
Performance Evaluation of Pseudospectral
Ultrasound Simulations on a Cluster of Xeon Phi

Accelerators

Filip Vaverka1[0000−0002−7960−5752], Bradley E. Treeby2[0000−0001−7782−011X],
and Jiri Jaros1[0000−0002−0087−8804]

1 Brno University of Technology, Faculty of Information Technology,
Centre of Excellence IT4Innovations,

Bozetechova 2, 612 00 Brno, Czech Republic
{ivaverka,jarosjir}@fit.vutbr.cz

2 University College London, Medical Physics and Biomedical Engineering,
WC1E 6BT London, United Kingdom

b.treeby@ucl.ac.uk

Abstract. The rapid development of novel procedures in medical ul-
trasonics, including treatment planning in therapeutic ultrasound and
image reconstruction in photoacoustic tomography, leads to increasing
demand for large-scale ultrasound simulations. However, routine execu-
tion of such simulations using traditional methods, e.g., finite difference
time domain, is expensive and often considered intractable due to the
computational and memory requirements. The k-space corrected pseu-
dospectral time domain method used by the k-Wave toolbox allows for
significant reductions in spatial and temporal grid resolution. These im-
provements are achieved at the cost of all-to-all communication, which
are inherent to the multi-dimensional fast Fourier transforms. To improve
data locality, reduce communication and allow efficient use of accelera-
tors, we recently implemented a domain decomposition technique based
on a local Fourier basis.
In this paper, we investigate whether it is feasible to run the distributed
k-Wave implementation on the Salomon cluster equipped with 864 Intel
Xeon Phi (Knight’s Corner) accelerators. The results show the immatu-
rity of the KNC platform with issues ranging from limited support of
Infiniband and LustreFS in Intel MPI on this platform to poor perfor-
mance of 3D FFTs achieved by Intel MKL on the KNC architecture.
Yet, we show that it is possible to achieve strong and weak scaling com-
parable to CPU-only platforms albeit with the runtime 1.8× to 4.3×
longer. However, the accounting policy for Salomon’s accelerators is far
more favorable and thus their employment reduces the computational
cost significantly.

Keywords: Ultrasound simulations · Local Fourier basis decomposition
· Pseudospectral methods · Ultrasound · k-Wave toolbox · Intel Xeon Phi
· Knight’s Corner · MKL · MPI · OpenMP.

2 F. Vaverka, B. Treeby, J. Jaros

1 Introduction

There is a growing number of medical applications of ultrasound such as photoa-
coustic imaging [1], neurostimulation [28] and high intensity focused ultrasound
(HIFU) cancer treatment [5,18]. These applications require fast, accurate and
versatile ultrasound propagation models in tissue-like materials at various stages
such as planning or post-processing. Typically, these requirements can be met
with models based on the generalized Westervelt equation [22], which allows for
modeling nonlinear ultrasound wave propagation through heterogeneous medium
with a power law absorption. Due to this demand, several ultrasound modeling
packages for medical applications have been released along with our k-Wave
toolkit, see [9] for a recent review. The majority of those packages employ ei-
ther finite-difference time-domain (FDTD) method, pseudospectral time-domain
(PSTD) method or a variant of operator-splitting methods. The k-Wave tool-
box is among a few based on the k-space pseudo-spectral time-domain (KSTD)
method.

FDTD methods scale well on large parallel systems using a straightforward
domain decomposition and halo exchange over the nearest neighbors [31]. How-
ever, most FDTD schemes require between 8 to 10 grid points per wavelength to
achieve sufficient accuracy and even more to manage dispersion in cases where
propagation over a large number of wavelengths has to be modeled [17]. This
makes many realistic ultrasound simulations intractable due to high memory
requirements. The PSTD methods can theoretically approach the Nyquist limit
of 2 grid points per wavelength and thus significantly reduce the memory re-
quirements. The KSTD method improves on the PSTD method by using a semi-
analytical time-stepping schemes [25] which complements excellent spatial prop-
erties with a larger time step size. The main drawback of PSTD and especially
KSTD methods is the introduction of a global trigonometric basis and the use of
the fast Fourier transform (FFT) to implement gradient operators. The KSTD
method requires, due to the k-space correction, 3D FFTs which inherently limit
the scalability of this method on parallel distributed, and especially on accel-
erated systems [13]. Although a lot of work on efficient distributed FFTs has
been carried out (FFTW [7], Hybrid FFTW [20], P3DFFT [21], PFFT [23], Ac-
cFFT [8], multi-GPU CUDA FFT [19] or FFT-ECP [26]), the computation time
is still often determined by the communication between subdomains, which in
many cases prevents the use of accelerators such as GPUs or Intel Xeon Phis.

This paper investigates the possibility of deploying a distributed implementa-
tion of the KSTDmethod implemented in the k-Wave toolbox [14] on a large clus-
ter of Intel Xeon Phi accelerators. The method combines advantages of FDTD
and KSTD methods by replacing global Fourier basis with a set of local ones [12],
thus achieving communication complexity of an FDTD method while maintain-
ing many properties of a KSTD method. The following section briefly describes
the principle of the local Fourier basis decomposition. Next, the architecture of
the accelerated cluster is described in Sec 3. After that, the implementation is
briefly explained in Sec 4 and achieved scaling results are presented in Sec 5.

Ultrasound Simulations on a Cluster of Xeon Phi Accelerators 3

Finally, Sec 6 investigates performance of the accelerators and the last section
draws conclusions on usability of the platform.

2 Local Fourier Basis Domain Decomposition

The numerical model of the nonlinear wave propagation in heterogeneous ab-
sorbing medium investigated in this paper is based on the governing equations
derived by Treeby [27] written as three-coupled first-order partial differential
equations:

∂u

∂t
= − 1

ρ0
∇p+ F , (momentum conservation)

∂ρ

∂t
= −ρ0∇ · u− u · ∇ρ0 − 2ρ∇ · u+M , (mass conservation)

p = c20

(
ρ+ d · ∇ρ0 +

B

2A

ρ2

ρ0
− Lρ

)
. (equation of state)

(1)

Here u is the acoustic particle velocity, d is the acoustic particle displacement,
p is the acoustic pressure, ρ is the acoustic density, ρ0 is the ambient (or equilib-
rium) density, c0 is the isotropic sound speed, B/A is the nonlinearity parameter,
and operator L captures power law absorption and dispersion. Two linear source
terms are also included, where F is a force source term, and M is a mass source.

