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Abstract
Ultrasound tomography (UST) scanners allow quantitative images of the human
breast’s acoustic properties to be derived with potential applications in screen-
ing, diagnosis and therapy planning. Time domain full waveform inversion
(TD-FWI) is a promising UST image formation technique that !ts the param-
eter !elds of a wave physics model by gradient-based optimization. For high
resolution 3D UST, it holds three key challenges: !rstly, its central building
block, the computation of the gradient for a single US measurement, has a
restrictively large memory footprint. Secondly, this building block needs to be
computed for each of the 103–104 measurements, resulting in a massive par-
allel computation usually performed on large computational clusters for days.
Lastly, the structure of the underlying optimization problem may result in slow
progression of the solver and convergence to a local minimum. In this work, we
design and evaluate a comprehensive computational strategy to overcome these
challenges: !rstly, we exploit a gradient computation based on time reversal
that dramatically reduces the memory footprint at the expense of one additional
wave simulation per source. Secondly, we break the dependence on the number
of measurements by using source encoding (SE) to compute stochastic gradient
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estimates. Also we describe a more accurate, TD-speci!c SE technique with
a !ner variance control and use a state-of-the-art stochastic LBFGS method.
Lastly, we design an ef!cient TD multi-grid scheme together with precondi-
tioning to speed up the convergence while avoiding local minima. All compo-
nents are evaluated in extensive numerical proof-of-concept studies simulating
a bowl-shaped 3D UST breast scanner prototype. Finally, we demonstrate that
their combination allows us to obtain an accurate 442 × 442 × 222 voxel image
with a resolution of 0.5 mm using Matlab on a single GPU within 24 h.

Keywords: full waveform inversion, ultrasound tomography, breast imaging,
computational inverse problems, high resolution 3D

(Some !gures may appear in colour only in the online journal)

1. Introduction

Screening using x-ray-based mammography has saved many lives by catching early-stage
breast cancer. Nevertheless, there remain concerns related to tissue superposition, overdiagno-
sis, the effect of ionising radiation, the lower sensitivity in dense breasts, and the pain caused by
breast compression [65]. Alternative breast imaging approaches have therefore been explored,
including MRI, which is expensive and time-intensive [47], optical approaches such as pho-
toacoustic tomography [63] and diffuse optical tomography [101] which are limited by the
signi!cant scatting of light by tissue, and ultrasound (US). In conventional US imaging, high
frequency acoustic waves are transmitted into the breast from a hand-held linear array of typ-
ically 128 detection elements. The back-scattered waves are detected by the same array and
used to form qualitative 2D images in real time. It is often used as an adjunct modality to
supplement mammography [44, 76], but the operator-dependence means that hand-held US
requires an expert user. It is also time-consuming when imaging a whole breast, making it
unsuitable as a screening modality. In an attempt to overcome these drawbacks, automated
breast US (ABUS) has been introduced, which uses a machine to scan a linear array perpen-
dicular to its length over the breast to form a qualitative 3D re"ection image [91] but it does
not give a quantitative image of tissue properties. In contrast, a principal aim in ultrasound
tomography (UST) of the breast [17, 23] is to obtain accurate high resolution quantitative
images of the tissue’s acoustic properties. To achieve this, a pulse of US is transmitted into
a pendant breast and measurements are made of the resulting time-varying acoustic !eld
at multiple detector positions around the breast. This is repeated for multiple source posi-
tions (or, more generally, source distributions). The set of acoustic time series thus measured
will incorporate both the unscattered (directly transmitted) and scattered parts of the acous-
tic !eld. To facilitate practical measurement times, large arrays are typically used, consisting
of many hundreds of elements. In recent years, a number of such systems have been devel-
oped for UST breast imaging, including ones based on ring arrays [1, 24, 70], rotating pla-
nar or linear arrays [3, 48, 62], and bowl-shaped detector arrays [2, 36]. Once the data has
been measured, the challenge is to use it to form accurate quantitative images of the tissue’s
acoustic properties.

1.1. Image reconstruction for ultrasound tomography

Typically three types of images have been produced from UST data: quantitative images of the
acoustic attenuation and the speed of sound, and qualitative images indicating the ‘strength’
of the scattering at each point in the image [20]. To obtain these images requires a nonlinear
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inverse scattering problem to be tackled. The various approaches to solving this, which can
be characterised by the approximations and assumptions they make, represent different trade-
offs between computational ef!ciency and imaging accuracy. UST systems and measurement
protocols are therefore often designed and optimized for a particular image formation method,
unlike other imaging modalities where it is typically the other way around. There is an extensive
literature on UST reconstruction, and it shares much common ground with other areas of wave-
based imaging, such as in seismology and non-destructive testing. This is not the place for a
comprehensive account of that history, so we give just a few examples of typical reconstruction
approaches, focusing on quantitative reconstructions of sound speed as that is the topic of this
paper.

Travel-time or time-of-!ight tomography, widely used in geophysics [19], assumes the wave
propagation can be accurately described in terms of rays: either straight rays [12, 53, 64, 70,
74], thereby neglecting scattering, diffraction and refraction, or bent rays [5, 22, 52, 54, 58, 59],
which can account for refraction to some extent. The measured travel times are linearly related
to the integral of the slowness (reciprocal of the sound speed) along the rays, and the system
matrix, once constructed, can be inverted using standard linear algebra approaches. Ray-based
approaches can lead to robust and computationally ef!cient algorithms to recover smoothed
sound speed images, but usually !ne details are lost. Because the signi!cance of diffraction
depends on the relative sizes of the scatterer and wavelength, the ray approximation becomes
more accurate the higher the frequency used. However, at higher frequencies the sources and
detectors become more directional, reducing the possible ray paths across the imaged region,
and the acoustic attenuation of biological tissues is greater.

Another approach, sometimes called diffraction tomography, considers the material hetero-
geneities to be weakly scattering perturbations over a background and uses Born or Rytov-type
linearisations of the nonlinear scattering problem to arrive at linear methods of image forma-
tion. The free-space Green’s function is used to estimate the effect of the perturbations on the
!eld. In general for breast tissue, the weak scattering approximation does not hold, so adapta-
tions of these linearisations are required to develop techniques suitable for quantitative breast
imaging [49, 66].

To solve the full nonlinear inverse scattering tomography problem requires an iterative
approach. One way is to iteratively update both the forward operator and the unknown param-
eter in the linearised approximations above. In bent-ray reconstructions, for example, both the
rays and the unknown sound speed are updated at each iteration [52]. In the distorted Born
iterative method [16, 46], the Green’s function and the unknown parameter are updated. This
works well for low contrast media, but suffers from the failure of the Born series to converge
for large contrast heterogeneities.

Before we introduce the particular approach we follow in this work in more detail, we
remark that as in many !elds, there has been a recent "urry of interest into the question of
whether deep neural networks can be utilized for ultrasonic imaging [89], see, e.g., [4, 21,
28–32, 55, 56, 61, 89, 100] for approaches to improve the speed and accuracy of 2D UST
reconstructions. While it seems likely that neural networks will !nd wide application in UST,
there are reasons to think that, as in other imaging modalities, they will complement rather than
supersede existing approaches [6]. In particular in high resolution 3D settings, neural network
components that link the object to be imaged to the measured data can hardly be fully learned.
Ef!cient and accurate implementations will always contain components derived from physical
models accurately describing wave propagation in biological tissue according to the best of
our understanding.
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1.2. Full waveform inversion

An approach that has gained increasing attention in recent years has been to formulate the
image formation as a optimization problem, essentially !tting the measured data to a forward
model of the acoustic propagation. This way of tackling the inverse scattering tomography
problem is known as waveform tomography, model-based inversion or full waveform inversion
(FWI). Because the framework of FWI allows all the measured data to be used in the inver-
sion—the whole time series, or all the frequencies—it can in principle produce quantitatively
correct, high resolution images of the acoustic properties with many fewer measurements than
is required for travel-time tomography (which essentially reduces each time series to a single
value). There is a sizable literature on FWI in the seismic community, see [86] for a recent
review.

FWI constitutes a large-scale, non-convex, PDE-constrained optimization problem. In addi-
tion to the intrinsic dif!culties of such optimization problems, iterative optimization schemes
need to run numerous numerical wave simulations to compare arti!cial UST measurements
caused by the current guess of the acoustic parameters to the real US data obtained. Depend-
ing on the scan design and the spatial resolution desired, this can present a very signi!cant
computational challenge.

Dedicated hardware design can circumvent this bottleneck to some extent. For instance,
when using a 2D ring-array focused in the plane, 2D FWI can be used to reconstruct the 3D
volume slice-by-slice [24, 38, 58], but the risk of out-of-plane artefacts and the poor image
resolution perpendicular to the plane makes this solution less than ideal [73]. The approach
taken by Wiskin et al [93–96] has been to design the hardware with a planar geometry so that
a computationally-ef!cient approximation to the wave simulation can be exploited.

There will be a highest usable frequency dictated by inherent attenuation through the breast
and the sensitivity of the hardware, and this will limit the achievable image resolution. If this
frequency is too high for the computations to be practicable then reducing the highest fre-
quency, at the loss of the achievable image resolution, may be a compromise it is necessary to
make. Goncharsky et al [37–42] follow this idea and consider using low-frequency transducers.
They further combine with a ‘2.5’D slice-by-slice reconstruction approach.

However, there is not always the freedom to choose the hardware. For instance, in the case
we are interested in, the scanner has been designed to be optimal for photoacoustic tomography
(PAT) of the breast [2] and uses a hemispherical array with unfocused, broadband US trans-
ducers. UST, which will be an adjunct modality, will be performed using the same array and
we aim to obtain the same, isotropic sub-millimeter resolution across the whole breast volume.
Another example of a fully 3D UST system, also a bowl array, is the KIT 3D USCT system
[35, 36], which was designed for obtaining both high-quality re"ectivity images and quantita-
tive tissue images. To realize FWI for such UST scenarios, large high-performance computing
clusters are typically used [13, 38, 40] and/or the computation takes days, which severely lim-
its the range of clinical applications for which these methods are viable. A notable exception
is given by the work presented in [8], which we were made aware of during the writing of this
article.

