.243

Fig. 1. Input to the neural network is one or multiple adjacent transverse
MR slices, acquired either using ZTE or T1w sequences. The output of
the neural network is multiplied by a head mask and compared to the
registered CT inside the mask.

B. Network Architecture and Training 244

For mapping MR images to pCT, a five-level U-Net [48] 245

was implemented using Pytorch [49] similar to the architecture 246

reported by Han [11]. Each level of the encoder consisted of 247

either two (levels 1 and 2) or three (levels 3 to 5) convolutional 248

layers with a rectified linear unit (ReLU) activation function 249

followed by a batch normalization layer. The convolutions 250

used zero padding, a 3 × 3 kernel, and a stride of 1. A max- 251

pooling layer was used between each level of the encoder, and 252

skip connections between the encoder and the decoder were 253

used for the first four levels. The decoder was implemented as 254

a mirrored version of the encoder with convolutional transpose 255

(unpooling) layers [50] instead of max-pooling layers. Both 256

pooling and unpooling layers used a 2 × 2 kernel size and 257

stride 2, followed by a dropout layer. The dropout probability 258

pD was treated as a tunable hyperparameter, which was 259

optimized using the validation set. The best models for T1w 260

and ZTE inputs were obtained with pD = 0.1 and pD = 0, 261

respectively. 262

The input to the network was an n × 256 × 256 block of 263

n consecutive 2-D transverse MR slices (see the top right 264

and bottom left of Fig. 1 for an example of one slice). 265

Using a small stack of images gives some 3-D structural 266

information to the network, as suggested in the discussion 267

section of [11]. The network output was always a single 2-D 268

transverse slice corresponding to the middle input slice, and 269

3-D pCT volumes were reconstructed slice by slice. Input stack 270

sizes of n = 1, 3, 5, 7, 9, 11, and 15 were used in preliminary 271

testing. A stack size of 11, i.e., five additional image slices on 272

either side of the primary input slice, gave the lowest MAE 273

on the validation set. Notably, the use of multiple input slices 274

significantly reduced the occurrence of skull discontinuities 275
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between slices in the 3-D pCT images, particularly for the276