In the k-Wave toolbox, the model (1) would normally be directly discretized
using the KSTD method (see [27]). However, to alleviate the global communi-
cation overhead, we instead divide the simulation domain into a set of cuboid
subdomains, each of which supported by its own local Fourier basis [12] (LFB
for short). The neighboring subdomains are coupled by overlapping each other
and the overlaps are also used to restore their local periodicity [2], see Fig. 1.

Subdomain 1 Subdomain 2 Subdomain 3

(a) Overlap exchange

Large-scale Ultrasound Simulations with Local Fourier Basis Decomposition

Jiri Jaros1, Filip Vaverka1 and Bradley E. Treeby2

1 Overview

High-intensity focused ultrasound (HIFU) is an emerging non-

invasive cancer therapy that uses tightly focused ultrasound waves to

destroy tissue cells through localised heating. The treatment planning

goal is to select the best transducer position and transmit parameters

to accurately target the tumour. The path of the ultrasound waves can

be predicted by solving acoustic equations based on momentum,

mass, and energy conservation. However, this is a computationally

difficult problem because the domain size is very large compared to

the acoustic wavelength.

2

3

4

5

1Faculty of Information Technology, Brno University of Technology, CZ

The project is financed from the SoMoPro II programme. The research leading to this invention has acquired a financial grant from the People Programme (Marie Curie action) of the Seventh Framework Programme of EU according to the REA Grant Agreement

No. 291782. The research is further co-financed by the South-Moravian Region. This work reflects only the author’s view and the European Union is not liable for any use that may be made of the information contained therein.

This work was supported by The Ministry of Education, Youth and Sports from the Large Infrastructures for Research, Experimental Development and Innovations project „IT4Innovations National Supercomputing Center – LM2015070“The authors would like to

acknowledge that the work presented here made use of Emerald, a GPU-accelerated High Performance Computer, made available by the Science & Engineering South Consortium operated in partnership with the STFC Rutherford-Appleton Laboratory.

Nonlinear Ultrasound Wave Propagation in Tissue

The governing equations must account for the nonlinear propagation

of ultrasound waves in tissue, which is a heterogeneous and

absorbing medium. Accurately accounting for acoustic absorption is

critical for predicting ultrasound dose under different conditions. The

required acoustic equations can be written as:

These equations are discretised using the k-space pseudo-spectral

method and solved iteratively. This reduces the number of required

grid points per wavelength by an order of magnitude compared to

finite element or finite difference methods. For uniform Cartesian

grids, the gradients can be calculated using the fast Fourier transform.

Local Fourier Basis Accuracy

Since the gradient is not calculated on the whole data, numeric error

is introduced. Its level can be tuned by the thickness of the halo

region.

Performance Investigation

The strong scaling and simulation time breakdown were investigated

on Emerald and Anselm clusters with up to 128 GPUs.

momentum conservation

mass conservation

pressure-density relation

Local Fourier Basis Decomposition

Local domain decomposition reduces the communication burden by

partitioning the domain into a grid of local subdomains where

gradients are calculated locally and the global communication is

replaced by the nearest-neighbor halo exchange.

The gradient calculation with the hallo on an i-th subdomain reads as

follows (b is a bell function smoothening the subdomain interface):

𝜕𝑝𝑖
𝜕𝑡

= 𝔽−1 𝑖𝑘𝑖𝔽(𝑏 ∙ 𝑝𝑖)

subdomain 1 subdomain 2 subdomain 3

local data

bell function

periodic data

Realistic Simulations and Their Costs

Pressure field from a prostate ultrasound transducer simulated using

a domain size of 1536 x 1024 x 2048 (45mm x 30mm x 60mm) with

48,000 time steps (60μs).

6

Compute Resources Simulation Time Simulation Cost

96 GPUs 14h 09m $475

128 GPUs 9h 29m $426

128 CPU cores 6d 18h $1,826

256 CPU cores 3d 0h $1,623

512 CPU cores 2d 5h $2,395

0

5

10

15

20

25

30

35

40

45

50

2 4 8 16

Number of GPUs

Anselm - K20s

0

5

10

15

20

25

30

35

40

45

50

4 8 16 32 64 128

T
im

e
 p

e
r

1
0

0
 t

im
e

s
te

p
s

 [
s

]

Number of GPUs

Emerald - C2070

MPI

PCE-E

Comp

1

2

4

8

16

32

64

128

1 2 4 8 16 32 64 128

T
im

e
 p

e
r

1
0

0
 t

im
e

s
te

p
s

 [
s

]

Number of GPUs

Emerald - C2070

256x256x256 256x256x512 256x512x512

512x512x512 512x512x1024 512x1024x1024

1024x1024x1024 1024x1024x2048
1

2

4

8

16

32

64

128

1 2 4 8 16

Number of GPUs

Anselm - K20s

Actual focus

Intended focus

256 x 256 x 2048

2Medical Physics and Biomedical Engineering, University College London, UK

(b) Periodicity restoration

Fig. 1: The principle of local Fourier basis domain decomposition shown for one
spatial dimension. (a) The local subdomain is padded with a few grid points
(overlap) from both neighboring subdomains which are periodically exchanged.
(b) After the overlap exchange, each local domain is multiplied by a bell function
to restore periodicity.

4 F. Vaverka, B. Treeby, J. Jaros

The computation itself consists of an iterative algorithm running over a given
number of time steps. Each time step is composed of a sequence of element-wise
operations, overlap exchanges and local 3D FFTs, see Fig. 2. The majority of
the computation time is usually spent on 3D FFTs or overlap exchanges. The
restriction of the Fourier basis to the local subdomain has naturally a negative
impact on the accuracy of the LFB method. The amount of accuracy loss depends
on the overlap size and the properties of the bell function used [3,14,29].