1.3. Paper scope and structure

The key focus and contribution of our work is to develop and demonstrate a comprehensive
computational strategy that achieves accurate high-resolution, 3D FWI for breast UST with
a hemispherical array using only moderate computational resources (at least one GPU) and a
self-imposed time limit of 24 h. This would allow the method to !t into clinical trajectories for
diagnosis and therapy planing at competitive costs compared to other modalities such as MRI.
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Table 1. List of commonly occurring abbreviations.

Abbreviation Meaning Reference

FD Frequency domain Section 2.3
FWI Full waveform inversion Section 2.3
US Ultrasound Section 1
UST Ultrasound tomography Section 2.2
SGD Stochastic gradient descent Section 3.2
SLBFGS Stochastic L-BFGS method Section 3.2
TD Time domain Section 2.3
TR Time reversal Section 3.1

In section 2 we summarize the mathematical modeling of UST and FWI, and describe the
state of the art. Section 3 illustrates several separate computational challenges of FWI for high-
resolution 3D UST, and describes how novel and established solutions can be combined into a
comprehensive inversion strategy. Extensive numerical studies in section 4 !rst validate solu-
tions to the separate sub-problems before the results of the whole scheme are demonstrated in
section 5. Finally, we discuss the results of our work and point to future directions of research
in section 6 before closing with conclusions in section 7. Table 1 lists all commonly occurring
abbreviations for reference.

2. Full waveform inversion for ultrasound tomography

This section presents the model used to describe ultrasound propagation in soft tissue
(section 2.1) and the mathematical formulation of the inverse problem of UST (section 2.2).
The FWI approach to tackling this problem, the progress that has been made, and the challenges
that remain, are then described (sections 2.3 and 2.4).

2.1. Modelling ultrasound propagation in soft biological tissues

It is common to model soft biological tissues as compressible "uids and describe acoustic
propagation therein by linearising the equations of "uid dynamics derived from conservation
laws and combining them with an empirical equation of state. Following this approach, a suf-
!ciently low amplitude ultrasonic wave can be modelled by the following system of !rst order
equations [82]:

∂

∂t
v(x, t) = − 1

ρ0(x)
∇p(x, t) (momentum conservation)

(1)

∂

∂t
ρ(x, t) = −ρ0(x)∇ · v(x, t) − v(x, t) · ∇ρ0(x) + m(x, t) (mass conservation) (2)

p(x, t) = c2
0(x) (ρ(x, t) + d(x, t) · ∇ρ0(x) − Lρ(x, t)) , (pressure–density relation)

(3)

where v is the acoustic particle velocity (the time derivative of the acoustic displacement d),
p and ρ are the acoustic pressure and acoustic density "uctuations, ρ0 and c0 are the ambi-
ent density and sound speed, and m is a mass source term. L models acoustic absorption and
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dispersion using fractional Laplacians:

L = τ (x)
∂

∂t

(
−∇2) y

2−1
+ η(x)

(
−∇2) y+1

2 −1
, (4)

τ (x) = −2α0(x)c0(x)y−1, η(x) = 2α0(x)c0(x)y tan(πy/2), (5)

where τ and η denote absorption and dispersion proportionality coef!cients, α0 is the power
law prefactor, and y is the power law exponent [81]. Equations (1)–(3) can be combined into
the following lossy second-order wave equation for a heterogeneous medium:

A p(x, t) :=
(

1
c2

0(x)
∂2

∂t2 − ρ0(x)∇ ·
(

1
ρ0(x)

∇
)

+ L∇2
)

p(x, t)

=
∂

∂t
m(x, t) =: s(x, t), (6)

where we introduced a lossy d’Alembert operator A. As initial conditions we have p = 0 and
∂t p = 0. Suitable data pre-processing typically allows us to model the propagation as if it
occurs in an unbounded domain, i.e., no explicit boundary conditions are required (re"ections
from experimental equipment can be time-gated out and waves propagating deeper into the
body are absorbed). See [7, 80, 82] for more detailed discussions on the mathematical modeling
and [10, 43, 79] for recent extensions of FWI to UST involving hard tissues such as bone.

2.2. The inverse problem of ultrasound tomography

In most UST systems, movable arrays of US transducers are placed around the sample Γ ⊂
R3 and acoustically coupled with it. For a single recording, a subset of transducers emit an
acoustic pressure signal of length Ts while the others are receiving for a time T > Ts, chosen
long enough such that the acoustic pressure remaining inside the scanner is not measurable
anymore. A whole scan consists of ns such recordings, between which the transducer arrays
may be moved. Here, we model a UST scan in the following way: we have ns temporal sources
si(x, t), with supp(si) ⊂ Γc × [0, Ts] (in practice, each source is only de!ned over a small region
corresponding to the front face of the transducer). The measurement process is modelled by
applying a linear operator Mi to the pressure !elds pi(x, t), t ∈ [0, T] resulting from (6), i.e.,
we have

A(u) pi(x, t) = si(x, t), f i = Mi pi, i = 1, . . . , ns. (7)

Here, u denotes the unknown acoustic material properties inside the sample Γ, in the extreme
case u = (c0, ρ0,α0, y), where c0, ρ0 and α0 depend on x. We assume that all other properties
are suf!ciently well-known to ignore their modeling error. The general inverse problem of UST
is to recover u (or features of it) given a noisy data set { f δi }

ns
i=1. A general discussion of the

uniqueness and stability of this problem can be found in [78]. As mentioned in the introduction,
many different approaches have been used to tackle this problem.

2.3. Full waveform inversion

In FWI, we assume that for a given u, we can solve (7) to simulate data, i.e., fi(u) := MiA(u)−1si.
Then, we try to optimize u such that the discrepancies between simulated and measured data
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become small:

min
u∈U

J (u), with J (u) :=
ns∑

i

Di(u) :=
ns∑

i

D
(

fi(u), f δi
)

=
ns∑

i

D
(
MiA−1(u)si, f δi

)
, (8)

where D( f , g) is a loss function (see [25, 98] for a discussion of suitable loss functions),
and U is a set of constraints on u, e.g., bound constraints. First-order optimization schemes
solve (8) using only the gradient ∇J (u), which is given by the sum over terms of the form
∇uD

(
MA−1(u)s, f δ

)
. Such expressions can be computed ef!ciently using the adjoint state

method [71], which we will summarize here in a short, instructive way. One starts by
differentiating both sides of (7) w.r.t. u:

∂A
∂u

p + A
∂p
∂u

= 0 ⇒ ∂p
∂u

= −A−1 ∂A
∂u

p ⇒ ∂ f
∂u

= −MA−1 ∂A
∂u

p

⇒ ∂D
∂u

=

(
∂ f
∂u

)T ∂D
∂ f

= −
(
∂A
∂u

p
)T

A−TMT ∂D
∂ f

. (9)

Here, A−T is the operator solving the adjoint wave equation [71]. For instance, for u = c0 and
L = 0, we get with ∂A

∂c0
= − 2

c3
0

∂2

∂t2 :

∇c0D
(

f (c0), f δ
)

=

∫ T

0

2
c0(x)3

(
∂2 p(x, t)

∂t2

)
q∗(x, T − t)dt, (10)

where q∗ is the adjoint pressure !eld obtained by solving A(u)q∗ = s∗, and s∗(x, t) is the time-
reversed data discrepancy gradient ∂D

∂ f [71]. We will use D( f , g) = 1
2‖ f − g‖2

2, for which we
have ∂D

∂ f = f − g. Corresponding formulas for ρ0, α0 and y are listed in appendix A.
The focus of this work is the practical feasibility of computing a suf!ciently accurate and

spatially resolved approximation to the solution of the core problem (8) for 3D breast UST
within a reasonable amount of time and with reasonable computing resources. For this rea-
son, we will only include bound constraints on u via U in the main studies. To embed more
sophisticated a-priori knowledge on u and account for noise models and model discrepancies
in f δ , one needs to extend (8) by adding regularization functionals (e.g., to penalize unwanted
spatial features of u) or additional constraints (see [26, 67] and references therein). The addi-
tional noise stability study in appendix F will demonstrate the use of a simple regularization
strategy.

We introduced FWI in the time domain (TD) here, which is typically also the domain the
measurements are obtained in. One can also formulate FWI in the frequency domain (FD).
Then, computing J (u) and its gradient requires solving a direct and an adjoint Helmholtz
equation for each frequency. If the emitted waves are narrow band and/or the transducers are
only sensitive within a narrow band (modelled by Mi), this can be very advantageous but typ-
ically leads to high memory requirements if high resolution in 3D is desired (see [73] and
references therein).

Depending on the scanning geometry, transducer characteristics, and measurement protocol
and whether TD-FWI or FD-FWI is pursued, different numerical schemes are advantageous for
solving the wave or Helmholtz equation. Direct methods such as !nite-difference, pseudospec-
tral, !nite/spectral element methods or discontinous Galerkin methods aim to solve the PDEs
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directly while integral equation methods such as boundary element methods !rst transform
them. Asymptotic or approximate methods such as geometrical optics or Gaussian beams only
capture a part of the wave–matter interaction while typically being computationally much more
ef!cient. See [33, 50] for overviews on computational wave propagation methods for seismic
FWI imaging.

