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Abstract
An efficient and accurate image reconstruction algorithm for ultrasound tomog-
raphy in soft tissue is described and demonstrated, which can recover accurate
sound speed distribution from acoustic time series measurements. The approach
is based on a second-order iterative minimisation of the difference between the
measurements and a model based on a ray-approximation to the heterogeneous
Green’s function. It overcomes the computational burden of full-wave solvers
while avoiding the drawbacks of time-of-flight methods. Through the use of a
second-order iterative minimisation scheme, applied stepwise from low to high
frequencies, the effects of scattering are incorporated into the inversion.
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1. Introduction

The aim of ultrasound tomography (UST) is to estimate the acoustic properties of the inte-
rior of an object from ultrasonic measurements made on its boundary [6, 9]. There are two
related steps: designing and constructing the measurement hardware, and designing and imple-
menting the algorithms to reconstruct the images from the measured data [10]. This paper is
concerned with the latter challenge, image reconstruction. Approaches to UST reconstruction
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can be classified by (1) the data type used in the inversion, (2) whether the inversion is lin-
earised or nonlinear, (3) the nature of the forward model used. In terms of the data used, there
are broadly two categories. The first uses the complete measured time series, including the
scattered waves, or its frequency domain components. The second uses only the direct times-
of-flight between the emitters and receivers; in other words, the data consists just of the time of
the first arrival, and no scattered waves are included [8, 11, 12, 27, 38, 39, 59]. The approach we
propose here for UST performs a nonlinear inversion by minimising the discrepancy between
acoustic pressure time series data and a forward model based on a ray-approximation to the
Green’s function.

Recently, nonlinear inversion schemes based on a minimisation of the norm of the discrep-
ancy between the measured time series and a full-wave numerical model, which depends on
the unknown sound speed, have become popular. Because of the flexibility in the choice of
model, this approach—which has become known as full-wave inversion [49]—can be very
general. When the degree of model-mismatch is low, i.e. when the numerical model accurately
represents the measurement scenario, these approaches have the potential to reconstruct accu-
rate, high resolution images. This approach, for which there is a considerable literature in the
seismic community [1], has begun to be explored in earnest for medical applications [2, 18,
19, 47, 50–54, 56]. Full-wave approaches are discussed further in section 8, but the biggest
challenge with such schemes is the computational cost.

In this paper, we make contributions to both the forward and the inverse problems of UST.
We avoid the computational challenge that full-wave models present by using a solver based on
a ray-approximation to the Green’s function. The ray-based forward model we present is a fre-
quency domain model that can account for refraction by using bent rays, geometric spreading
through Green’s law, and arbitrary absorption (we use Szabo’s model [42–44] but the formu-
lation is general). The principle drawback of using a forward model based on rays is that it
inherently neglects scattering. Overcoming this limitation is this paper’s principle contribu-
tion to tackling the inverse problem. At each step, the Gauss–Newton (GN) search direction is
computed by an iterative and implicit computation of the Hessian matrix. Solving the nonlinear
inversion in this way implicitly accounts for the primary scattered field (which is sufficient for
soft tissue) and can therefore provide high spatial resolution. The non-linearity of the inverse
problem and the cycle-skipping problem are handled by first reconstructing a low-contrast
sound speed image using a time-of-flight (TOF) approach as an initial guess, and then solving
the inverse problem from low to high frequencies [18, 19]. This combination of a ray-based for-
ward model and a second-order inversion scheme provide a computationally efficient method
for waveform tomography that avoids the principle drawbacks of both TOF approaches and
full-wave solvers.

In section 2, the forward and inverse problems of UST are introduced. In section 3 the
forward model—the ray-based approximation to the heterogeneous Green’s function—is
described. Section 4 explains the second-order approach to the inverse problem, and the cal-
culation of the gradient and Hessian based on the Green’s function. The numerical tracing and
discretisation of the rays and the Green’s functions is described in sections 5 and 6. Numeri-
cal examples demonstrating the methods in 2D are given in section 7, although all the results
are applicable to 3D. A discussion of the significance of the results and links to similar work
follows in section 8.

2. Ultrasonic sound speed tomography

This section describes the forward and inverse problems of sound speed tomography. Let x =(
x1, . . . , xd

)
denote a spatial position inRd with d the dimension. In general, d can be either 2 or
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3. This study is restricted to d = 2. Accordingly,Ω ⊂ R
d is an open bounded set, and contains

the spatially-varying part of the sound speed distribution, c(x), i.e. (c(x)/c0 − 1) ∈ C∞
0 , where

c0 is a scalar value representing the sound speed outside Ω (here the sound speed in water).
Also, ρ(x) will represent the spatially varying density. The open set Ω is bounded by a circular
ring S ⊂ R containing the emission and reception elements.

