
A research framework for writing differentiable PDE
discretizations in JAX

Antonio Stanziola
University College London
a.stanziola@ucl.ac.uk

Simon R. Arridge
University College London
s.arridge@ucl.ac.uk

Ben T. Cox
University College London

b.cox@ucl.ac.uk

Bradley E. Treeby
University College London
b.treeby@ucl.ac.uk

Abstract

Differentiable simulators are an emerging concept with applications in several
fields, from reinforcement learning to optimal control. Their distinguishing feature
is the ability to calculate analytic gradients with respect to the input parameters.
Like neural networks, which are constructed by composing several building blocks
called layers, a simulation often requires computing the output of an operator that
can itself be decomposed into elementary units chained together. While each layer
of a neural network represents a specific discrete operation, the same operator
can have multiple representations, depending on the discretization employed and
the research question that needs to be addressed. Here, we propose a simple
design pattern to construct a library of differentiable operators and discretizations,
by representing operators as mappings between families of continuous functions,
parametrized by finite vectors. We demonstrate the approach on an acoustic
optimization problem, where the Helmholtz equation is discretized using Fourier
spectral methods, and differentiability is demonstrated using gradient descent to
optimize the speed of sound of an acoustic lens. The proposed framework is
open-sourced and available at https://github.com/ucl-bug/jaxdf

1 Introduction

In the last decade, the exponential growth of machine learning has been mirrored by a comparable
advancement in frameworks for automatic differentiation (AD) and parallelization. This has paved
the path for the emergence of a new research field, sometimes named scientific machine learning
[1], where elements of machine learning are blended with scientific models and simulators. In
particular, AD, the main algorithm employed for neural network training and generally for analytical
gradient estimation, can be used to differentiate with respect to any continuous parameter involved in
a simulator [2, 3]. Conversely, a simulator that allows for AD can be used inside a machine learning
model, for example, to implement an implicit layer [4] or a physics loss function.

Differentiable simulators are also of broad interest for several fields of research, such as for inverse
problems [5, 6], system identification [7], optimal control [8], Bayesian inference [9], optimization
under uncertainty [10], reinforcement learning [11] and also to improve the performance of simulators
themselves [12]. Differentiable simulators can also be used to construct physics losses. There’s now a
rapidly growing list of differentiable simulators for a large variety of applications, such as molecular
dynamics [13], Finite Element Analysis [14], computational fluid dynamics [15], Physics Informed
Neural Networks (PINNs) [16] and neural differential equations [17], to name a few.
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However, most of the available simulators are often tied to a specific discretization that solves a
continuous problem, meaning that different representations require different implementations of
the same equations. Furthermore, it is hard to modify the given discretization method for research
purposes, at least in ways that the software maintainer does not specifically intend. Additionally, it is
of interest for such simulators to be compatible with a machine learning library, to potentially include
it as a component of a larger machine learning model.

Aim We propose a customizable framework, called jaxdf (Jax- Discretization Framework) for
writing differentiable simulators, that decouples the mathematical definition of the problem from the
underlying discretization. The underlying computations are performed using JAX [3], and are thus
compatible with the broad set of program transformations that the package allows, such as AD and
batching. This enables rapid prototyping of multiple customized representations for a given problem,
to develop physics-based neural network layers and to write custom physics losses, while maintaining
the speed and flexibility required for research applications. It also contains a growing open-source
library of differentiable discretizations compatible with the JAX ecosystem.

2 Software model

Writing a simulator requires a mathematical expression defined over continuous functions, often a
Partial Differential Equation (PDE), to be translated into a program that manipulates a finite set of
numerical values. This fundamental step is called discretization. Here, we assume that functions are
defined on a rectangular interval Π ⊆ RD of the D-dimensional Euclidean space.