2.4. Challenges of high resolution 3D time domain full waveform inversion

Many UST systems are designed to capture 3D information and emit unfocused, broadband
waves to obtain sub-millimeter isotropic spatial resolutions over the whole breast volume
[2, 36]. For instance, within the PAMMOTH project [2], we built a scanner with a bowl-shaped
transducer array and aim to reach a resolution of !0.5 mm. Even when using the adjoint state
method, solving TD-FWI (8) for such scenarios is computationally challenging: for the
PAMMOTH setup, even an ef!cient k-space pseudospectral method [80] takes at least 10 min to
solve a single wave simulation on a recent GPU. As J (u) involves the sum over ns sources (8),
computing ∇J (u) requires ns parallel gradient computations (10) each involving two wave
simulations. On a single GPU, this would take 14 days for ns = 1024. While using a clus-
ter with many computational nodes could reduce this [13, 40], a closer look at (10) reveals a
problem of the TD adjoint state method: ideally, the !eld p(x, t) needs to be kept in GPU mem-
ory or at least in the main memory of the computational node while the adjoint !eld q∗(x, t)
is computed. For the PAMMOTH setup, this would require up to 150 GB working memory.
Current GPU cards are limited to 48 GB and typical nodes in computational clusters are not
equipped with that much main memory, either. In addition to these dif!culties, !rst-order opti-
mization methods for FWI (8) suffer from slow convergence and may get stuck in suboptimal
local minima of the non-convex function J (u).

In the following section, we describe techniques to circumvent each of these problems and
combine them into a comprehensive computational strategy to achieve high resolution 3D TD-
FWI for ultrasonic breast imaging.

3. Improving memory footprint, efficiency and convergence

3.1. Memory-efficient gradient computation using time reversal

First, we describe an approach to circumvent storing p(x, t), x ∈ Γ, t ∈ [0, T]. Note that in
UST, all sources and sensors are outside Γ and p(x, 0) = ∂t p(x, 0) = 0. We !rst consider the
case of no absorption, i.e., L = 0. By Huygens’ principle, the !eld inside Γ is uniquely deter-
mined by its trace on the boundary ∂Γ× [0,∞]. The theory of time reversal (TR) describes
under which conditions the time reversal symmetry of the wave equation (6) allows p(x, t)
to be reconstructed by simulating the following wave equation for the time-reversed pressure
p!(x, t):

A(u)p!(x, t) = 0 in Γ× [0, T!],

p!(x, t) = p(x, T! − t) on ∂Γ× [0, T],

p!(x, 0) = ∂t p!(x, 0) = 0 in Γ.

(11)

Namely, p!(x, t) is a good approximation of p(x, T! − t) if Γ is convex, u is non-trapping
and T! is chosen large enough such that p(x, T!) and ∂t p(x, T!) are small and monotonically
decaying inside Γ [18, 34, 57, 97]. In 3D UST of the breast, these conditions are ful!lled: Γ
can be chosen as a convex set including the breast (e.g., in the PAMMOTH system, the breast is
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placed in a plastic cup with convex shape). The acoustic parameter variations are such that no
waves get trapped in the sample and after all acoustic energy has entered the breast, it decays
exponentially fast, see appendix E. Choosing T! = T is a safe choice as we chose T large
enough to ensure the pressure inside the scanner is not measurable any more (cf section 2.2).
Note that (11) is not the same as the adjoint wave equation [7].

TR was developed for focusing ultrasound waves through inhomogenous media [18, 34, 97]
and is used for image reconstruction in photoacoustic tomography (PAT) [9, 57]. Here, we use
it as a numerical trick to approximately replay the forward !eld p(x, t) backwards in time, in
parallel to solving the adjoint wave equation. This way, we do not need to keep the pressure
!eld p(x, t) in the sample’s volume Γ in memory, only its trace on the boundary ∂Γ, which
reduces the memory footprint considerably. Note that similar techniques have been developed
in the seismic literature. See [68] and references therein for the idea to shift the storage onto
the boundary for our type of boundary conditions.

The integral in (10) can directly be accumulated during the parallel time stepping scheme
solving the both TR and adjoint wave equations: the state variables in each computation are
exactly what is needed to compute the contribution to the integral. For instance, the !rst time
step of the TR wave simulation results in p!(x, 0), which is approximately p(x, T), while the
!rst time step of the adjoint wave simulation results in q(x, 0). With these variables, the con-
tribution to the integral (10) for time t = T can be computed. The price we pay for the heavily
reduced memory footprint is that we have to run three instead of two wave simulations to com-
pute (10). However, the simulation domain of the TR wave simulation only needs to enclose
Γ and can therefore often be chosen smaller. Appendix B describes the implementation of the
TR-based gradient computation using the k-space pseudospectral method implemented in the
k-Wave Matlab toolbox [80] and section 4.3 validates it numerically.

In the case of absorption, i.e., L *= 0 [85], describes how to modify TR to recover the pres-
sure !elds (essentially, the sign of the absorption needs to be switched). Note however, that
compared to the application in PAT image reconstruction considered in [85], no additional
regularization is needed in our case as the boundary time series are not contaminated with
measurement noise.

3.2. Tuneable stochastic gradient optimization using delayed source encoding

FWI (8) is a "nite sum minimization problem. As such, one can approximate ∇J (u) by

gS (u) :=
ns

|S|
∑

j∈S

∇D j(u), S ⊂ {1, . . . , ns}. (12)

In incremental gradient or ordered sub-set methods [11], one chooses a different subset Sk in
each iteration k in a predetermined way. If the subsets are chosen at random, gS (u) becomes
a stochastic estimator of ∇J (u) and stochastic gradient descent (SGD) schemes need to be
used. Fortunately, supervised training of deep neural networks are also instances of !nite sum
minimization problems (empirical risk minimization) and the recent success of deep learning
techniques has stimulated research into ef!cient SGD schemes [14]. In section 4.4, we will
demonstrate the bene!ts of using a recently developed stochastic L-BFGS (SLBFGS) method
(see [27] and appendix D) for UST over earlier schemes.

Besides being unbiased, i.e., E [g(u)] = ∇J (u), a desirable property of a gradient esti-
mator g(u) is that it is both computationally ef!cient (fast to compute) and stochastically
ef!cient (small variance/error). Computing gS (u) with a subset of size one takes only two
wave simulations (or three if TR is used). It turns out that due to the structure of (8),
there are gradient estimators with the same computational but higher stochastic ef!ciency.

9
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In this work, we assume Mi := M. Let wi, i = 1, . . . , ns be random weights with E [w] = 0,
Cov[w] = I and de!ne the synthetic source activations ŝ :=

∑ns
i wisi and corresponding syn-

thetic data f̂ δ :=
∑ns

i wi f δi . Then, gE (u) :=∇uD
(

MA(u)−1ŝ, f̂ δ
)

is an unbiased estimator of
∇J (u). Practically, we run two ‘super-wave’ simulations where all sources are !red simul-
taneously. This technique exploits the linearity of the wave equation and is called source
encoding, see [45] for the general theory, [92] for the form we use it here (but we apply it
in 3D), and appendix E for a more detailed description. Choosing wi = ±1 with equal proba-
bility (Rademacher distribution) minimizes the variance of gE and will be used from now on
(note that one could also de!ne w such that gS is recovered). The case Mi *= M will be exam-
ined in forthcoming work that applies the techniques discussed here to concrete experimental
data scenarios.

While SGD methods need to reduce the variance of the update progressively in order to
converge at all, tailored variance reduction schemes can improve the convergence rate to that
of deterministic methods (cf section 5 in [14]). If the variance of the gradient estimator can not
be in"uenced in a direct way, variance reduction can only be achieved via reducing the step
size or averaging iterates or gradients. Having !ne control over the variance of g(u) is more
advantageous.For gS (u), one can only increase the size of S; for gE , one would average multiple
realizations. In both cases, we would have a sudden increase of the computational effort which
means a rather coarse control over the variance [88]. If multiple GPUs are available, one can
perform these computations in parallel, which we will investigate in section 4.5. However, if
different GPU architectures are used in this way, the slowest one limits the overall ef!ciency,
cf section 4.6. To overcome these problems, we propose a novel source encoding scheme gτ

E
with !ne variance control that also exploits the time-invariance of the wave equation and the
fact that all waves eventually leave the region of interest (which is essential for the sequential
scanning of UST, cf section 2.2): let di ∼ U[0, 1] be random, τ " 0 a !xed maximal delay and
de!ne

ŝ(x, t) :=
ns∑

i

wisi(x, t − diτ ), f̂ δ(x, t) :=
ns∑

i

wi f δi (x, t − diτ ). (13)

For τ = 0, we recover the conventional source encoding where all sources are !red simul-
taneously while for τ > 0, we activate the sources with random delays. While this necessi-
tates running the super-wave simulation for a longer time T + τ , it dampens the cross-talk
between the pressure !elds coming from different sources, which is the origin of the error
of conventional source encoding. For ns = 2 and τ = 2T, the average delay between the two
sources is T and we essentially !re sources with the delay we deemed necessary for regard-
ing the measurements as completely separate (cf section 2.2). More generally, gτ

E converges
to ∇J (u) for growing τ for any realization of Rademacher weights w and d. More details
can be found in appendix E. Note that our approach extends the 2D FWI random time-delay
approach described in [99] by combining it with the rigorous stochastic analysis from [45].
Recently, another interesting TD approach to reduce the cross-talk between different sources
by running longer ‘super-wave’ simulations has been presented in [8, 87]: the encoding assigns
a monochromatic time course to each source i, chosen from a set of regularly spaced fre-
quencies. The forward and adjoint wave simulations are run long enough to produce the
steady-state pressure !elds from which the contributions of each source can be decoded by
Fourier decomposition.

In section 4.4, we will validate the proposed gradient estimator numerically. On a single
GPU, this technique allows one to increase the gradient estimator’s precision in arbitrar-
ily small amounts while on heterogeneous multi-GPU environments, it allows faster GPUs

10
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to compute more precise gradient estimates using tailored τ > 0 while the slowest GPUs
use τ = 0.