Fig. 2: Simplified computation loop governed by Eq. (1). Blue blocks denote
element-wise operations, yellow 3D FFTs, and orange overlap exchanges.

3 Target Architecture

The target architecture investigated in this paper is a typical Intel/Infiniband
cluster accelerated with Intel Xeon Phi cards of the Knight’s Corner architecture
[15]. The experiments were conducted on the Salomon supercomputer at the
IT4Innovations national supercomputing center in Ostrava, Czech Republic3.

Salomon consists of 1008 compute nodes, 432 of which are accelerated by Intel
Xeon Phi 7120P accelerators. The architecture of the Salomon’s accelerated part
is shown in Fig. 3. Every node consists of a dual socket motherboard populated
with two Intel Xeon E5-2680v3 (Haswell) processors accompanied with 128 GB
of RAM. The nodes also integrate a pair of accelerators connected to individual
processor sockets via the PCI-Express 2.0 x16 interface. The communication
between processors is handled by the Intel QPI interface.

The nodes are interconnected by a 7D enhanced hypercube running on the
56Gbit/s FDR Infiniband technology. The accelerated nodes occupy a subset of
this topology constituting a 6D hypercube. Every node contains a single Infini-
band network interface (NIC) connected via PCI-Express 3.0 to the first socket,
and a service 1Gbit/s Ethernet interface connected to the same socket. Both
accelerators are capable of directly accessing the Infiniband NIC by means of
Remote Direct Memory Access (RDMA).

A single Intel Xeon Phi 7120P accelerator packs 61 P54C in-order cores ex-
tended by 4-wide simultaneous multithreading (SMT) and a 512-bit wide vector

3https://docs.it4i.cz/salomon/hardware-overview/

Ultrasound Simulations on a Cluster of Xeon Phi Accelerators 5

processing unit (VPU). The Xeon Phi cores are supported by 30.5MB of L2 cache
evenly distributed over individual cores and interconnected via a ring bus. The
memory subsystem consists of 4 memory controllers managing in total 16GB of
GDDR5. The theoretical performance and memory bandwidth of a single accel-
erator is over 2 TFLOP/s in single precision and 352GB/s, respectively. A single
accelerator can theoretically provide a speedup of 4× for compute bound, and
5× for memory bandwidth bound applications over a single twelve core Haswell
processor. The total compute power of the accelerated part of the cluster reaches
one PFLOP/s.

30 GFlop/s

1 GB
100 GB/s

PCI-EPCI-E

MIC 1MIC 2

CPUCPU RAM

RAM

RAM

RAM

IB
 N

IC
G

b
E
 N

IC

GbE

PCI-E PCI-E

MIC 1 MIC 2

CPU CPURAM

RAM

RAM

RAM

IB
 N

IC
G

b
E
 N

IC

7
D

 H
-C

U
B
E

Fig. 3: The architecture of the Salomon accelerated nodes and interconnection.
The size of the rectangles representing individual components is proportional to
their performance, bandwidth or capacity.

4 Implementation

4.1 Execution Mode

The Intel Xeon Phi offers three different modes of execution: (1) The offload
mode is an analogy to the GPGPU approach where the accelerator is controlled
by the CPU and used only for the compute intensive tasks. (2) The native
mode uses the accelerator as an isolated compute node with shared memory.
(3) The cluster mode allows accelerators to be connected using the message
passing interface (MPI) and run distributed jobs over many accelerators. In this
mode, the CPUs can be used either to only run the operating system, or join the
distributed job as additional workers, although with reduced compute power.

The proposed implementation uses Intel Xeon Phis in the native mode, which
allows for direct access to NICs through the RDMA mechanism and thus should
achieve the best performance in MIC-to-MIC communication. Overall the PSTD
and KSTD methods tend to be memory bound as they exhibit relatively low
arithmetic intensity on the order of O(log n). Therefore, the k-Wave toolbox
favors architectures with high memory bandwidth and fast access to the network.

The code is logically structured into one MPI process per subdomain which
runs on a single accelerator (or CPU socket). The work local to each subdomain
is distributed across cores by means of OpenMP and OpenMP SIMD constructs.
Since realistic simulations do not require double precision, only single precision

6 F. Vaverka, B. Treeby, J. Jaros

floating point operations are used. This yields higher performance and saves
valuable memory bandwidth. The k-Wave LFB code boils down to a mix of
element-wise operations on 3D real or complex matrices, 3D fast Fourier trans-
forms and overlap exchanges. The following sections briefly describe most im-
portant operations, however, more details can be found in [29].

4.2 Fast Fourier Transforms

The most computationally expensive part of the simulation loop consists of a
number of 3D fast Fourier transforms calculated over the local subdomains.
Depending on which medium parameters are heterogeneous, the number of FFTs
varies between ten and fourteen. Their actual implementation relies on third
party libraries compatible with the FFTW interface [7], in this case the Intel
MKL library [11] which showed better results than FFTW on the Intel Xeon
Phi architecture [30].

The simulation code mostly uses out-of-place real-to-complex and complex-
to-real transforms which reduces both the spatial and temporal complexity of
the FFT by a factor of two [24]. However, the implementation of the out-of-place
C2R transforms in the MKL library has proved to be very inefficient on the Intel
Xeon Phi Knight’s Corner. Hence, the C2R transforms are performed in-place
using a temporary matrix and the results consequently copied to the destina-
tion matrix. The performance characteristics of the 3D FFT implementation are
further analyzed in Sec. 6.2.

4.3 Overlap Exchanges

The gradient or derivative calculation on a subdomain can be performed only
after gathering the most recent data from all its neighbors. This is accommodated
by exchanging the overlap regions between neighboring subdomains before every
such operation, see the orange bars in Fig. 2. The size of these transfers range
from N3

d to Nx ×Ny ×Nd grid points, where Nd is the overlap size and N{x,y,z}
the subdomain edge length.