2.1. Forward problem

2.1.1. Excitation. Sequentially, each emission element, referred to here as emitter e ∈
{1, . . .Ne}, is excited by a pulse and acts as a source s(t; xe) within the excitation time
t ∈ (0, Ts). The stack-vector of these source time series for all emission elements is denoted by
S ∈ R

(0,Ts)×Ne . Each emitter e is idealised as a point source at xe with a directional dependence
such that the induced acoustic pressure field, p(t, x; xe) ∈ (0,∞) × R

d , will be a function of
(x− xe) · ne, where ne is a unit vector giving the orientation of the emitter. (As an example of
a practical realisation, each emitter e might be a finite-sized disc centered at xe with normal
ne.)

2.1.2. Measurement. The induced acoustic pressure field is measured at the reception ele-
ments, referred to here as receiver r ∈ {1, . . . , Nr}, for times t ∈ (0, T) with T � T s. For each
excitation element e, the time series measured by the receiver r, centered at xr, is represented
by p(t, xr; xe), where

M(e,r) : (0,∞) × R
d → R

Nt

p(t, xr; xe) = M(e,r) [p(t, x; xe)] ,
(1)

where N t is the number of measurement time samples. We have used t here to denote both
the continuous and discrete time variables, but the meaning in any particular case should be
clear from the context. Furthermore, what is actually measured at xr is an electrical signal,
but we used the same notation p for brevity. As well as acting as a sampling or discretisation
operator,M(e,r) incorporates a filtering stage, corresponding to the frequency-angle dependent
response of the receiver. In other words, in general, M(e,r) not only applies a frequency filter
but also depends on (x− xr) · nr, where nr is a unit vector giving the orientation of the receiver.
(As with the source elements, a practical realisation of a receiver might be a finite-sized disc
centered at xr with normal nr.) While the data is typically measured in the time domain, i.e.
with a broadband excitation signal, the image reconstruction will be performed in the frequency
domain. To this end, we define the following Fourier transform pair between the time and
temporal frequency domains,

p(ω) = Fp(t) =
∫ ∞

−∞
p(t)eiωt dt, p(t) = F−1 p(ω) =

1
2π

∫ ∞

−∞
p(ω)e−iωt dt.

(2)

Definition 1. Here, the forward operator is defined in the frequency domain.

A : D(Ω) → R
NωNrNe

P = A [c(x)] ,
(3)
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where Nω is the number of discrete frequencies used. Also, the space D is defined such that
any function c(x) ∈ D satisfies

(
c(x)/c0 − 1

)
∈ C∞

0 (Ω), and P ∈ R
NωNrNs is a stack-vector of

measured complex amplitudes with components

p(c;ω,r;e) = A(ω,r;e) [c] , (4)

where A(ω,r;e) accounts for the selection of the Nω frequencies, Fourier transformation F,
acoustic propagation, and the filtering and sampling described by M(e,r) in the frequency
domain.

2.2. Inverse problem

The inverse problem is now an estimation of the sound speed distribution c(x) from the mea-
sured data p̂(ω,r;e), which is the set of recorded complex pressures for all pairs of emission and
reception points, given the excitation s(ω, xe) = Fs(t, xe) [49]. (Note that we use the same
notations for parameters in time and frequency domains for brevity.) This can be posed as the
nonlinear minimisation problem

c∗ = argmin
c

F (c), (5)

where the objective function is in the form

F (c) =
1
2

∫ (∑
e,r

|A(ω,r;e) [c] − p̂(ω,r;e)|2
)

dω. (6)

3. Approximate Green’s function for the lossy Helmholtz equation

This section describes how the propagation of acoustic waves are modelled in this study,
and introduces the approximate Green’s function which is the basis of the inversion method
presented in section 4.