3.3. Improving convergence using coarse-to-fine schemes and preconditioning

FWI (8) is a non-convex optimization problem. Iterative optimization techniques based on
local descent directions like gradient descent schemes may experience slow convergence or
even get stuck in local minima that only explain parts of the data. In seismic imaging, the latter
is known as cycle skipping [25, 86, 98]. A common way to avoid it in FD-FWI schemes is to
restrict the frequency range to the lower frequencies !rst and increase it progressively [94].
In TD schemes, this corresponds to solving the FWI on a coarse spatio-temporal grid !rst,
which is then progressively re!ned. In the most basic case, the interpolation of the solution
computed on the coarse grid is used to initialize the optimization scheme on the !ner grid
but more sophisticated multi-grid schemes can be derived [51]. In the k-space pseudospectral
method used here, all grids are regular and implementing correct up and down-sampling is
easy, see appendix C. In 3D, a coarsening of the spatio-temporal grid by factor of η = 2 (i.e.,
dxc = η dx f , dtc = η dt f , . . . ) leads to a reduction of the computational operations by a factor
of η4 = 16. We will illustrate in section 4.7 that it is essential to exploit this advantage to obtain
fast computational schemes.

Preconditioning techniques try to improve the convergence of numerical optimization
schemes by reformulating the original problem. For instance, instead of using u = c2

0(x) in
(8), we could solve for u = 1/c0(x) (slowness), u = 1/c2

0(x) (squared slowness) or a weighted
version thereof, u = w(x)/c2

0(x). The weights w(x) could be a function of the average dis-
tance of x to the transducer locations. Due to the non-convex nature of J (u) and the way
SLBFGS constructs low-rank quadratic approximations to J (u) based on stochastic function
and gradient evaluations, this choice is not trivial. In section 4.8, we will examine different
possibilities.

4. Numerical accuracy and efficiency studies

4.1. Setup: 3D digital phantom and transducer arrangement

The setup used in the numerical validation studies resembles the PAMMOTH scanner and is
illustrated in !gure 1. The computational domain is 221 × 221 × 111 mm wide and the ultra-
sound transducers are located on a half-spherical surface of radius 104.5 mm. We want to
compute a FWI reconstruction at spatial resolution dx = 0.5 mm, which leads to a compu-
tational domain of 442 × 442 × 222 voxels. The speed of sound bounds enforced during the
optimization are cmin

0 = 1350 m s−1 and cmax
0 = 1800 m s−1. Based on this and using a c! num-

ber of 0.3, we set ∆t = c f l·∆x
cmax

0
= 83.3 ns. We set T to twice the length of the computational

domain divided by cmin
0 , which leads to T/∆t = 3912 time steps.

The anatomically realistic numerical breast phantom used is part of the OA-breast database5,
which was designed for (photo-)acoustic simulations and is described in [60]. It is based on the
tissue segmentation of a clinical contrast enhanced MRI of a breast in prone, free-hanging posi-
tion. The original segmentation is !tted and interpolated into our setup. The tissue-dependent
speed of sound values we use are the same as in [60] and can be found in the caption of !gure 1.
The mass density ρ0 was assumed constant at 1000 kg m−3 for simplicity here.

5 https://anastasio.bioengineering.illinois.edu/downloadable-content/oa-breast-database/.
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Figure 1. (a) Illustration of the setup used in the numerical studies: the surfaces of dif-
ferent breast tissues have been extracted from a high-res version of the voxel-grid-based
breast phantom and rendered with different colors and transparencies. Shown here are
blood vessels (red, in-transparent), !bro-glandular tissue (blue, transparent) and skin
(yellow, transparent). Source and sensor positions are indicated by the blue and orange
dots distributed on a half-sphere, respectively. (b) Illustration of the central x-slice of the
3D volume (corresponding to the green line in (a)). Vertical and horizontal axis corre-
spond to y and z axis, respectively. Different materials are colour coded depending on
their speed of sound values (c0), ranging from fat (1470 m s−1) over water/background
(1500 m s−1), !bro-glandular tissue (1515 m s−1), blood vessels (1584 m s−1) to skin
(1650 m s−1). The pink pixels indicate the half-sphere on which the transducers are
located, the reconstruction region Γ is composed by all pixels containing breast tissues.

We distribute 2048 transducer locations over the half-sphere by the golden section method.
Half of them will be emitting (sources, ns = 1024) while the other half will be receiving (sen-
sors). Simulated data of this arti!cial source-sensor setup is an array of size 1024 × 1024 ×
3912 which corresponds to 15.28 GB in single precision. We assume idealized spatio-temporal
transducer characteristics here, i.e., we model them as point-like in space and their tempo-
ral impulse response is a delta function. The sources emit a single broadband pressure pulse
(‘click’) smoothed in time to remove temporal frequencies not supported by the computational
grid (the grid supports up to 1.5 MHz at c0 = 1500 m s−1 [80]). More details can be found in
appendix C.

Note that the setup we use here was primarily designed to validate the accuracy and ef!-
ciency of the computational solutions we described in the previous section in the best possible
way. For this reason, it reproduces the key properties of 3D FWI for breast imaging but omits
modeling features of real-world systems that would complicate the interpretation of our results.
It is furthermore not designed to examine the condition of the inverse problem (7).

4.2. Baseline reconstructions

Before we can examine the different aspects discussed in section 3 in depth, we need to
illustrate some basic features of the reconstructions. Figure 2(a) shows the speed of sound
reconstruction of the data simulated at 0.5 mm resolution when reconstructed using a grid size
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Figure 2. (a) Zoom into central x-slice of the FWI solution computed using a grid size
of 2 mm, cini

0 . Colormap in m s−1. All reconstructions will be displayed in this way.
(b) Error cini

0 − c†
0 displayed with bidirectional colour map in m s−1.

of 2 mm. This reconstruction was computed using SLBFGS with source encoding gradient
estimator gE for 128 iterations (computing time ∼30 min) and could be the multi-grid based
initialization of a FWI run on the !ner resolution. For this reason, we will call it cini

0 and take
it as a reference point in the following studies. Note that here and in the following, we only
reconstruct the speed of sound inside the breast region Γ, while the speed of sound outside is
known and !xed. Figure 2(b) plots the reconstruction error cini

0 − c†
0 locally, where c†

0 is the
ground-truth speed of sound inside the breast. We will measure the global error of a variable
a by their relative (2 distances to a reference b computed as rel (2(a, b) = ‖a − b‖2/‖b‖2, and
expressed in percent, e.g., we have that rel (2(cini

0 , c†
0) = 2.18%.

First, we run SLBFGS initialized at cini
0 with the source encoding gradient estimator gE .

Figure 3 shows the iterates after 32/64/128 gradient evaluations (eval), the corresponding
rel (2 errors are 1.53%/1.29%/1.07%. Note that we deliberately chose to not add measurement
noise to the data (see above), the noisy appearance of the reconstructions are due errors of
the gradient estimator (gradient noise), a purely numerical phenomena that we need to high-
light. On the difference plots in !gures 3(d)–(f), one can see that the error is larger around
tissue interfaces and close to the chest wall. The former comes from the !nite spatial grid
spacing: the k-space pseudospectral method cannot propagate the highest spatial frequen-
cies present for a given spatial grid which means that we can at best hope to reconstruct a
slightly smoothed version of c†

0. The higher errors close to the chest wall are caused by the
insuf!cient sensor coverage of the half-spherical sensor array (cf !gure 1). To illustrate this
effect in more detail, we computed error statistics for each depth slice. For slices deeper than
2 cm into the bowl, the errors are almost normally distributed, with zero mean and a stan-
dard deviation that decays as the SLBFGS advances as can be seen in !gure 4(a). We gain
an accuracy of ∼5 m s−1 with each doubling of number of iterations, i.e., the computational
effort.
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Figure 3. (a)–(c) crec
0 (m s−1) computed by SLBFGS initialized at cini

0 with the source
encoding gradient estimator gE . (d)–(f) Corresponding error plots (m s−1).

4.3. Accuracy of time reversal based gradient computation

First, we validate the TR based gradient computation described in section 3.1 when imple-
mented using a k-space pseudospectral method (cf appendix B). In principle, this schemes
relies on regular spatial grids and is not well suited for representing arbitrarily shaped bound-
aries ∂Γ, cf (11). To record or impose pressure values on ∂Γ, we need to instead record and
impose them on a layer of grid points lying on the inner surface ofΓ. Determining the thickness
of this layer is a trade-off: a thin layer leads to a small memory footprint when storing p(x, t)
on them, which was our original motivation to introduce the TR-based gradient computation.
A large layer will lead to a more accurate reproduction of the forward !eld, i.e., p!(x, t) is
a better approximation of p(x, T! − t). To examine the effects of this, we !rst compute the
gradient (10) at cini

0 for a single source storing the complete !eld p(x, t) in Γ× [0, T]. Then,
we compute it using the TR formulation using boundary layers of thickness 1/2/4/8 voxels.
Table 2 shows the average relative errors of the TR gradients computed over 16 randomly
picked sources and the working memory requirements in our setup. The errors decay very fast
as a function of boundary layer thickness. However, we need to check that the errors in the TR
gradients do not accumulate during an iterative reconstruction: table 2 shows the reconstruc-
tion errors when running SLBFGS with 32 gradient evaluations initialized at cini

0 . Interestingly,
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Figure 4. (a) Mean and standard deviation (std) of the reconstruction error crec
0 − c†

0 vs
depth (=distance from chest wall) for the reconstructions shown in !gure 3. (b) Dif-
ference between reconstruction using full gradient computation and TR based gradient
with voxel layer of size 1.