Since the overlaps have to contain the most recent data, it is difficult to
properly hide the communication by overlapping it with useful computation.
However, our implementation structurally allows to hide up to 50% of the com-
munication by exploiting stages where multiple arrays have to be updated at the
same time. This is achieved by a combination of persistent communications and
non-blocking calls provided by MPI, see Listing 1.

Ultrasound Simulations on a Cluster of Xeon Phi Accelerators 7

1 // Initialization stage
2 for (auto &m: /* Velocity matrices U_x, U_y, U_z */) {
3 for (auto &n: m.getNeighbors()) {
4 MPI_Send_init(n.data, n.size, n.otherRank, /* ... */);
5 MPI_Recv_init(n.data, n.size, n.otherRank, /* ... */);
6 }
7 }
8

9 // Main simulation loop stage
10 for (auto &m: /* Velocity matrices U_x, U_y, U_z */)
11 MPI_Startall(m.getRequests().size(), m.getRequests().data());
12

13 for (auto &m: /* Velocity matrices U_x, U_y, U_z */) {
14 // Partially overlapped communication
15 MPI_Waitall(m.getRequests().size(), m.getRequests().data(),
16 /* ... */);
17 Compute_Forward_FFT_3D(m);
18 }

Listing 1: The principle of the communication overlap during the velocity gra-
dient calculation. A set of persistent communications are created during the
initialization stage (Line 1–7). The overlap exchange for multiple matrices is
started in the simulation loop (Line 9–11). As soon as the communication for
a given matrix has finished, the computation starts. The other transfers can be
still in flight (Line 13–17).

4.4 Parallel Input and Output

The simulation of nonlinear ultrasound wave propagation in large realistic do-
mains naturally requires a fast and scalable input-output subsystem. Not only
may typical medium, source and input signal descriptions occupy tens to hun-
dreds of GBs, the simulation outputs in the form of pressure and velocity time
series can easily spread over a few TBs [16].

The parallel I/O subsystem of the k-Wave toolbox is based on the Parallel
HDF5 library [6] supported by the MPI-IO back-end [4]. In combination with
the parallel LustreFS file system, very good throughput reaching up to 15GB/s
has been achieved on several clusters [10].

Although the parallel I/O is not intended to be deeply investigated in this
paper, there is a key observation that needs to be mentioned because of it being a
significant source of issues on the accelerated part of the Salomon supercomputer.
The obstacle is the lack of LustreFS support in the Xeon Phi implementation of
the Intel MPI library. This makes the use of the distributed scratch file system
impossible and forces us to use an NFS mounted home file system, not primarily
intended for parallel I/O. As a consequence, the amount of data being collected
was severely limited to avoid any inference in the experiments.

8 F. Vaverka, B. Treeby, J. Jaros

5 Scaling Results

5.1 Overview

The main objective of this section is to investigate the performance and scaling
properties of the cluster of Intel Xeon Phi accelerators in simulating ultrasound
wave propagation. The secondary objective is the evaluation of the software
support and the ease of use of the whole platform.

The experiments were conduced on various numbers of Salomon’s accelerated
nodes ranging from 1 up to 256 (512 accelerators). Since Salomon’s hypercube
interconnection topology has some blocking factor, there is a measurable vari-
ation between the job instances stemming from the different placement of the
MPI processes on currently available nodes. Although the job placement can be
restricted manually, it significantly prolongs the waiting time in the queues and
thus was not used. Instead, particular benchmark runs of the same type were
packed into a single large job to maintain fair conditions. Different job alloca-
tions were used for benchmarking subdomains placed over CPUs and accelera-
tors. Therefore, a small variation between these benchmarks may be observed,
however, it is considered insignificant from the perspective of the overall scaling
trends and even the absolute performance.

Every benchmark run consisted of 100 time steps of the simulation loop
summarized in Fig. 2. This number is deemed sufficient to hide any cache and
communication warm-up effects. All experiments, if not stated otherwise, were
performed with the most typical overlap size of 16 grid points.

The following subsections first focus on obtaining the performance and scaling
results for the largest possible simulation domains while trying to work around
the stability and HW/SW support issues. However, some issues are related to
high numbers of nodes used for large simulation domain sizes. It was not possible
to resolve these issues even after consultation with the Salomon support and the
vendor. In the second subsection, we thus limited the simulation domain size
and the number of nodes used to mimic an ideal situation. Finally, the most
significant stages of the KSTD solver are analyzed and discussed.

5.2 Performance Scaling on Large Domains

Driven by the practical demands from industry and medical physics, we first
focus on the performance scaling of large simulation domains spread over many
accelerators. The simulation domain sizes of interest are expanded from 256 ×
256× 256 (224) to 2048× 2048× 2048 (233) grid points by sequentially doubling
the dimension sizes starting from the least significant one. The domains are
partitioned into a number of subdomains growing from 1 to 256. The numbers
of subdomains for particular domain sizes are further restricted by the size of
the smallest meaningful subdomain (643) and the largest possible subdomain
(256× 256× 512) that can fit within memory, excluding the overlaps. Particular
subdomains are assigned either to a single accelerator or a single CPU socket.
This allows us to mutually compare performance scaling of both architectures.

Ultrasound Simulations on a Cluster of Xeon Phi Accelerators 9

Figures 4 and 5 show the strong and weak scaling achieved by both archi-
tectures. Although the whole range of overlap sizes between 2 to 32 grid points
was investigated, only the most common overlap size of 16 is presented for the
sake of brevity. The scaling of small overlap sizes generally does better due to a
higher degree of communication overlapping. For bigger overlap sizes, the abso-
lute execution time is more influenced by the communication time elaborated in
Fig. 8 and the strong scaling curves appear flatter.

A brief glance at Fig. 4 reveals a significant disparity between the perfor-
mance of CPUs and accelerators. The dramatic slowdown on the accelerator side
is caused by the communication layer, more specifically the Intel MPI Infiniband
backend DAPL [15], which becomes unstable for more than 32 accelerators in a
single job. This problem was discussed in detail with the cluster support team
and the vendor specialists but has not been resolved yet. The only solution that
proved to be stable was to replace the 56Gbit Infiniband by a 1Gbit Ethernet
interface. This typically leads to a 4.3× slower execution compared to CPUs.
Nevertheless the code maintains reasonable strong scaling factors of 1.45 (av-
erage speedup achieved by doubling the computational resources) comparable
with the execution on CPUs. The only reason why the performance slump is
not even deeper is the limited performance of the FFTs on the accelerators, and
therefore, better opportunity for communication overlapping.