Given a function f : Π → RM , a simulation often requires to evaluate and manipulate multiple
expressions of the form Lf , where L is a (possibly non-linear) operator acting on the function f . To
implement this in a computer, a restriction is often made to a parametrized family of functions, such
that we can identify elements of this family using a mapping from finite vectors to functions. That is,
there’s a mapping D such that

θ
D−→ f (1)

with f ∈ Range(D) or, in other words, fθ(x) = D(θ, x) is a function parametrized by θ. We will
call D the discretization family of f , while θ is the discrete representation of f over D. The latter is
analogous to the interpolation function defined in other libraries.1

Examples of discretization families A simple example of discretization family is the set of N -th
order polynomials on the interval [0, 1):

PN (θ, x) =

N∑
i=0

θix
i, θ ∈ RN+1 (2)

Another common example is the Fourier-spectral representation F̂ given by the iDFT of the sequence
θ ∈ CN , which is defined on a regular collocation grid in frequency space, i.e.

F̂(θ, x) =

N∑
i

θie
i(ki·x). (3)

Alternatively, the Fourier representation is given by defining θ in signal space on a regular spatial
collocation grid, using the periodic sinc function:

F(θ, x) =

N∑
i

θi
sin((N + 1/2)(x− xi))

sin((x− xi)/2)
. (4)

Another important kind of mappings is neural networks, often used in this context to implement
Physics-Informed Neural Networks (PINNs). Many other discrete representations are possible, such
as Finite Elements, Finite Differences, radial basis functions and splines. In general, the choice of the
right representation is application dependent, subject to hardware and software constraints, and often
a topic of research on its own.

1See for example the Operator Discretization Library at https://odl.readthedocs.io
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2.1 Operator representation

Let fθ be a member of the discretization family D with parameters θ. Representing the action of an
operator L over the discretization family, means to find the function G(γ, x) with parameters γ such
that G(γ, x) is close to L(fθ) in some sense.

In general, the parameters θ and γ can be different. Similarly, also the discretization families D and
G may be different. Rather than implementing the discretized mapping only as an operator acting on
the discrete representation, the corresponding discrete operator L̂ is instead represented as

(D, θ) L̂−→ (G, γ). (5)

This means that the operator also specifies the output discretization family G. Most often G is
independent of the parameters, and we can split the mapping into two functions

(D, θ) L̂−→ (Lf (D), Lp(D)(θ)), (6)

where Lf is a discrete mapping between discretization families, and Lp(D) is a differentiable function
of the parameters θ. Thus, defining an operator L over a discretization family D, boils down to
implementing Lf (D) and Lp(D).

Representing the derivative operator As an example, consider discretizing the derivative operator
D = ∂/∂x into D̂. Discretizing it over F , which corresponds to a Fourier spectral method, boils
down to applying the derivative rule of the Fourier transform over the parameters:

γ = Dp(F)(θ) = iDFT(−ikx · DFT(θ)), (7)

where i =
√

1. The discretization family is still F , that is Df (F) = F , and the discretized operator
is then

D̂(F , θ) = (F , Dp(F)(θ)). (8)
Applying the same operator on the family PN gives instead

DPN (θ, x) =
∂

∂x

N∑
i=0

θix
i =

N−1∑
i=1

iθix
i−1. (9)

The parameter function Dp(PN ) is

Dp(PN )(θ) =
(
θ1, 2θ2, 3θ3, . . . , (N − 1)θN−1

)
, (10)

while Df (PN ) maps to the space of polynomials with one degree less

Df (PN ) (θ, x) =

N−1∑
i=0

θix
i. (11)

Note that here not only the parameters are changed, but also the discretization family. Doing the
same procedure on a neural network to obtain a PINN leaves the parameters unchanged, while the
output discretization family is obtained by applying AD on the interpolation function of the input.
For a spline representation, the discrete parameters are processed by filtering with an FIR filter, while
the discretization family is given by splines of a lower degree on a staggered collocation grid [18].

In general, one may want to control both the choice of discretization family and the corresponding
representation of various operators. For example, the product between two functions in F should
be described over a denser collocation grid, to account for the larger spectral support of the output
[19]; however, when working with low-frequency signals an acceptable approximation is given by
maintaining the original discretization, and simply multiplying element-wise the parameters on the
two original spatial grids.