T1w inputs (this is discussed further in Section III-A). A stack277

size of 11 was thus used in all subsequent training.278

The input was mapped to 64 channels in the first convolu-279

tion. The number of channels was doubled at each layer of280

the encoder and halved in each layer of the decoder, except281

for the deep-most layer. A final 1 × 1 convolutional layer was282

implemented to map each 64-component feature vector from283

the previous layer to image voxels in Hounsfield units (HU).284

The network was trained separately for T1w and ZTE285

inputs. The ZTE dataset consisted of 90 subjects, with 62 sub-286

jects used for the training set �T , 14 for the validation set �V ,287

and 14 for the testing set �E . Subjects were randomly assigned288

to each set. The T1w dataset consisted of 171 subjects. The289

same 14 subjects were used for the test set, with 26 subjects290

used for the validation set, and 131 for the training set.291

Data augmentation was also performed using random affine292

transformations with bilinear interpolation, with rotations in293

the range ±10◦, translations between ±5% of the image size,294

and shears parallel to the x-axis of ±2.5◦.295

The network fθ was trained by minimizing the average296

�1 norm of the masked error over the training set297

L(θ) = 1

|�T |
∑

i∈�T

1

Ni
�mi (yi − fθ (xi))�1 (1)298

where xi is the stack of one or more adjacent input MR299

image slices, yi is the corresponding slice from the ground-300

truth CT, mi is the corresponding mask (see Fig. 1), and Ni is301

the number of pixels in the i th image. The loss function was302

evaluated stochastically for each optimization step, by drawing303

a random mini-batch of size 32 from the training set. The304

Adam optimizer [51] was used along with reduction on plateau305

scheduling with patience = 5, factor = 0.2 and a learning rate306

reducing from 10−4 to 10−6. The networks were trained for307

300 epochs on an NVIDIA Tesla P40 GPU, with 24-GB RAM.308

C. Classical ZTE Mapping309

For comparison with the learned pCT mappings, a direct310

conversion of the ZTE images to pCT was also implemented311

following [8] and [52]. In this case, the bias-field correction312

was applied to the ZTE images using the N4ITK method313

within 3-D Slicer (V4.11.20210226). Voxel intensities for each314

image were individually normalized based on the soft-tissue315

peak in the image histogram to give a soft-tissue intensity316

of 1. A skull mask was generated by thresholding the voxel317

intensities between 0.2 and 0.75 (bone/air and bone/soft tis-318

sue), taking the largest connected component, and then filling319

the mask using morphological operations. Within the skull320

mask, ZTE values were mapped directly to CT HU using the321

linear relationship CT = −2085 ZTE+2329. This relationship322

was calculated by taking the first principal component of the323

density plot of ZTE values versus CT values within the skull.324

Outside the skull mask, air and soft tissue were assigned values325

of −1000 and 42 HU, respectively.326

D. Evaluation of the pCT Images327

The three different methods for generating pCT images were328

evaluated by comparing the generated 3-D pCT volumes for329

the 14 subjects in the test set against the corresponding ground- 330

truth CTs. Image intensities were compared using MAE and 331

the root-mean-squared error (RMSE). Both metrics were eval- 332

uated across the whole head (comparing voxels within the 333

subject-specific head mask) and in the skull only (using a 334

skull mask derived by thresholding the ground-truth CTs and 335

combining with the head mask to exclude bones outside the 336

neurocranium). For convenience, the different generated pCTs 337

are referred to as tCT (for the learned pCT mapped from a T1w 338

image), zCT (for the learned pCT mapped from a ZTE image), 339

and cCT (for the pCT directly converted from a ZTE image 340

using classical image processing techniques as explained in 341

Section II-C). 342

E. Ultrasound Simulations Using k-Wave 343

Acoustic simulations were performed using the open-source 344

k-Wave toolbox [53], [54]. CT and pCT image pairs were 345

converted to medium property maps as follows. First, the 346

images were resampled to the simulation resolution (0.5 mm) 347

using linear interpolation and then cropped. The images were 348

then segmented into skull, skin, brain, and background regions 349

using intensity-based thresholding along with morphological 350

operations. Within the soft tissue, reference values were 351

assigned for the acoustic properties. Within the skull, the 352

sound speed and density were mapped directly from the image 353

values in HU. The density was calculated using the conversion 354

curve from [55] (using the hounsfield2density function 355

in k-Wave). The sound speed c within the skull was then 356

calculated from the density values ρ using a linear relationship 357

of c = 1.33ρ + 167 [56]. A constant value of attenuation 358

within the skull was used. This general approach to mapping 359

the acoustic properties from CT has been widely used in 360

the literature and generally compares well with experimental 361

and clinical measurements [4], [57], [58]. Note that, other 362

mappings from CT images to acoustic properties are also 363

possible (e.g., [59]). However, as the same mapping is used 364

for all image sets, this choice does not strongly influence the 365

simulated results. 366

The simulations were based on the NeuroFUS CTX-500 367

four-element annular array transducer (Sonic Concepts, Both- 368

ell, WA, USA). The transducer was modeled using a staircase- 369

free formulation [60] using nominal values for the radius of 370

curvature (63.2 mm) and element aperture diameters (32.8, 371

46, 55.9, and 64 mm). Simulations were run at six points per 372

wavelength (PPW) in water and 60 points per period (PPP), 373

which was sufficient to reproduce the relevant benchmark 374

results (PH1-BM7-SC1) reported in [61] with less than 0.2% 375

difference in the maximum pressure and no difference in the 376

focal position. The transducer was driven using a continuous 377

sinusoidal driving signal at 500 kHz until a steady state was 378

reached. 379

Simulations were performed for the 14 skulls that formed 380

the test set. For each skull, four transducer positions were used 381

targeting the occipital pole of the primary visual cortex and the 382

hand knob of the primary motor cortex in both hemispheres 383

(giving a total of 56 comparisons for each pCT image type). 384

These positions are two common targets for TUS studies. 385

The variation in the skull bone thickness for the V1 targets 386
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TABLE I
MAE AND RMSE FOR THE 3-D PCT IMAGES GENERATED USING