Examining further the CPU and accelerator scaling plots, there are very few
anomalies in the scaling curves. The most significant are apparent for very small
numbers of subdomains when using accelerators, or for tiny subdomains when
using CPUs. Putting these results into context of the global Fourier basis de-
compositions (GFB) presented in [13], the LFB implementation on CPUs shows
its superiority with typical and peak speedup of 2 and 6, respectively.

8

16

32

64

128

256

512

1024

2048

4096

1 2 4 8 16 32 64 128 256

E
xe
cu
ti
on

ti
m
e
pe

r
ti
m
e
st
ep

[m
s]

Number of CPUs (×12 cores)

224

225
226

227
228

229
230

231
232

233

(a) CPUs with FDR Infiniband

8

16

32

64

128

256

512

1024

2048

4096

1 2 4 8 16 32 64 128 256

E
xe
cu
ti
on

ti
m
e
pe

r
ti
m
e
st
ep

[m
s]

Number of Accelerators

224

225
226

227
228

229
230

231
232

233

(b) Accelerators with 1 Gbit Ethernet

Fig. 4: Strong scaling evaluation on large domains having between 224 and 233

grid points with an overlap size of 16 grid points collected on CPUs and acceler-
ators. Since the Infiniband interface is not stable for more than 32 accelerators,
1 Gbit Ethernet is used instead.

10 F. Vaverka, B. Treeby, J. Jaros

8

16

32

64

128

256

512

1024

2048

4096

1 2 4 8 16 32 64 128 256

E
xe
cu
ti
on

ti
m
e
pe

r
ti
m
e
st
ep

[m
s]

Number of CPUs (×12 cores)

218

219
220

221
222

223
224

225

(a) CPUs with FDR Infiniband

8

16

32

64

128

256

512

1024

2048

4096

1 2 4 8 16 32 64 128 256

E
xe
cu
ti
on

ti
m
e
pe

r
ti
m
e
st
ep

[m
s]

Number of Accelerators

218

219
220

221
222

223
224

225

(b) Accelerators with 1 Gbit Ethernet

Fig. 5: Weak scaling evaluation on large subdomains with overlap size of 16 grid
points collected on CPUs and accelerators. The size of the subdomains ranges
between 218 and 225 grid points.

Figure 5 shows the weak scaling achieved on the CPUs and accelerators.
Each of the plotted series corresponds to a constant subdomain size from the
investigated range between 643 and 256× 256× 512 grid points. At first glance,
poor weak scaling is observed when the simulation domain is split into less than
8 subdomains. This is due to the growing rank of the domain decomposition and
the number of neighbors. Once a full 3D decomposition is reached, the scaling
curves remain almost flat in-line with almost perfect scaling.

16

32

64

128

256

512

1024

2048

1 2 4 8 16 32

E
xe
cu
ti
on

ti
m
e
pe

r
ti
m
e
st
ep

[m
s]

Number of CPUs (×12 cores)

224

225
226

227
228

229
230

(a) CPUs with FDR Infiniband

16

32

64

128

256

512

1024

2048

1 2 4 8 16 32

E
xe
cu
ti
on

ti
m
e
pe

r
ti
m
e
st
ep

[m
s]

Number of Accelerators

224

225
226

227
228

229
230

(b) Accelerators with FDR Infiniband

Fig. 6: Strong scaling evaluation on small domains (224 to 230 grid points) with an
overlap size of 16 grid points collected on CPUs and accelerators, both supported
by FDR Infiniband.

Ultrasound Simulations on a Cluster of Xeon Phi Accelerators 11

5.3 Performance Scaling on Small Domains

In order to better quantify the impact of the misbehaving Infiniband on large
jobs, the previous experiments were repeated with reduced domain sizes (up to
10243) and a reduced number of accelerators (up to 32). Figure 6 shows the
improved strong scaling on accelerators when using Infiniband and compares it
again with the CPU baseline. Not only does Infiniband reduce the overall execu-
tion time by a factor of 1.9 with respect to Ethernet, it also improves the scaling
factors from 1.45 to 1.52. The reduction of the communication overhead has also
a positive impact on weak scaling presented in Fig. 7. Here, the penalty caused
by increasing the rank of the decomposition is greatly reduced and very good
scaling is achieved even when going from one to two subdomains. Nevertheless,
the final conclusion is that a cluster of Intel Xeon Phi accelerators is signifi-
cantly slower than a comparable cluster of CPUs, even though the theoretical
parameters of the architecture promise the direct opposite.

16

32

64

128

256

512

1024

2048

1 2 4 8 16 32

E
xe
cu
ti
on

ti
m
e
pe

r
ti
m
e
st
ep

[m
s]

Number of CPUs (×12 cores)

219

220
221

222
223

224
225

(a) CPUs with FDR Infiniband

16

32

64

128

256

512

1024

2048

1 2 4 8 16 32

E
xe
cu
ti
on

ti
m
e
pe

r
ti
m
e
st
ep

[m
s]

Number of Accelerators

219

220
221

222
223

224
225

(b) Accelerators with FDR Infiniband

Fig. 7: Weak scaling evaluation on small domains (subdomains of 219 to 225 grid
points) with an overlap size of 16 grid points collected on CPUs and accelerators,
both supported by FDR Infiniband.