Binary operators Binary operators B(f, g) = h that take two fields can be defined analogously to
the standard operators above, as

B̂(D, θf , θg) = (Bf (D), Bp(D)(θf , θg)) , (12)

assuming that f and g share the same discretization family D.
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Composing operators A nice characteristic of defining operators in this way can be seen when
two operators are composed together. Given two operators L and M, then the discretization of the
composition operator H(f) = M ◦ L(f) = M(L(f)) is found as

L̂(D, θ) = (E , γ) =(Lf (D), Lp(D)(θ)) (13)

M̂ ◦ L̂(D, θ) = (Mf (E),Mp(E)(γ)) =
(
Mf (Lf (D)),Mp(Lf (D))(Lp(D)(θ))

)
(14)

This shows that the final discretization family Mf (Lf (D)) and the function which transforms the
parameters are simply given by function compositions, and can be found ahead of computation once
D is known. Importantly, if Mp(Lf (D)) and Lp(D) are written in a differentiable language, then
Hp(D) can also be differentiated. We choose to implement them in JAX [3].

Operator parameters Operators often have parameters associated with them, similarly to neural
network layers. As an example, discretizing the derivative operator with finite differences corresponds
to the following mapping (ignoring boundary conditions):

D̂(Q, θ) = (Q, w ∗ θ) , (15)

whereQ is the Finite Differences (FD) discretization family, ∗ denotes convolution and w ∈ RK is an
appropriate kernel with K elements. We may want to explicitly learn the discretized PDE from data
[20], meaning that we must be able to find the gradient with respect to w. For a general operator L,
we account for this possibility by allowing Lp to accept an extra appropriately initialized parameter,
such that

L(D, θ) = (Lf (D), Lp(D)(θ, w)). (16)

Finally, we may want to share some parameters between different operators that are computing similar
quantities. Those extra parameters complicate the composition rules, but this can be accounted for by
appropriately tracing and initializing the various parameters when building the computational graph
of Lp.

2.2 Software abstraction

In the proposed software, fields are represented as couples (D, θ) made of a discretization family and
set of parameters. Each discretization must define its own interpolation function. They are subclasses
of a common base discretization, with operators defined as class methods using function composition
and AD: this ensures that most operators work on arbitrary user-defined discretizations, albeit not
necessarily in the most efficient way.

Specific implementations of new or existing operators can be created by overriding the corresponding
method, by providing the rules for evaluating Lf and Lp, as well as the initialization of the operator
parameters w. The software discretizes the operator by building and tracing a lower level compu-
tational graph, translating every single operation in the corresponding JAX function for the given
discretization. The output is a set of discrete parameters, collected in a dictionary, and the sampling
operator, as a pure JAX function. The latter can be differentiated, jit-compiled, parallelized and
manipulated using JAX program transformations. The resulting discretization also natively runs on
GPUs and TPUs.

In its essence, this library works in a similar way as most machine learning libraries currently
available: using self-contained composable operations as computational layers, where each module
depends on a set of parameters and an input. The key difference is that each operation represents
an abstract mathematical mapping, which is replaced by an appropriate algorithm depending on the
input discretization. This decouples the mathematical definition of the equation from the actual imple-
mentation. For example, the operation gradient can be implemented using AD on the interpolation
function, as is done in PINNs, or by a convolution operator as in FD, or by an elementwise product in
the Fourier domain. Another source of difference to standard ML libraries, is that different operators
may share common parameters, if required by the user. Lastly, it is easy to customize or write new
discretizations, as well as building hierarchical families of discretizations, using inheritance and
method overloading.
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3 Numerical examples

3.1 Differentiability

To demonstrate differentiability and automatic discretization, we apply the framework to the solution
of a time-harmonic acoustic optimization problem, where the physics is described by the Helmholtz
equation with frequency ω = 1. The goal is to maximize the complex wavefield amplitude at a target
location xT . The source is given by an omnidirectional point transducer. The speed of sound map
c(ρ) is parametrized in the central region by an array of real values ρ, constrained between 1 and 2
using a sigmoid function. The array ρ is initialized randomly and c = 1 outside the central region.

The optimization problem requires the following function to be minimized:

L = −‖u(xT )‖+ λTV(c(ρ)), s.t.

(
∇2 +

ω2

c2

)
u = −SM , (17)

where u is the solution of the Helmholtz equation, SM is the complex source field, λ is an arbitrary
positive constant set to 10−4 and TV(c(ρ)) is a Total-Variation regularization term, defined as

TV(c) =
1

‖Π‖

∫
Π

‖∇c‖ dx. (18)

The derivative operators need to be modified at the boundary, to enforce radiating boundary conditions,
using a Perfectly Matched Layer as:

∇2 =
∑

j=(x,y)

∂̂2
j , ∂̂j =

∂j
γj(x)

, (19)

where γj are appropriate complex fields [21].