THE 14 SUBJECTS IN THE TEST SET AGAINST THE

GROUND-TRUTH CT IMAGES

is typically greater due to the internal and external occipital387

protuberance. The target positions were first identified on the388

MNI152_T1_1mm MR imaging template brain [46], [47].389

Approximate positions of the targets on the individual skulls390

were then calculated by registering the MR images with the391

MNI template and using the transformation matrix to map the392

target positions back to the individual skulls. For comparison393

between the CT and pCT image pairs, all other simulation394

parameters were kept identical except the image used to derive395

the acoustic property maps.396

The calculated acoustic pressure fields for each CT/pCT397

pair were compared using the focal metrics outlined in [61]398

using the code available from [62]. Briefly, the magnitude and399

position of the spatial peak pressure within the brain were400

compared, along with the −6 dB focal volume.401

III. RESULTS402

A. pCT Images403

Results for the MAE and RMSE for the generated 3-D404

pCT images against the ground-truth CT images are given in405

Table I. The zCT images generated using the learned mapping406

from ZTE have significantly lower error values across both407

metrics and both regions (complete head and skull only)408

compared to the tCT and cCT images. This is not surprising409

given: 1) the ZTE image visually contains significantly more410

information about the morphology of the skull bone compared411

to the T1w image and 2) the network has significantly more412

power to learn an adaptive mapping to pCT compared to the413

fixed mapping used for the cCT. In the skull, the cCT images414

slightly outperform the tCT images. This is possible because415

the additional bone information available to the cCT (but not416

the tCT) outweighs the additional predictive power available417

to the tCT (but not the cCT). Overall, the error values are418

similar to those discussed in Section I.419

Fig. 2 shows the correlation between the CT and pCT values420

within the skull mask (as identified from the ground-truth CT).421

There is a good correlation observed for all pCT images, with422

the lowest spread for the zCT matching the results given in423

Table I. The good fit observed for the cCT values demonstrates424

that a linear mapping from ZTE is a reasonable choice. The425

robustness of these correlations to variations in the specific MR426

sequence parameters (along with processing parameters such427

as the debiasing settings) still needs to be explored further.428

Examples of the generated pCT images and corresponding429

error maps against CT for one subject from the test set430

Fig. 2. Density plot showing the correlation between the pCT and ground-
truth CT images for the test set. The white lines show y = x.