Table 2. Comparison of gradient computation storing the full forward !eld (full) with
TR based gradient computation using different number of boundary layer voxels.

full TR 1 TR 2 TR 4 TR 8

rel (2 gradients at cini
0 0 22.8085% 5.6131% 0.8953% 0.1376%

Memory requirements 98.00 GB 2.57 GB 5.95 GB 11.34 GB 21.75 GB
rel (2(crec

0 , c†
0) 1.5328% 1.5492% 1.5401% 1.5319% 1.5328%

rel (2(crec,TR
0 , crec,full

0 ) 0% 0.2389% 0.0681% 0.0178% 0.0038%

even using a boundary layer of just one voxel, the error between reconstructions with normal
gradient and TR-based gradient computations are small. Furthermore, !gure 4(b) shows that
the error appears noise-like with no clear pattern visible. This suggests that the errors rather
cancel than accumulate over the course of the iteration. The difference in computational time
will be examined in section 4.6. For the rest of the studies, a TR based gradient computation
will be used with a boundary layer of eight voxels.

4.4. Accuracy of stochastic gradient optimization

First, we demonstrate the impact the choice of the stochastic gradient method has and com-
pare SLBFGS to plain SGD and SGD with inertia/momentum [14] in !gure 5. All methods
use source encoding as a gradient estimator and a maximum of 100 gradient evaluations. Fur-
thermore, once an increase in the estimated energy is detected, they do not return the iterates
uk directly but a weighted average ūk := (

∑k
l l3ul)/

∑k
l l3 to reduce variance, cf appendix D.

SLBFGS reaches the !nal rel (2 error of plain SGD already after 55 evaluations, so twice as
fast. This number increases to 76 when we add inertia of β = 0.5 [14] to SGD. However, we
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Figure 5. Comparison of different stochastic gradient methods. (a) Estimated energy
J (crec

0 ) is plotted vs the number of gradient evaluations. (b) rel (2(crec
0 , c†

0) is plotted vs
the number of gradient evaluations.

see that while SGD with inertia converges as fast as SLBFGS in the beginning, the decay levels
off after ∼ 60 evaluations.

Second, we examine the impact of using different gradient estimators: !gure 6(a) shows the
full gradient computed at cini

0 , which took a week of computing time on a server with 4 GPUs (cf
section 4.6). Then, we computed the different stochastic estimates of this gradient, gS , gE , gτ

E
(cf section 3.2) and examined how their precision increases by investing more computational
effort. Figure 6(b) shows the results averaged over 16 i.i.d. gradient realizations. One can see
that using source encoding (gE , gτ

E ) indeed leads to a more accurate gradient estimation at the
same computational effort. We will use source encoding for the rest of the studies. Also, we can
see that using the novel delayed source encoding scheme gτ

E not only gives a !ner variance con-
trol compared to increasing the precision of gE via averaging, it also provides a more accurate
gradient estimate with the same computational effort. Within a stochastic gradient method, the
question is whether to do more steps with a less accurate but computationally cheaper gradient
estimator vs less steps with a more accurate but computationally more costly estimator. The
former is typically more bene!cial in the beginning of the iteration, while the latter becomes
more bene!cial towards the end of it [14]. To illustrate this, we !rst initialized SLBFGS with
cini

0 and then with the result shown in !gure 3(c), which corresponds to 128 gradient evaluations
(roughly 4 days computing time on a TITAN RTX GPU). In both cases, we ran it for another
72 h using gτ

E with τ = b(i − 1) for different values of b and with and without starting iterate
averaging after an increase in the energy estimate in the case b = 0 (so no delay). Figure 7(a)
shows that in the low accuracy regime, all methods perform rather similar for the !rst 24 h. In
the case b = 0, iterate averaging is only activated after 66 h (the point where the !rst two plots
diverge). The delayed source encoding methods b > 0 eventually perform better than b = 0,
but are slower at the start. Figure 7(b) shows the results for the high accuracy regime: while
using iterate averaging stabilizes the iteration for b = 0, using increasing values of b leads to
faster convergence in terms of computing time.
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Figure 6. (a) Gradient ∇J (cini
0 ), normalized to [−1, 1]. (b) Error of different gradient

estimators and different ways to increase their precision by investing more computa-
tional effort, averaged over 16 independent realizations. A computational effort of 1
corresponds to computing the gradient for a single source.

Figure 7. Comparison of different delayed source encoding strategies. rel (2(crec
0 , c†

0) is
plotted vs computing time on a TITAN RTX GPU. All schemes are initialized with
(a) cini

0 , cf !gure 2(a) and (b) the solution shown in !gure 3(c).

4.5. Multi-GPU acceleration

Computing platforms with multiple GPUs can be used in different ways to accelerate the image
reconstruction. In the TR based gradient computation described in section 3.1, the adjoint and
TR wave simulation can be run on two separate GPUs in parallel, which would lower the
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Figure 8. Effect of utilizing multiple GPUs to decrease the variance of the SE gradient
estimator by averaging independent realizations. (a) rel (2(crec

0 , c†
0) is plotted vs the num-

ber of gradient evaluations. (b) Mean and standard deviation (std) of the reconstruction
error crec

0 − c†
0 vs depth, cf !gure 4(a).

computational cost to that of the standard gradient computation again. To reconstruct 3D
images on higher resolutions, one can implement 3D domain decomposition methods to dis-
tribute the computations over several GPUs [69, 83, 84]. A straightforward way which does
not need sophisticated implementation is to average statistically independent gradient esti-
mates each computed on a different GPU. This reduces the variance of the gradient estimator
at least by a factor corresponding to the number of GPUs, cf section 3.2: !gure 8 shows the
reconstruction errors of SLBFGS initialized at cini

0 when using a growing number of GPUs in
this way (using source encoding without time shifting). One can see that the convergence is in
general faster. However, !gure 8(a) highlights that due to the non-convexity of J (u), there is
not a simple relationship between the accuracy of the gradient estimator and the convergence
curve. The reconstruction error obtained after running SLBFGS using 2/4/8 GPUs for 32 gra-
dient evaluations is the same as running it on a single GPU for 51/89/103 gradient evaluations.
Comparing !gures 4(a) and 8(b) shows also the decrease in standard deviation saturates with
a growing number of GPUs.

4.6. Comparison of different GPU architectures

Table 3 compares the performance of different GPUs. One can see that the run times of nor-
mal and TR-based gradient computations are more alike than expected based on the number
of computational operations (!ops). One reason is that the huge memory footprint of the nor-
mal gradient computation requires a lot of working memory operations, which are no longer
negligible compared to the computational operations.

4.7. Acceleration by coarse-to-fine multigrid initilization

Next, we illustrate that a coarse-to-!ne initialization strategy can speed up the convergence and
avoid local minima as described in section 3.3. We use SLBFGS with source encoding without
time shifting and initialize it with the sound speed value of water (1500 m s−1) everywhere. The
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Table 3. Comparison of different Nvidia GPUs. Shown are the computation times for
simulating data generated by a single source ( fwd), computing a gradient for it via
the standard approach (10) (grad) and the TR based computation (cf section 3.1) (TR
grad). N/A indicates that the computer the GPU was installed in did not have insuf!cient
working memory (RAM).

Tesla P40 TITAN RTX GeForce RTX 2080 Ti GeForce GTX 1070

Memory 24 GB 24 GB 11 GB 8 GB
fwd 19 m 54 s 10 m 59 s 11 m 42 s 30 m 27 s
grad 46 m 9 s 26 m 44 s 27 m 34 s n/a
TR grad 61 m 48 s 34 m 22 s 36 m 15 s 1 h 34 m

Figure 9. (a) Comparison of using multi-grid initializations: all schemes are initialized
with a uniform background (c0 = 1500 m s−1). A different number of gradient evalu-
ations (evals) are run on each level, the TR-based approach is only used on the !nest
level (dx = 0.5 mm). In principle, the vertical axis displays "ops which scale as η4 (cf
section 3.3) where η is the coarsening factor between levels. For a better interpretabil-
ity, we re-scaled "ops to GPU hours by using the TR-gradient computation time of the
TITAN RTX on the !nest level (cf table 3). The black crosses mark where a scheme tran-
sitions between levels. The rel (2 error of solutions on coarser grids than dx = 0.5 mm is
measured by interpolating them !rst. Note that each level transition involves a smoothing
which can lead to an increase in rel (2 error. (b) rel (2(crec

0 , c†
0) vs the number of gradient

evaluations for SLBFGS initialized at cini
0 and different preconditioning techniques.

!rst scheme runs on the !nest grid (dx = 0.5 mm) only. The second scheme has two levels:
it starts on dx = 2 mm before switching to dx = 0.5 mm, so η = 4. The third scheme has
three levels dx = 2, 1, 0.5 mm (η = 2), and the forth dx = 2, 1.41, 1, 0.70, 0.5 mm (η =

√
2).

Figure 9(a) shows the error plots vs computational effort and shows how essential it is to use
multi-grid schemes in UST: when the two-level scheme switches to the !nest level after 23 min,
it has already reached a lower error than the single-level scheme will reach after 16 h.
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4.8. Acceleration by preconditioning

Figure 9(b) shows that using the non-linear slowness and squared-slowness preconditioning
transformations discussed in section 3.3 do indeed speed up the convergence and provide
clear advantages over the standard parameterization. All spatial error plots clearly indicate
that the errors increase with decreasing depth, i.e., closer to the chest wall where the sensor
coverage is getting worse, cf !gures 1–4. This observation suggests that introducing a local
weighting w(x) that depends on depth or sensor coverage could be bene!cial. We tried differ-
ent variants of such weightings but could not !nd signi!cant differences. One explanation for
this is that quasi-Newton schemes like SLBFGS have low sensitivity to linear preconditioning
transformations.

5. Full inversion scheme demonstration

In this section, we combine all the techniques described in the previous section to demonstrate
the results one can obtain within a computing time limit of 24 h. While this limit may seem
arbitrary at this point, it is motivated by the perspective of adding UST to clinical work-"ows
for breast-cancer diagnosis and treatment planning: after a positive screening result, several
examinations have to be scheduled and carried out and before a treatment decision can be
made. While health care providers try to shorten the overall time for this as much as possible,
it can rarely be done in a single day [75]. Within this context, a computing time of 24 h would
allow UST to !t into clinical trajectories. Similar considerations hold for the computational
resources needed: a main advantage of UST over MRI could be lower operating costs for a
single examination. Having to use or rent a large computational cluster over several days to
compute the results of a single examination may diminish this advantage.