5.4 Simulation Time Breakdown

Figure 8 shows the execution time breakdown for domains of various sizes par-
titioned into 32 (2 × 4 × 4) and 256 (4 × 8 × 8) subdomains with an overlaps
size of 16 grid points. The slower interconnection of the accelerators becomes
immediately evident from Fig. 8b which shows that this usually comprises more
than 60% of the compute time. By comparing the communication time on the
accelerators with CPUs we can find a massive 3× to 12× deterioration which
increases proportionally with the simulation size. On the other hand, the cal-
culation time remains favorable for medium sized subdomains. For small ones,
there is not enough work for all 120 threads used. On contrary the L2 cache is

12 F. Vaverka, B. Treeby, J. Jaros

0

500

1000

1500

2000

2500

3000

C
P
U

IB
K
N
C

IB
K
N
C

G
bE

C
P
U

IB
K
N
C

IB
K
N
C

G
bE

C
P
U

IB
K
N
C

IB
K
N
C

G
bE

C
P
U

IB
K
N
C

IB
K
N
C

G
bE

C
P
U

IB
K
N
C

IB
K
N
C

G
bE

C
P
U

IB
K
N
C

IB
K
N
C

G
bE

C
P
U

IB
K
N
C

IB
K
N
C

G
bE

E
xe
cu
ti
on

ti
m
e
pe

r
ti
m
e
st
ep

[m
s]

Compute
Compute FFT
Communication

230229228227226225224

(a) 32 CPUs or Accelerators

0

500

1000

1500

2000

2500

3000

C
P
U

IB
K
N
C

G
bE

C
P
U

IB
K
N
C

G
bE

C
P
U

IB
K
N
C

G
bE

C
P
U

IB
K
N
C

G
bE

C
P
U

IB
K
N
C

G
bE

C
P
U

IB
K
N
C

G
bE

C
P
U

IB
K
N
C

G
bE

C
P
U

IB
K
N
C

G
bE

E
xe
cu
ti
on

ti
m
e
pe

r
ti
m
e
st
ep

[m
s]

Compute
Compute FFT
Communication

233232231230229228227226

(b) 256 CPUs or Accelerators

Fig. 8: The execution time breakdown for a time step of the simulation loop
collected on 32 and 256 CPUs (CPU) or accelerators (KNC) for different domain
sizes with an overlap size of 16 grid points. Results for both the Infiniband (IB)
and the 1 Gbit Ethernet (GbE) interconnects are shown.

exceeded for subdomains bigger than 2563 grid points, which leads to a signif-
icant drop in the FFT performance (see 8a at 229 and 230). In conclusion, the
computation can only be 1.8× slower than a single CPU socket for favorable
subdomain sizes while it can worsen to more than 16× slower for large subdo-
mains. Both interconnect and FFT computation issues are further investigated
in Sec. 6.

6 Platform Investigation

6.1 Overview

As mentioned earlier, the practical use of a cluster of Intel Xeon Phi accelerators
suffers from many issues and immature libraries. Apart from the missing support
for the LustreFS file system and the instability of the Intel MPI communication
back-end for the infiniband interface, there are two other major issues. The
first is the performance of 3D FFTs and the second one is the communication
bandwidth. Both are further investigated in this section.

6.2 Performance of 3D FFTs on Intel Xeon Phi

Since the performance breakdown presented in Fig. 8 revealed relatively poor
performance of the FFTs running on the accelerators compared to a single CPU,
a deeper performance investigation was carried out. The particular routines of in-
terest were the real-to-complex (R2C) and complex-to-real (C2R) 3D FFTs with
the conjugate-even storage within an interleaved complex array implemented in
the Intel MKL library. Both in-place and out-of-place transforms were evaluated.

Ultrasound Simulations on a Cluster of Xeon Phi Accelerators 13

0

5

10

15

20

25

30

35

40

45

50

215 216 217 218 219 220 221 222 223 224 225 226 227

X
eo
n
P
hi

P
er
fo
ra
m
nc
e
vs
.C

P
U

[%
]

Domain Size [Grid Points]

In-place
Out-of-place

(a) 3D real-to-complex transform

0

5

10

15

20

25

30

35

40

215 216 217 218 219 220 221 222 223 224 225 226 227

X
eo
n
P
hi

P
er
fo
ra
m
nc
e
vs
.C

P
U

[%
]

Domain Size [Grid Points]

In-place
Out-of-place

(b) 3D complex-to-real transform

Fig. 9: Performance of a single accelerator vs. a single CPU while running in-place
and out-of place forward and inverse 3D FFTs implemented by Intel MKL.

Figure 9 shows the relative performance of a single accelerator executing
120 threads versus a single CPU executing 12 threads. The thread counts were
chosen according to the best performance achieved by each architecture. The
measured performance is plotted for several domain sizes growing from 323 to
5123 grid points.

Although the theoretical values suggest an accelerator should be four times
faster than a single CPU, our FFT benchmarks revealed a different picture. For
small domains, the performance of the accelerators is dismal, reaching less than
10% compared to a single CPU. This is very likely caused by poor workload dis-
tribution among cores and cache coherency issues such as false sharing. However,
even a 3D transform over a 643 domain requires the execution of 3 × 4096 in-
dependent 1D FFTs, which appears to be enough to employ 120 threads evenly.
Moreover, as the size of each 1D FFT is only 64 elements (256B, 1MB in to-
tal), the capacity of L2 cannot be a true bottleneck. That being said, the 1D
transforms are unlikely to cause the troubles. The other sources of performance
issues are the multi-dimensional matrix transpositions and thread synchroniza-
tion between particular phases of the 3D FFT algorithm.

With an increasing transform size, the performance of the accelerator in-
creases, reaching 50% of the CPU performance in the best case. Furthermore, the
performance of the forward transforms is slightly better than the performance of
the inverse one. Much more unexpected behavior is observed for the out-of-place
transforms on domains larger than 2563 grid points. Beyond this size, the relative
performance of the accelerator falls below 10%. At this size, the data cannot fit
within L2 cache any more. Considering the only difference between the forward
and inverse FFT being the sign in the exponent, this behavior must be a hid-
den bug inside the complex-to-real out-of-place FFTs in MKL. This statement is
supported by the measurements provided by Intel VTune performance counters.
At a size of 256×256×512 grid points, there is a 60-fold increase in the L1 data

14 F. Vaverka, B. Treeby, J. Jaros

cache misses, most of which end up as L2 data cache memory fills. These misses
seem to be caused by the Read for Ownership (RFO) operations executed be-
fore memory writes recorded as L2_DATA_WRITE_MISS_MEM_FILL events, a typ-
ical sign of false sharing. The issue is related to the FFT execution plan and
the memory hierarchy as out-of-place real-to-complex transforms do not exhibit
similar behavior.