are shown in Fig. 3. The central sagittal slice through all 431

14 subjects along with individual MAE values is shown 432

in Fig. 4. Overall, there is a good quantitative agreement 433

between the pCT and ground-truth CT images. The biggest 434

differences occur at the brain–skull and skull–skin boundaries, 435

consistent with previous studies [11]. This is primarily due to 436

the imperfect registration between the MR and CT images. 437

There are two contributing factors. First, the skin–air interfaces 438

are usually in slightly different places physically, e.g., due 439

to the mobility of the skin and differences in the subject 440

positioning during the MR and CT scans. Second, there 441

are differences in the rigid brain–skull boundaries due to 442

geometric distortions in the images that are not corrected by 443

the affine transformation used in the registration step. This is 444

evident in the difference plots for the cCT images, which uses 445

a simple thresholding of the ZTE image to obtain the skull 446

boundaries. The same misalignments are also apparent in the 447

training/validation images. Improving the registration step, for 448

example, by learning the registration as part of training the 449

network [63] or by iterating between training and reregistration 450

of the generated pCT images, will likely improve the predictive 451

capabilities of the learned mappings and will be the subject 452

of future work. 453

As discussed in Section II-B, the input to the network 454

was 11 consecutive 2-D slices in the transverse direction. For 455

the tCT images, this significantly reduced the occurrence of 456

discontinuities in the skull between slices in the out-of-plane 457

(e.g., sagittal) direction. The discontinuities occur because 458

of the difficulty in consistently identifying the outer skull 459

boundary in the 2-D T1w image slices, which is improved by 460

providing the network with local 3-D information. However, 461

even with 11 slices, visible discontinuities were still observed 462

for a small number of subjects in the test set (tCT 4, 6, and 463
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Fig. 3. Example of pCT and error maps for a single subject in the test set. The pCTs are registered to the ground-truth CT before comparison.

13 in Fig. 4). The equivalent network trained with a single464

input slice had similar MAE and RMSE values to those given465

in Table I, while the occurrence of local discontinuities in466

the skull was much worse. Thus, this feature does not seem467

to be captured by the error metrics used during training.468

This motivates using 3-D networks in the future, following469

related work [19], which has shown that training on the full470

3-D skull volumes can produce better results, albeit at a471

higher computational cost. The same discontinuities were not472

observed for the zCT images, even when using a single slice473

as input to the network.474

Although not formally investigated in this study, it is inter-475

esting to note that many of the subjects had small calcifications476

within the deep structures of the brain visible on the CT images477

(e.g., due to calcification of the choroid plexus). Some, but not478

all, of these were visible on the zCT images in the test set, and479

none were visible on the tCT images. Further work is needed480

to quantify the ability of the learned mappings to correctly481

reconstruct calcifications.482

B. Acoustic Simulations483

Results for the acoustic simulations are summarized in484

Table II and Fig. 5. Subjects 4 and 6 from the tCT dataset were485

excluded from the simulation evaluation as they displayed486

discontinuities on the top of the skull, which made them487

unsuitable for acoustic simulations. Similarly, cCT from sub-488

ject 10 was excluded as the predicted skull was not continuous489

due to the thresholding value not being suitable for this subject.490

Across all pCT images and target locations, the mean differ-491

ences in the simulated focal pressure, focal position, and focal492

volume were 7.3 ± 5.7%, 0.99 ± 0.79 mm, and 11 ± 12% (to493

two significant figures). The best results were obtained when494

using the zCT images for motor targets, where the equivalent495

differences were 3.7%, 0.5 mm, and 3.9%. These values496

compare well with the differences observed in experimental497

repeatability [64] and numerical intercomparison [61] studies.498

For reference, the focal volume simulated in water is 3.9 mm499

wide and 24 mm long.500

Between the different pCT images, the simulations based501

on the zCT images generally had the lowest average errors,502

TABLE II
ACOUSTIC METRICS ROUNDED TO ONE DECIMAL PLACE

as well as the smallest variation (see the interquartile range 503

shown using the blue boxes in Fig. 5). The simulations based 504

on both the zCT and cCT images consistently outperformed 505

the tCT images, demonstrating that skull-specific imaging can 506

improve the accuracy of the predictions. Interestingly, the 507

simulations based on the learned mappings (tCT and zCT) 508

generally overestimated the focal pressure, while simulations 509

based on the direct mapping (cCT) generally underestimated 510

the focal pressure. This may be related to the sharpness of the 511

skull boundaries in the cCT images compared to the learned 512

images resulting in a stronger reflection coefficient. 513

Between the two targets, the errors for the motor cortex 514

were lower than the visual cortex, except for the focal pressure 515

metric for the cCT images. This is expected, as the shape of the 516

skull is generally more variable close to the visual cortex due 517

to the internal and external occipital protuberance, which can 518

result in stronger aberrations to the acoustic field. Examples 519

from one test subject of the generated sound speed maps and 520

acoustic field distributions are given in Fig. 6. 521

IV. SUMMARY AND DISCUSSION 522

Three different approaches for generating pCT images from 523

MR images were investigated in the context of treatment 524

planning simulations for TUS. A convolutional neural network 525
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Fig. 4. Middle sagittal slice for the learned pCT images for the 14 test subjects. The MAE value reported is calculated for the volume inside the
head mask. A small number of the learned images mapped from T1w MR images have discontinuous skull boundaries.