To appreciate the computational advantages described in this work, we !rst show the recon-
struction result of applying a computational technique similar to the one used in [72] in
!gure 10(a). One can see that even after 24 h the result can not be used to reliably identify
anatomic structures. Then, we use

• TR based gradient computation with a eight voxel boundary layer as examined in
section 4.3.

• SLBFGS with source encoding and weighted iterate averaging as examined in section 4.4.
• Multigrid initialization with dx = 2, 1, 0.5 mm (η = 2) and 128/128/32 gradient evalua-

tions as examined in section 4.7.
• Squared slowness preconditioning as examined in section 4.8.

The results of computing on a single GeForce RTX 2080 Ti installed in a conventional
desktop PC (total price ∼ 5K€) are shown in !gures 11(a) and (d). While one can still perceive
stochastic gradient noise and structured errors in the reconstruction, it already provides a useful
high-resolution estimate of the underlying anatomy. Figures 11(b)/(e) and (c)/(f ) show how
these results improve using a server with 4 GeForce RTX 2080 Ti (total price ∼ 20K€) or
a cluster with 16 TITAN RTX (total price ∼ 100K€). Figure 10(b) shows the corresponding
depth distribution of the errors. At this point, we remind the reader that the images shown only
illustrate a sub-set of the whole reconstruction domain, cf !gure 1.

As discussed earlier, we did not add measurement noise to the data in our studies to allow for
an easier visual assessment of the convergence of the different computational schemes as the
stochastic gradient error also manifests as noise-like image features. To round off the numerical
studies, appendix F examines the sensitivity to noise.
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Figure 10. (a) Reconstruction a reconstruction method similar to the one used [72]
within 24 h computing time on a single GPU. (b) Mean and standard deviation (std)
of the reconstruction error crec

0 − c†
0 vs depth, cf !gure 4(a).

6. Discussion and outlook

Our work was motivated by the speci!cations of the PAMMOTH scanner that is currently
being developed and tested [2]. The main contribution was to combine a number of techniques
to design a comprehensive computational strategy to realize high resolution 3D TD-FWI for
UST of the human breast with moderate computational resources within a day of computing
time. The results were validated with extensive numerical proof-of-concept studies on different
computational platforms.

TR-based gradient computation. For the biggest breast cup designed for PAMMOTH,
storing p(x, t) throughout the breast would require 146.81 GB at 0.5 mm spatial resolution. This
memory footprint rules out keeping it in the memory of any currently available GPU. If kept
in CPU memory, it severely limits the number of parallel source simulations one can perform,
e.g., running parallel simulations on a server with 16 GPUs like showcased in section 5 would
require more than 2 TB CPU memory. In addition, memory operations start to dominate the
total computation time (cf table 3).

The time-reversal-based gradient computation presented in section 3.1 can overcome this
bottleneck by shifting the storage from the breast volume to its boundary: with a moder-
ate increase of computation time (cf table 3), the memory requirement can be lowered by
a factor 28.79 to as little as 5.10 GB without compromising accuracy of the !nal solution
by more than 0.25%, cf section 4.3. This allows us to utilize multiple GPUs without mem-
ory restrictions, which is examined in detail in section 4.5 and demonstrated in section 5, cf
!gures 8 and 11.

Stochastic optimization. The second crucial ingredient of our strategy is to combine novel
stochastic optimization techniques with ef!cient stochastic gradient estimators and precondi-
tioning. In section 4.4, we demonstrate the bene!ts of SLBFGS over plain SGD and show
that source encoding schemes lead to much more accurate gradient estimators at the same
computational cost as sub-sampling methods, cf !gure 6. Furthermore, we presented a novel
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Figure 11. Demonstration full inversion scheme. Shown are results computed within
24 h using (a) a desktop PC with one GeForce RTX 2080 Ti GPU, (b) a server with 4
GeForce RTX 2080 Ti GPUs, (c) a cluster with 16 TITAN RTX GPUs. (d)–(f) corre-
sponding error plots. While reconstruction (a) still shows some stochastic gradient noise,
all main anatomical features are visible and there is no systematic quantitative error.

source encoding scheme that exploits the time-invariance of the wave equation by introduc-
ing random time delays to increase the accuracy of the gradient estimate at the expense of
longer computation times. This offers a much !ner variance control than estimate averag-
ing as well as being more accurate, cf !gure 6(b). Embedded in SLBFGS, we showed that
using delayed source encoding will be bene!cial over iterate averaging in the high accuracy
regime, beyond the !xed computation time budget of 24 h we set ourselves in this work, cf
!gure 7. Future work will examine this topic more carefully, e.g., by developing adaptive delay
choice rules and by examining how to balance delays to optimally utilize heterogeneous multi-
GPU computing environments. The encoding scheme presented here relies on the transient
nature of the wave !elds to reduce cross-talk. It would be interesting to compare it to the
approach presented in [8], which obtains impressive results by encoding a harmonic steady
state instead. Finally, one can observe that the error of the source encoding gradient estimates
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appears to be noise-like (cf !gures 3 and 11). As such, it is worth examining whether coupling
source encoding with preconditioning that performs image denoising will further accelerate
the convergence.

Multigrid schemes. The results presented in section 4.7 reveal that using coarse-to-!ne
multi-grid schemes are another essential component of our strategy: even the simple multi-
grid initialization technique presented here accelerates the overall convergence massively. In
the future, we will examine more sophisticated multi-grid schemes.

Further extensions.

• The methods presented here were exclusively implemented in Matlab, using the GPU sup-
port offered by the parallel computing toolbox. Implementing it using optimized CUDA
code will lead to further performance gains [69, 83, 84].

• While we presented the material in terms of a general acoustic parameter u, we only show-
cased the methods for u = c0. The extension to acoustic density ρ0 and attenuation (α0, y)
is described in appendix A and will be examined numerically in future work.

• In this numerical proof-of-concept study, we used idealized assumptions on the transducer
locations and properties. In forthcoming work, we will address realistic transducer and
scan modeling.

• Finally, we will demonstrate the application of this work to real data from experimen-
tal phantoms, healthy volunteers and breast-cancer patients acquired by the PAMMOTH
scanner in the future.

7. Conclusions

In this work, we described and evaluated a comprehensive computational strategy for high res-
olution 3D TD-FWI for UST of the human breast. With moderate computational resources,
accurate results can be obtained within less than a day of computation time. The extent of
the improvements presented here can best be appreciated by comparing !gure 10(a), which
corresponds to our starting point [72] with !gure 11, which showcases our current results.
Similarly promising results were presented in [8], which was developed in parallel to the
work described here. While the computing time and costs of our scheme are still too high
for screening applications, it may well already !t into clinical trajectories for diagnosis and
therapy planing.
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Appendix A. Extension to density and absorption

This section extends the formulas in section 2.3 and lists the remaining derivatives. First,
including absorption with L *= 0, we get

∂L
∂c0

= −2α0(y − 1)cy
0
∂

∂t

(
−∇2) y

2−1
+ 2α0ycy−1

0
∂

∂t

(
−∇2) y+1

2 −1
(14)

as additional terms for the derivative with respect to c0. See [72] for a discussion of their relative
importance. For u = ρ0 we get

∂A
∂ρ0

=

(
∇ · 1

ρ0
− (ρ0∇·) 1

ρ2
0

)
∇. (15)

For u = α0 we get

∂A
∂α0

=
∂L
∂α0

= −2cy−1
0

∂

∂t

(
−∇2) y

2−1
+ 2cy

0 tan(πy/2)
(
−∇2) y+1

2 −1
. (16)

For u = y, we remark that functions of the self-adjoint operator −∇2, are understood in terms
of its spectral decomposition, i.e., in Fourier space (cf [81]) and get

∂A
∂y

=
∂L
∂y

= τ log(c0)
∂

∂t

(
−∇2) y

2−1
+

τ

2
∂

∂t

(
−∇2) y

2−1
log

(
−∇2)

+ α0cy
0

(
2 log(c0) tan

(πy
2

)
+ π sec2

(πy
2

)) (
−∇2) y+1

2 −1

+
η

2

(
−∇2) y+1

2 −1
log

(
−∇2) . (17)

Appendix B. k-space pseudospectral time domain implementation of
time-reversal-based gradient computation

Here we sketch how to implement the proposed memory ef!cient gradient computation (11)
using a k-space TD scheme to solve the underlying !rst order system of equations (1)–(3). It
follows the same approach implemented in k-Wave [80]. For a more detailed description, we
refer to the k-Wavemanual6. The k-space TD method is a collocation scheme that interpolates
between the collocation points using a truncated Fourier series. This allows gradients to be
calculated using the fast Fourier transform (FFT) which leads to fast implementations on GPU
architectures. The ‘k-space’ in the name refers to a correction κ applied in the Fourier domain
to account for the !nite difference approximation of the time derivative. This correction is
exact for a homogeneous medium [77] and reduces the errors for acoustically heterogeneous
media. The spatial domain Ω has to be embedded into a rectangular region, which is then
discretised by a regular grid of N collocation points with grid size ∆x. To mimic free-space
propagation, a perfectly matched layer (PML) absorbing boundary is wrapped around the box
to damp outgoing waves without re"ecting them. In this work, the size of the PML layer is
automatically chosen to be between 10–20 voxels by minimizing the highest prime factor of
the total grid size (cf function getOptimalPMLSize.m in k-Wave). This will lead to
ef!cient fft executions.