6.3 Performance of Intel MPI on Intel Xeon Phi

The second issue afflicting the performance is the interconnection. Even when
using the Infiniband interface, the accelerators do not achieve comparable com-
munication times to CPUs as shown in Fig. 8a.

Figure 10 shows the bidirectional bandwidth and latency in CPU-to-CPU
and Phi-to-Phi communication over the Infiniband and Ethernet interconnects
measured by the OSU Micro-Benchmark suite4. The difference is obvious. Not
only is there an order of magnitude lower bandwidth for small messages when
the infiniband is used between accelerators, the loss is not caught up even for
medium sized messages. There appears to be an improvement for 4MBmessages,
however, this is helpful only for the biggest subdomains with an overlap size of 32
grid points. The communication latency copies the same trend, being typically
5× to 10× longer. The explanation of this behavior can be found in the com-
bination of the PCI-Express 2.0 (about 16GB/s bidirectional), additional hop
between PCI-Express 2.0 and PCI-Express 3.0 where the Infiniband card is con-
nected to, and low attainable memory bandwidth of a single Intel Xeon Phi core
of (only about 2.65GB/s) yielding 4.1GB/s for bidirectional communication.

The bandwidth of the Ethernet interface is, as expected, limited by the net-
work interface for big messages.

0.0625

0.25

1

4

16

64

256

1024

4096

16384

1B 32B 1KB 32KB 1MB

B
an

dw
id
th

[M
B
/s
]

Message size [B]

CPU (IB)
Xeon Phi (IB)

Xeon Phi (TCP)

(a) Inter-node Bidirectional bandwidth.

1

4

16

64

256

1024

4096

16384

65536

1B 32B 1KB 32KB 1MB

L
at
en

cy
[µ
s]

Message size [B]

CPU (IB)
Xeon Phi (IB)

Xeon Phi (TCP)

(b) Inter-node Latency.

Fig. 10: Comparison of the communication bandwidth and latency for processors
with Infiniband, and accelerators with Infiniband and TCP over 1 Gbit Ethernet.

4http://mvapich.cse.ohio-state.edu/benchmarks/

Ultrasound Simulations on a Cluster of Xeon Phi Accelerators 15

7 Conclusion

The goal of this paper was to investigate the performance scaling and suitability
of accelerated clusters based on Intel Xeon Phis for large simulations of ultra-
sound wave propagation in biologically relevant materials, and compare these
results with a common CPU cluster.

In order to keep low requirements on the spatial and temporal resolution, the
k-space corrected pseudospectral method from the k-Wave toolbox was used [27].
The communication overhead is reduced by the local Fourier basis decomposition
[14] and the communication is overlapped with the computation in more than
50% of cases.

The performance was measured on a set of domain sizes starting from tiny
ones and growing to the edge of practical feasibility. During testing, many prob-
lems were encountered. The most significant one is the Infiniband network insta-
bility caused by the DAPL back-end in the Intel MPI. This bug made the use of
the native Infiniband impossible for jobs spreading over more than 32 accelera-
tors. Despite careful investigation and collaboration with the Salomon support,
this issue has not been resolved yet. The only solution to get large simulations
to work was to use a service Ethernet network. This naturally has a large impact
on performance. Regardless, the scaling was similar to the underlying cluster of
CPUs, which is caused by another issue related to the FFT performance, and the
absolute execution time is typically 4.3× longer. This is far from the expected
performance inferred from the theoretical parameters. When the size of the sim-
ulation is limited to fit within 32 accelerators, the Infiniband interconnection
remains stable. This yields much better performance, but still almost 1.9× lower
than CPUs.

The second big issue is the performance of 3D FFTs, which in some con-
figurations reaches only a fraction of the CPU performance. This is very likely
caused by a bug in the MKL library related to false sharing during the ma-
trix transposition between particular 1D FFTs. The best performance obtained
reached about 50% of the CPU performance.

Despite all the mentioned troubles, we are still positive about the code de-
ployment on the accelerated cluster. The main motivation is the accounting
policy on Salomon, where the use of accelerators is now for free. This allows us
to run large batches of independent simulations. In the future, we would also
like to implement a load-balancing algorithm that would allow us to use both
the CPUs and the accelerators in a single simulation.

8 Acknowledgement

This work was supported by The Ministry of Education, Youth and Sports from
the National Programme of Sustainability (NPU II) project “IT4Innovations ex-
cellence in science - LQ1602” and by the IT4Innovations infrastructure which
is supported from the Large Infrastructures for Research, Experimental De-
velopment and Innovations project “IT4Innovations National Supercomputing

16 F. Vaverka, B. Treeby, J. Jaros

Center - LM2015070”. This project has received funding from the European
Union’s Horizon 2020 research and innovation programme H2020 ICT 2016-
2017 under grant agreement No 732411 and is an initiative of the Photonics
Public Private Partnership. This work was further supported in part by the En-
gineering and Physical Sciences Research Council (EPRSC), UK, grant numbers
EP/L020262/1 and EP/S026371/1.