Fig. 5. Differences in the focal pressure, focal position, and focal volume
for acoustic simulations using different pCT images against simulations
using a ground-truth CT. Results are divided into two sets, targeting the
visual cortex (V1) and motor cortex (M1).

(U-Net) was trained to generate pCT images using paired526

MR-CT data with either T1w or ZTE MR images as input.527

A direct mapping from ZTE to pCT was also implemented 528

based on [8]. For the image-based metrics, the learned map- 529

ping from ZTE gave the lowest errors, with MAE values of 530

83 and 222 HU in the whole head and skull-only, respectively. 531

The significant improvement compared to the mapping from 532

T1w images demonstrates the advantage of using skull-specific 533

MR imaging sequences. 534

Acoustic simulations were performed using the generated 535

pCT images for an annular array transducer geometry operat- 536

ing at 500 kHz. The transducer was targeting either the left 537

or right motor cortices or the left or right visual cortices. The 538

choice of transducer geometry and brain targets was motivated 539

by devices and targets used in the rapidly growing literature 540

on human TUS. 541

Simulations using the pCT images based on ZTE showed 542

close agreement with ground-truth simulations based on CT, 543

with mean errors in the focal pressure and focal volume less 544

than 7% and 9%, respectively, and mean errors in the focal 545

position less than 0.8 mm (see Table II). Errors in simulations 546

using the learned pCT images mapped from T1w images were 547

higher but still may be acceptable depending on the accuracy 548

required. These results demonstrate that acoustic simulations 549

based on mapping pCT images from MR can give comparable 550

results to simulations based on ground-truth CT. 551

For context, in the motor cortex, the smallest relevant 552

target area for stimulation could reasonably be considered 553

the cortical representation of a single hand muscle. A recent 554

transcranial magnetic stimulation (TMS) study suggests that 555
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Fig. 6. Sound speed maps and simulated acoustic field for a subject from the test set for targets in (a) visual cortex (V1) and (b) motor cortex (M1).
The difference plots show the difference against the ground-truth generated using the real CT images. The V1 and M1 results show sagittal and
coronal slices through the spatial peak pressure, respectively.

the functional area of the first dorsal interosseous (FDI),556

a muscle commonly targeted in motor studies, is approxi-557

mately 26 mm2 [65]. In the primary visual cortex, the mean558

distance between approximate centers of TMS-distinct visual559

regions (V1 and V2d) is 11 mm [66], suggesting a similar560

necessary resolution to M1. The errors in the focal position561

using the pCT images are significantly less, which should562

allow for accurate targeting of the intended structures.563

Interestingly, there was not a strong correlation between the564

pixel-based image errors (MAE and RMSE) and the errors in565

the predicted acoustic field. This highlights the importance of566

running acoustic simulations when developing I2IT methods567

for TUS and potentially calls for the use of acoustic-based 568

loss functions. The use of MR images for treatment planning 569

is particularly important for neuroscience studies in healthy 570

populations, where obtaining ethical approval to acquire CT 571

images is usually problematic. Even in a clinical setting, there 572

may be benefits to using MR-based acquisitions when the 573

therapy is performed under MR guidance (e.g., multimodal 574

image registration errors are reduced [67]). These results may 575

also be of interest in other areas where pCTs are used, for 576

example, PET-MR and radiotherapy planning. 577

Note that, in a clinical setting, the regulatory approval 578

of learned mappings remains an important open question. 579
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However, we demonstrate that the learned pCTs from T1w and580

ZTE can be used for acoustic simulations that have comparable581

accuracy to those based on CTs.582
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