6 www.k-wave.org.
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We discretize the measurement time interval [0, T] by tn = n∆t, n = 0, . . . , Nt, ∆t = T/Nt.
The discrete pressure is denoted by p and the ξ-component of the discrete particle velocity
by vξ (ξ stands for one of the spatial components x, y, z of these vector !elds). As the terms
containing∇ρ0(x) in (1)–(3) cancel out, they are omitted [82]. The scalar density ρ is split into
three parts, ρξ . This is nonphysical but allows anisotropic absorption to be included within the
PML. The k-space derivative and the k-space operator κ are de!ned as

∂

∂ξ
g :=F−1 {ikξκF {g}}; κ = sinc

(
cref∆t

2

√
k2

x + k2
y + k2

z

)
, (18)

where kξ ∈ RN is the discrete wavevector in ξ direction and all multiplications between N-
dimensional vectors are understood as componentwise. cref is a reference sound speed, cho-
sen to ensure stability. For consistency during the FWI inversion, we !x cref = cmax

0 . Grid-
staggering is incorporated into the calculation of the gradients. This means that a spatial
translation of ±∆ξ/2 is introduced as

∂±

∂ξ
g :=F−1

{
ikξκ e±ikξ∆ξ/2F {g}

}
. (19)

Staggering in time will be included by interleaving the gradient and updates steps. Multiplica-
tion operators Λξ and Λs

ξ implement the PML on the normal and staggered grid, respectively.
The measurement operator M, i.e., the receiving US transducers, is modeled by a linear map-
ping between spatial grid and measurement channels and is also denoted by M. This assumes
that it acts instantaneously, i.e., in iteration n, we approximate f (tn) = Mp (otherwise, the pres-
sure !elds at the sensor locations need to be buffered). In the same way, a source operator S
will embed the discrete pressure source s(tn) into the spatial grid. After this, Ss(tn) is divided
by c0 pointwise and scaled by 2/(3∆x) to convert it into a mass source, cf section 2.4 in the
k-Wavemanual. To implement the TR-based gradient (11), we need to extract the pressure on
the boundary of sample, ∂Γ, during the forward wave simulation. In our collocation scheme,
we will simply extract the pressure in a layer of grid points with a de!ned thickness as exam-
ined in section 4.3, which we will denote as p(∂Γ) for simplicity. The scheme to compute the
TR-based gradient consists of three wave simulations, forward, adjoint, and time-reversal of
which the latter two are interleaved. For simplicity, we only consider u = c0 here (as in the
numerical studies) and any scaling factors like ∆t have been omitted if they cancel out in the
end. Algorithm 1 describes the whole iteration. Step 13 corrects for the fact that the !rst order
scheme effectively uses the time derivative of the mass source term provided, not the term
itself, cf (6). Code will be released as part of a more general Matlab toolbox for ultrasonic and
photoacoustic image reconstruction.

Appendix C. Multigrid for k-space pseudospectral schemes

In the Fourier collocation scheme described above, the discrete, distributed !eld parameters
(p, v, ρ) implicitly represent band-limited interpolants of the corresponding in!nite dimen-
sional variables (cf section 2.8 in the k-Wave manual). As such, Fourier/trigonometric inter-
polation is the natural way to transfer variables from one spatial grid into another. For regular
spatial grids, this can be implemented ef!ciently using FFTs (cf function interpftn.m in
k-Wave), and can be combined with smoothing in Fourier space. To implement the coarse-to-
!ne initialization strategy described in section 3.3 and examined in section 4.7, we !rst need
to down-sample the temporal dimension of data f δ and our model of the corresponding (mass)
source m to a coarser temporal grid. This is done via a combination of Fourier interpolation and
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Algorithm 1. Time reversal based speed-of-sound gradient computation.

1: Input: s
Forward iteration

2: p, vξ , ρξ ← 0 for all ξ ∈ [x, y, z] # Initialization forward iteration
3: for n = 0, . . . , Nt do # t0 = 0 and tNt = T

4: vξ ← Λs
ξ

(
Λs

ξvξ − ∆t
ρ̃0

∂+

∂ξ p
)

# Momentum conservation, cf (1)

5: ρξ ← Λξ

(
Λξρξ −∆tρ̃0

∂−
∂ξ vξ

)
+ 2∆t

3∆xc0
Ss(tn) # Mass conservation, cf (2)

6: p ← c2
0

(
ρx + ρy + ρz

)
# Pressure–density relation, cf (3)

7: f n ← Mp # Simulate measurement
8: gn ← p(∂Γ) # Extract boundary data
9: end for

setup interleaved adjoint and time reversal iterations
10: ∇D, p, vξ , ρξ , p!, v!

ξ , ρ!ξ ← 0 for all ξ ∈ [x, y, z] # Initialization adjoint and TR iterations
11: qn ← f Nt−n − f δ(T − tn) for all n # Time-reversed residual as adjoint source
12: D ← 1

2‖q‖2
2 # Compute loss

13: q ← cumsum(q) # Integrate q in time
14: p!(∂Γ) ← gNt # Initial value
15: gn ← gn/(3c0(∂Γ)2) for all n # Scale from pressure to density !elds
16: p0

rec ← p!(Γ) # Reconstructed forward !eld in Γ at the current time step
Advance time reversal iteration by one step to get ahead of adjoint iteration:

17: v!
ξ ← Λs

ξ

(
Λs

ξv
!
ξ − ∆t

ρ̃0
∂+

∂ξ p!
)

18: ρ!ξ ← Λξ

(
Λξρ

!
ξ −∆tρ̃0

∂−
∂ξ v!

ξ

)

19: ρ!ξ (∂Γ) ← gNt−1 # Enforce Dirichlet condition
20: p! ← c2

0

(
ρ!x + ρ!y + ρ!z

)

21: p+
rec ← p!(Γ) # Reconstructed forward !eld at n + 1

Advance adjoint and time reversal iterations simultaneously:
22: for n = 1, . . . , Nt − 1 do
23: vξ ← Λs

ξ

(
Λs

ξvξ − ∆t
ρ̃0

∂+

∂ξ p
)

24: ρξ ← Λξ

(
Λξρξ −∆tρ̃0

∂−
∂ξ vξ

)
+ 2∆t

3∆xc0
MTqn
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Algorithm 1. Continue.

25: p← c2
0

(
ρx + ρy + ρz

)

26: v!
ξ ← Λs

ξ

(
Λs

ξv
!
ξ − ∆t

ρ̃0
∂+

∂ξ p!
)

27: ρ!ξ ← Λξ

(
Λξρ

!
ξ −∆tρ̃0

∂−
∂ξ v!

ξ

)

28: ρ!ξ (∂Γ) ← gNt−n−1

29: p! ← c2
0

(
ρ!x + ρ!y + ρ!z

)

30: p−rec ← p0
rec

31: p0
rec ← p+

rec
32: p+

rec ← p!(Γ)
33: ∇D ←∇D + 2

∆tc3
0

(
p+

rec − 2p0
rec + p−rec

)
p(Γ) # Assemble gradient, cf (10), p corresponds to q∗

34: end for
35: return: D,∇D
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Figure 12. Mass source signals m(t) and corresponding simulated measurements f (t) on
different spatio-temporal grids (η = 2) for a random source-receiver pair. The signals on
coarser grids result from Fourier interpolation of the !ne grid signals followed by low-
pass !ltering. The signals have been rescaled for comparison. On each level, the temporal
!ltering used to remove the highest frequencies not supported by the grid introduces a
different phase shift. However, as the shift is the same for source and measured time
series, it does not affect the FWI results.

low-pass !ltering with a Kaiser window (cf function filterTimeSeries.m in k-Wave)
to remove frequencies not supported by the numerical scheme. The data additionally needs
to be scaled by ηd−1. Figure 12 illustrates the results. After the FWI solution uc is computed
on the coarse grid, we need to up-sample it to initialize the FWI on the next, !ner grid. For
this, we use a combination of Fourier interpolation and smoothing with a Blackman window
(cf section 2.8 in the k-Wave manual): u f ← interpftn(uc, [N f

x , N f
y , N f

z ], ‘Blackman’),
where [N f

x , N f
y , N f

z ] are the dimensions of the !ne spatial grid.

Appendix D. L-BFGS with stochastic gradient estimates

We want to minimize an energy J (u) as in (8) while only having access to an unbiased esti-
mator g(u, θ, n) of (J (u),∇J (u)). Here, θ ∈ [0, 1] determines the approximation strength of g
where θ = 0 corresponds to no approximation, e.g., g(u, 0, ·) = J (u), and θ = 1 to maximal
approximation, e.g., by using a data sub-set S in gS of size one. In our implementation, θ can
be a function of the iteration count i. The last input n ∈ N in g(u, θ, n) controls the stochastic
approximation performed by g. For instance, it could seed the random generator used to select
S in gS . Important for the algorithm is only that it leads to the same type of approximation for
different u, e.g., for a given θ, n, gS(·, θ, n) always uses the same subset of data S.

Algorithm 2 describes the stochastic L-BFGS (SLBFGS) scheme used in this work, which is
based on the one presented in [27]. See section 6.2 in [14] and references therein for a detailed
discussion of stochastic quasi-Newton schemes. The key idea is that for computing the vectors
used to construct the low-rank approximation of the inverse Hessian, Hk, only iterate pairs
evaluated with the same stochastic approximation should be used. This increases the number
of gradient computations to at least two per iteration (more if line-search is used) but the second
gradient evaluation can be utilized to compute a second update. In [27], no bound constraints
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umin ! u ! umax were considered. Here, we include them but assume that they are not active
at the vicinity of the solution. This means that they do not stabilize the image reconstruction
problem. Rather, they merely safeguard against running the numerical wave simulation scheme
with values of the parameter !elds u that would lead to instability. For this reason, we enforce
them by a simple projection of the updated variable uk at the end of each iteration (step 23). We
use progressive iterate averaging with w(i) = i3, but only start averaging after the estimated
energy increases for the !rst time (step 31). We use history size mh = 64 throughout the paper.
Code will be released as part of a more general Matlab toolbox for deterministic and stochastic
reconstruction.