References

1. Beard, P.: Biomedical photoacoustic imaging. Interface Focus 1(4), 602–631 (aug
2011)

2. Boyd, J.P.: A Comparison of Numerical Algorithms for Fourier Extension of the
First, Second, and Third Kinds. Journal of Computational Physics 178(1), 118–160
(may 2002)

3. Boyd, J.P.: Asymptotic Fourier Coefficients for a C∞ Bell (Smoothed-“Top-Hat”)
& the Fourier Extension Problem. Journal of Scientific Computing 29(1), 1–24
(oct 2006)

4. Coloma, K., Ching, A., Choudhary, A., Liao, W.k., Ross, R., Thakur, R., Ward, L.:
A New Flexible MPI Collective I/O Implementation. In: 2006 IEEE International
Conference on Cluster Computing. pp. 1–10. IEEE (2006)

5. Dubinsky, T.J., Cuevas, C., Dighe, M.K., Kolokythas, O., Joo, H.H.: High-intensity
focused ultrasound: Current potential and oncologic applications. American Jour-
nal of Roentgenology 190(1), 191–199 (jan 2008)

6. Folk, M., Heber, G., Koziol, Q., Pourmal, E., Robinson, D.: An overview of the
HDF5 technology suite and its applications. In: Proceedings of the EDBT/ICDT
2011 Workshop on Array Databases - AD ’11 (2011)

7. Frigo, M., Johnson, S.G.: The Design and Implementation of FFTW3. Proceedings
of the IEEE 93(2), 216–231 (2005)

8. Gholami, A., Hill, J., Malhotra, D., Biros, G.: AccFFT: A library for distributed-
memory FFT on CPU and GPU architectures (May 2016)

9. Gu, J., Jing, Y.: Modeling of wave propagation for medical ultrasound: a review.
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 62(11),
1979–1992 (nov 2015)

10. Howison, M., Koziol, Q., Knaak, D., Mainzer, J., Shalf, J.: Tuning HDF5 for Lustre
file systems. IASDS ’10 Proceedings of the Workshop on Interfaces and Abstrac-
tions for Scientific Data Storage 5 (2012)

11. Intel Corporation: Math Kernel Library 11.3 Developer Reference. Intel Corpora-
tion (2015)

12. Israeli, M., Vozovoi, L., Averbuch, A.: Spectral multidomain technique with local
Fourier basis. J. Sci. Comput. 8(2), 135–149 (1993)

13. Jaros, J., Rendell, A.P., Treeby, B.E.: Full-wave nonlinear ultrasound simulation
on distributed clusters with applications in high-intensity focused ultrasound. The
International Journal of High Performance Computing Applications 30(2), 137–
155 (2016)

14. Jaros, J., Vaverka, F., Treeby, B.E.: Spectral domain decomposition using local
fourier basis: Application to ultrasound simulation on a cluster of gpus. Supercom-
puting Frontiers and Innovations 3(3), 40–55 (2016)

15. Jeffers, J., Reinders, J.: Intel Xeon Phi Coprocessor High Performance Program-
ming. No. 1, Elsevier Inc., Waltham (2013)

Ultrasound Simulations on a Cluster of Xeon Phi Accelerators 17

16. Klepárník, P., Bařina, D., Zemčík, P., Jaroš, J.: Efficient low-resource compression
of hifu data. Information 9(7), 1–14 (2018). https://doi.org/10.3390/info9070155,
https://www.fit.vut.cz/research/publication/11764

17. Mast, T., Souriau, L., Liu, D.L., Tabei, M., Nachman, A., Waag, R.: A k-space
method for large-scale models of wave propagation in tissue. IEEE Transactions
on Ultrasonics, Ferroelectrics and Frequency Control 48(2), 341–354 (mar 2001)

18. Meairs, S., Alonso, A.: Ultrasound, microbubbles and the blood–brain barrier.
Progress in Biophysics and Molecular Biology 93(1-3), 354–362 (jan 2007)

19. Nandapalan, N., Jaros, J., Treeby, B.E., Rendell, A.P.: Implementation of 3d ffts
across multiple gpus in shared memory environments. In: Proceedings of the Thir-
teenth International Conference on Parallel and Distributed Computing, Applica-
tions and Technologies. pp. 167–172 (2012)

20. Nikl, V., Jaros, J.: Parallelisation of the 3d fast fourier transform using the hybrid
openmp/mpi decomposition. In: Mathematical and Engineering Methods in Com-
puter Science. pp. 100–112. LNCS 8934, Springer International Publishing (2014)

21. Pekurovsky, D.: P3DFFT: A Framework for Parallel Computations of Fourier
Transforms in Three Dimensions (2012)

22. Pinton, G.F., Dahl, J., Rosenzweig, S., Trahey, G.E.: A heterogeneous nonlinear
attenuating full-wave model of ultrasound. IEEE Transactions on Ultrasonics, Fer-
roelectrics, and Frequency Control 56(3), 474–488 (2009)

23. Pippig, M.: PFFT-An extension of FFTW to massively parallel architectures.
SIAM Journal on Scientific Computing 35(3), 213–236 (2013)

24. Sorensen, H., Jones, D., Heideman, M., Burrus, C.: Real-valued fast Fourier trans-
form algorithms. IEEE Transactions on Acoustics, Speech, and Signal Processing
35(6), 849–863 (jun 1987)

25. Tabei, M., Mast, Douglas, T., Waag, R.C.: A k-space method for coupled first-order
acoustic propagation equations. The Journal of the Acoustical Society of America
111(1 Pt 1), 53–63 (jan 2002)

26. Tomov, S., Haidar, A., Ayala, A., Schultz, D., Dongarra, J.: Fft-ecp fast fourier
transform (2019-01 2019)

27. Treeby, B.E., Jaros, J., Rendell, A.P., Cox, B.T.: Modeling nonlinear ultrasound
propagation in heterogeneous media with power law absorption using a k-space
pseudospectral method. The Journal of the Acoustical Society of America 131(6),
4324–36 (2012)

28. Tufail, Y., Yoshihiro, A., Pati, S., Li, M.M., Tyler, W.J.: Ultrasonic neuromodu-
lation by brain stimulation with transcranial ultrasound. Nature Protocols 6(9),
1453–1470 (sep 2011)

29. Vaverka, F., Treeby, B.E., Jaros, J.: Evaluation of the suitability of intel xeon phi
clusters for the simulation of ultrasound wave propagation using pseudospectral
methods. In: Computational Science – ICCS 2019, vol. 11538, pp. 577–590. Springer
International Publishing

30. Wang, E., Zhang, Q., Shen, B., Zhang, G., Lu, X., Wu, Q., Wang, Y.: High-
Performance Computing on the Intel Xeon Phi. Springer International Publishing
(2014)

31. Yu, W., Mittra, R., Su, T., Liu, Y., Yang, X.: Parallel Finite-Difference Time-
Domain Method. ARTECH HOUSE, INC., Norwood, MA 02062 (2006)