Discretization This equation can then be expressed using a language very close to the mathematical
formulation in the proposed library. We define two operators: the Helmholtz operator and the
integrand of the TV functional:

from jaxdf import operator
from jaxdf import operators as jops

@operator()
def helmholtz(u, c, x):

pml = gamma(x)
mod_grad_u = jops.gradient(u)*pml
mod_diag_jacobian = jops.diag_jacobian(mod_grad_u)*pml
laplacian = jops.sum_over_dims(mod_diag_jacobian)
return laplacian + ((1./c)**2)*u

@operator()
def integrand_TV(u):

nabla_u = jops.gradient(u)
return jops.sum_over_dims(jops.elementwise(jnp.abs)(nabla_u))

This operator can be discretized arbitrarily, by calling it with a field defined over a discretization
family. For example, if we aim to use a feed-forward neural network to represent u, we can do so by
defining a new Arbitrary discretization where the interpolation function is defined using the neural
network forward function. If instead one wants to solve the equation using Fourier spectral methods,
as we will do in this example, it suffices to instantiate a FourierSeries discretization and call the
operators with the corresponding fields. The full code for this experiment is listed in Appendix A.

Optimization With the operator discretized, we are equipped with two differentiable pure functions
(see Appendix A). Such functions accept as input the discrete parameters of u and c, as well as the
parameters required by the intermediate operators. Because a Fourier discretization preserves the
linearity of the Helmholtz operator, the acoustic field can be found using the Generalized minimal
residual method (GMRES), while gradients are computed with constant memory size via the Implicit
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Figure 1: Wavefield, lens and total variation integrand after optimization.

Function Theorem [22]. The loss function is minimized using 100 steps of the Adam optimizer, with
the learning rate set to 0.1 and βs set to (0.9, 0.9).

The result of the optimization is shown in Fig. 1, showing that the speed of sound of the lens has
been successfully optimized to provide focus at the location of interest.

3.2 Swapping discretization

A key feature of the proposed framework is the ability to quickly change discretization for a given
operator. To demonstrate this, we’ll focus on solving the initial value problem for the heat equation

u =

∫ t

0

∇2u(τ) dτ, s.t. u(0) = u0 (20)

Note that we don’t enforce specific boundary conditions here. In the current version of the framework,
boundary conditions are not yet implemented and are implicitly defined by the discretization (e.g.
periodic for Fourier Series, zero-padding for Finite Differences etc.). This is not suitable for proper
integration with arbitrary boundary conditions, but works for equations where it is feasible to construct
an absorbing layer at the boundary: that is the majority of situations, for example, when investigating
wave phenomena. While the user is always free to use a custom discretization that satisfies the
boundary conditions by construction, more suitable handling of generic boundary conditions would
be a great addition to the package and will be part of future work.

Boundary conditions aside, the code for defining and discretizing the operator using Finite Differences
is the following:

@operator()
def heat_rhs(u):

return jops.laplacian(u)

# Discretize using Finite Differences\
discr = RealFiniteDifferences(domain, accuracy=2)
u_params, u = discr.empty_field(name='u')

# Construct numerical function and collect parameters
RHS_FD = heat_rhs(u=u)
num_op = RHS_FD.get_field_on_grid(0)
global_parameters = RHS_FD.get_global_params()

Suppose we now want to switch to a Fourier Series discretization, rather than Finite Differences. To
reuse the previously defined operator, we need to perform three steps: define a new field with the new
discretization, call the operator and extract the parameters and numerical function

# New Field
discr = RealFourierSeries(domain)
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Figure 2: Integration of the heat equation for an arbitrary initial field, using a Fourier spectral
discretization for the Laplacian.

u_params, u = discr.empty_field(name='u')
u0 = u_params.at[...,0].set(img)

# Compile operator, generates the new discretization
RHS_Fourier = heat_rhs(u=u)

# Get parameters and pure function
gp = RHS_Fourier.get_global_params()
num_op = RHS_Fourier.get_field_on_grid(0)

The result of integrating the heat equation for a given initial field is shown in Fig. 2, where the
Laplacian operator has been discretized using Fourier spectral methods.