Appendix E. Delayed source encoding for time-invariant systems

Here, we examine the conventional and delayed source encoding described in section 3.2 in
more detail. It is crucial that we assumed that the acoustic properties are known everywhere
outside the sampleΓ (e.g., supp(u) ⊂ Γ), and that p(x, t) is not practically measurable for t > T
anymore. Let p̂ and q̂∗ be the forward and adjoint wave !elds corresponding to the delayed
encoded sources ŝ and measurements f̂ δ , cf (13). By the linearity and time invariance of the
wave equation, we have p̂(x, t) =

∑
iwi pi(x, t − diτ ) and q̂∗(x, t) =

∑
iwiq∗

i (x, t − diτ ). With
this, we get (cf section 2.3 and (10)):

∇uD
(

f̂ (u), f̂ δ
)

=

∫ T+τ

0

(
∂A
∂u

p̂(x, t)
)

q̂∗(x, t) dt

=
ns∑

i, j

wiw j

∫ T+τ

0

(
∂A
∂u

pi(x, t − diτ )
)

q∗
j(x, t − d jτ ) dt

=
ns∑

i

w2
i

∫ T+τ

0

(
∂A
∂u

pi(x, t − diτ )
)

q∗
i (x, t − diτ ) dt

+
ns∑

i *= j

wiw j

∫ T+τ

0

(
∂A
∂u

pi(x, t − diτ )
)

q∗
j(x, t − d jτ ) dt

=
ns∑

i

w2
i

∫ T

0

(
∂A
∂u

pi(x, t)
)

q∗
i (x, t) dt

+
ns∑

i *= j

wiw j

∫ T+τ

0

(
∂A
∂u

pi(x, t − diτ )
)

q∗
j(x, t − d jτ ) dt

=
ns∑

i

w2
i ∇uD

(
fi(u), f δi

)

+
ns∑

i *= j

wiw j

∫ T+τ

0

(
∂A
∂u

pi(x, t − diτ )
)

q∗
j(x, t − d jτ ) dt.

(20)

With E [w] = 0, Cov[w] = I, it is easy to see now that E
[
∇uD

(
f̂ (u), f̂ δ

)]
= ∇J (u). If we

choose the Rademacher distribution (wi = ±1 with equal probability), we have that w2
i = 1
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Algorithm 2. Stochastic limited memory BFGS (SLBFGS).

1: Inputs: u, H0, w, mh, Nevl, ν,do_linesearch # Initial value, initial approx of
inverse Hessian, weight function,

history size, maximal function
evaluations, step size, Boolean

determining if linesearch is used
2: ū, w̄ ← 0 # Averaged iterates,

accumulated weights
3: J0 ←∞ # Energy estimate
4: S, Y ← [] # Initialize buffer to empty array
5: average_iterates ← false # Iterate averaging is inactive
6: i ← 0 # Number of iterations
7: while nevl < Nevl do # Iterate until max number of

function evaluations reached
8: i ← i + 1 # Increase iteration count
9: Fu, Gu ← g(u, θ(i), i) # Evaluate estimator
10: nevl ← nevl + 1 # Update function evaluation count
11: z ←−twoLoopRecursion(Gu, S, Y , H0) # Implements z = −HkGu

12: if do_linesearch then
13: Fz, Gz, ν, mevl ← lineSearch(u, z, g( · , θ(i), i), ν) # Line-search on f (u) := g(u, θ(i), i)
14: else
15: Fz, Gz ← g(u + νz, θ(i), i) # Evaluate estimator at u + νz
16: mevl ← 1
17: end if
18: nevl ← nevl + mevl # Update function evaluation count
19: S ← updateBuffer(νz, S, mh) # Update buffer S
20: Y ← updateBuffer(Gz − Gu, Y , mh) # Update buffer Y
21: z ← z − twoLoopRecursion(Gz, S, Y , H0) # Implements z = z − HkGz

22: u ← u + νz # Update u
23: u ← max(min(u, umax), umin) # Project onto bound constraints
24: Ji ← min(Fu, Fz) # Update energy estimate
25: if average_iterates then
26: ū ← ū + w(i)u # Update accumulated

weighted iterates
27: w̄ ← w̄ + w(i) # Update accumulated weights
28: û ← ū/w̄ # Update estimate for minimizer
29: else
30: if Ji > Ji−1 then # First increase in estimated

energy activated averaging
31: average_iterates← true
32: end if
33: û ← u # Update estimate for minimizer
34: end if
35: end while
36: return: û, J
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Figure 13. Temporal evolution of the pressure !eld power Pi(t) for eight different
sources.

and

∇uD
(

f̂ (u), f̂ δ
)

= ∇J (u) +
ns∑

i *= j

wiw jXi j,

where Xi j :=
∫ T+τ

0

(
∂A
∂u

pi(x, t − diτ )
)

q∗
j(x, t − d jτ )dt

(21)

is the cross talk between sources i and j. To examine the impact of delays (τ > 0) vs con-
ventional source encoding (τ = 0), we assume d̄ = d j − di > 0 without loss of generality and
shift the time in the integral by diτ to get

Xi j(τ ) =

∫ T+τ

0

(
∂A
∂u

pi(x, t)
)

q∗
j(x, t − d̄τ )dt. (22)

For τ " T/d̄, the delay between both sources is bigger than T, and from our assumptions, it
follows that Xi, j(τ ) = 0. To obtain generic estimates for τ < T/d̄, one needs to estimate how
fast the !eld power

Pi(t) :=
∫

Γ
p2

i (x, t)dx (23)

decays inside Γ. For such decay estimates, see section ‘local energy decay estimates’ in [57]
and references therein. In 3D, there is a Td such that Pi(t) < a e−bt with a, b > 0 for all t > Td .
In !gure 13, we plot Pi(t) for eight different sources in the scenario used in the numerical
studies to show that practically, the decay is quite rapid, which is also con!rmed by the results
in section 4.4, cf !gure 6.

Appendix F. Noise sensitivity

In this section, we demonstrate the impact of adding measurement noise to the simulated
data. The noise characteristics of UST systems can differ quite a lot from conventional linear
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Figure 14. (a) Comparison of clean data f (t) and noisy data f (t) + ε(t) for SNR 5: the
clean data is the same time trace shown as ‘ f (t) !ne level’ in !gure 12. The noise signal
ε(t) for SNR 10, 15, 20, 25, 30 is the same just multiplied with 10

5−SNR
20 = 0.56, 0.32,

0.18, 0.10, 0.056. (b) Quantitative results of the noise sensitivity study.

array US systems, e.g., both the US transducers and the data acquisition (DAQ) system of the
PAMMOTH scanner were custom designed and a detailed noise characterization will be
included in forthcoming work. Here, we will assume that an additive Gaussian noise model
is adequate to summarize the different noise contributions and further that a decorrelation
transform will render its covariance matrix suf!ciently close to a scaled identity:

f δ = A(u†) + ε, with ε ∼ N (0, σ2 I). (24)

In the following, we will use values of σ determined by the signal-to-noise (SNR) level de!ned
in terms of the root mean square (RMS) of the clean signal f as

σ = RMS( f ) 10−SNR/20. (25)

Figure 14(a) shows an example of a clean and noisy time trace for SNR 5.
Without measurement noise (ε = 0), all noise-like features in the reconstructed images were

a result of using stochastic gradient estimators in the optimization schemes to solve the FWI
problem (8), i.e., a purely numerical phenomena. This ‘gradient-noise’ vanishes as the iteration
progresses (cf !gure 3) or if more accurate gradient estimators are used (cf !gure 11). From the
way that ∇J (u) is computed as presented in section 2.3 is clear that any measurement noise
ε > 0 will be back-propagated into the image alongside with the data residual. As the iteration
progresses, the norm of this type of image noise will grow while its spectral content changes.
This phenomena arises from the fact that in principle, we use a Landweber-type iteration to
solve an ill-conditioned inverse problem (7). See [15, 90] for a general introduction into this
topic. Here, we illustrate these two opposing effects by !rst using exactly the same settings
as in section 5 on a single GPU for different SNR values. The !rst column of !gures 15 and
16 show that while SNR 30 is visually indistinguishable from clean data result (!gure 11(a))
the image noise increases towards SNR 5. Then we change the number of gradient evaluations
on !nest spatial level from 32 to 64. The second column of !gures 15 and 16 and the !rst
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Figure 15. Qualitative results of the noise sensitivity study. Shown are different com-
binations of noise level (SNR), maximal number of gradient evaluations (32 eval vs
64 eval) and of using additional total variation regularization.
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Figure 16. Error plots corresponding to !gure 15.
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two plots in !gure 14(b) show the results and con!rm that for the highest noise level (SNR =
5), doing more iterations now indeed leads to a worse result. To prevent this, we will need to
add a regularization functional to the data !delity

∑ns
i Di(u) in (8). For simplicity, we use a

smoothed version of the popular total variation (TV) functional as described in [90] here:

min
u∈U

ns∑

i

Di(u) + αTV(u) with

TV(u) :=
∑

i

√
(∂xu)2

i +
(
∂yu

)2
i + (∂zu)2

i + β2 − β, (26)

where we set β to 1 m s−1 and !x α > 0 to an illustrative value that ensures observable impact
of the regularization (for optimal results, one would need to choose it in dependence of σ).
The third and fourth columns of !gures 15 and 16 and the second two plots in !gure 14(b)
show that now the errors do not increase with increasing iteration count. Note however that
it is not straight forward to predict the overall impact of adding regularization to FWI and
in particular the question which type of functionals are advantageous for breast UST needs
further research.

ORCID iDs

Felix Lucka https://orcid.org/0000-0002-8763-5177
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