4 Conclusions

In this paper, we have proposed a design framework for using and implementing custom discretiza-
tions, employed to compute the effect of operators using differentiable functions. New discretizations
can be easily defined, by providing the corresponding interpolation function. The behaviour of each
operator, for a given discretization, can be specified by the user or automatically evaluated using
AD and function composition over the interpolation function. Future work will implement boundary
conditions, which can still be seen as the mapping between different families of functions with the
caveat of reducing the number of free parameters, and the conversion from one discretization to
another within the same operator, for example by defining projection operators.
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A Full code for the Helmholtz example

from jaxdf import operators as jops
from jaxdf.core import operator, Field
from jaxdf.discretization import FourierSeries, Coordinate
from jaxdf.geometry import Domain
from jaxdf.utils import join_dicts
from jax import numpy as jnp
from jax.scipy.sparse.linalg import gmres
from jax.experimental import optimizers
import jax

# Settings
domain = Domain((256, 256), (1., 1.))
seed = jax.random.PRNGKey(42)

# Speed of sound parametrization
lens_params = jax.random.uniform(seed, (168,40)) - 4
def get_sos(p):

lens = jnp.zeros(domain.N).at[44:212,108:148].set(jax.nn.sigmoid(p)) + 1
return jnp.expand_dims(lens, -1)

# Defining operators
@jops.elementwise
def pml_absorption(x):

abs_x = jnp.abs(x)
return jnp.where(abs_x > 110, (jnp.abs(abs_x-110)/(128. - 110)), 0.)**2

gamma = lambda x: 1./(1 + 1j*pml_absorption(x))

@operator()
def helmholtz(u, c, x):

pml = gamma(x)
mod_grad_u = jops.gradient(u)*pml
mod_diag_jacobian = jops.diag_jacobian(mod_grad_u)*pml
laplacian = jops.sum_over_dims(mod_diag_jacobian)
return laplacian + ((1./c)**2)*u

@operator()
def integrand_TV(u):

nabla_u = jops.gradient(u)
return jops.sum_over_dims(jops.elementwise(jnp.abs)(nabla_u))

# Defining discretizations
fourier_discr = FourierSeries(domain)
u_fourier_params, u = fourier_discr.empty_field(name='u')
src_fourier_params, src = fourier_discr.empty_field(name='src')
src_fourier_params = u_fourier_params.at[128, 40].set(1. + 0j) # Monopole source
_, c = fourier_discr.empty_field(name='c')
_, x = fourier_discr.empty_field(name='x')
x_params = Coordinate(domain).get_field_on_grid()({}) # Coordinate field

# Discretizing operators: getting pure functions and parameters
H = helmholtz(u=u, c=c, x=x)
TV = integrand_TV(u=u)
global_params = join_dicts(H.get_global_params(), TV.get_global_params())
H_on_grid = H.get_field_on_grid(0)
tv_on_grid = lambda x: TV.get_field_on_grid(0)(global_params, {"u": x})

# Helmholtz solver function
def solve_helmholtz(speed_of_sound):

params = {"c":speed_of_sound, "x":x_params}
def helm_func(u):

params["u"] = u
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return H_on_grid(global_params, params)
sol, _ = gmres(helm_func, src_fourier_params, maxiter=1000, tol=1e-3, restart=50)
return sol

# Loss function
def loss(p):

sos = get_sos(p)
tv_term = jnp.mean(tv_on_grid(sos))
field = solve_helmholtz(sos)
return -jnp.sum(jnp.abs(field[70,210])) + 1e-4*tv_term

# Optimization loop
init_fun, update_fun, get_params = optimizers.adam(.1, b1=0.9, b2=0.9)
opt_state = init_fun(lens_params)

@jax.jit
def update(opt_state, k):

lossval, gradient = jax.value_and_grad(loss)(get_params(opt_state))
return lossval, update_fun(k, gradient, opt_state)

for k in range(100):
lossval, opt_state = update(opt_state, k)
print(f"Step {k}, Loss {lossval}")
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