3.1. Lossy Helmholtz equation and complex wavevector

A single frequency acoustic pressure field, p(ω, x), in an absorbing medium is often modelled
using a lossy Helmholtz equation of the form(

k̃(x)2 +∇2
)

p(ω, x; xe) = −s(ω, xe), k̃ = |k̃|, (7)

where k̃ is a complex wavevector that depends on the sound speed c(x), the absorption coef-
ficient α(x) and the frequency ω. In our case s represents a point source at position xe. By
considering a plane wave solution of the form

p(ω, x) ∝ exp(i(k̃ · x − ωt)), (8)

and writing k̃ = k + iki, it is clear that the real part k is related to the phase speed cp(ω) of the
wave by

|k| ≡ k = ω/cp(ω), (9)
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and the imaginary part is related to the absorption coefficient α by

ki = α(k/k). (10)

3.2. Dispersion relation

The wavenumber k̃ and temporal frequency ω are related via a dispersion relation, which
encapsulates the effects of absorption and dispersion on the wave. In general, then

k̃(x) = ζ(ω, c(x),α(x)). (11)

Many different models of absorption (and the accompanying dispersion) have been proposed
for describing the behaviour of soft biological tissue, and each will lead to a different dispersion
relation, a different form for the function ζ. As an example, in this subsection we describe the
particular absorption model used in the numerical examples in section 7, and the dispersion
relation that results from it. However, it is important to note that the methods described in this
section, section 3, apart from this one subsection, do not depend on the particular form of the
dispersion relation.

3.2.1. Szabo absorption model. A popular model for describing the propagation of acoustic
waves in soft tissues is Szabo’s absorbing wave equation [43]

(
1

c(x)2

∂2

∂t2
−∇2 +

2α0(x)
c(x) cos(πy/2)

∂y+1

∂ty+1

)
p(t, x; xe) = s(t, xe), (12)

where ∂y+1/∂ty+1 is a fractional time derivative resulting in an absorption coefficient α which
follows the frequency power law α = α0ω

y. Here, α0 has units Np(rad s−1)−y m−1, and y is
the power-law exponent with a non-integer often in the range 1 � y � 1.5 for soft tissue [42,
43]. In the frequency domain, (12) becomes the lossy Helmholtz equation, (7), with complex
wavenumber given by [44]

k̃ = k + iα =
ω

c
+ α

(
tan(πy/2) + i

)
. (13)

3.3. Green’s functions

In general, the solution of (7) can be written in terms of a Green’s function as

p(ω, x) =
∫

g(ω, x; x′)s(ω, x′)dx′, (14)

where the Green’s function g satisfies(
k̃(x)2 +∇2

)
g(ω, x; x′) = −δ(x − x′). (15)

As s is a point source, this becomes simply a scaling

p(ω, x; xe) = g(ω, x; xe)s(ω, xe). (16)
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3.3.1. 2D case. In the homogeneous, lossless case the two-dimensional (2D) free-space
Green’s function is given by [37, 55]

g0,2D(ω, x; x′) =
i
4

H(1)
0

(
φ0(x; x′)

)
(17)

≈ A0(x; x′) exp
(
i(φ0(x; x′) + π/4)

)
, (18)

where A0 is an amplitude factor and φ0 is the phase. (The second line gives the large-argument
limit approximation, for which the second terms and higher of an associated asymptotic expan-
sion has been neglected, see [55] for further details.) In this lossless, homogeneous case, the
phase speed cp = c0, the wavenumber k̃ = k0 = ω/c0 is real, and the phase is given by

φ0(x; x′) = k0|x − x′|. (19)

The amplitude is governed purely by geometric spreading (cylindrical spreading):

A0(x; x′) =
(
8πk0|x − x′|

)−1/2
=
(
8πφ0(x; x′)

)−1/2
. (20)

In the heterogeneous, absorbing, case we need an approximate form for the Green’s function,
so we write, by analogy with the homogeneous case:

g2D(ω, x; x′) ≈ A(x; x′) exp
(
i(φ(x; x′) + π/4)

)
, (21)

where the amplitude factor now contains contributions from absorption and refraction as well
as geometric spreading. The reader is referred to appendix A.2 for the equivalent formulae for
the 3D case. How the phase φ and amplitude A are computed in the heterogeneous, absorbing
case will be described below in sections 3.4, 5 and 6.

3.4. Ray-based approximation

This section describes, in general terms, how ray theory will be used to compute the terms in
the approximate Green’s function for heterogeneous absorbing media. (See [3, 4] for a similar
approach in the non-absorbing case.) The numerical implementations are described later, in
sections 5 and 6.

3.4.1. Dispersive eikonal equation. Substituting the Green’s function, (21) or the 3D equiva-
lent, into the lossy Helmholtz equation, and making the assumption, reasonable for soft tissue,
that α2  k2, leads to the following two equations:

k2A +∇2A − A∇φ · ∇φ = 0, (22)

2kαA + 2∇A · ∇φ+ A∇2φ = 0. (23)

By making the high frequency approximation |∇2A/A|  k2, the first equation leads to the
dispersive eikonal equation

∇φ · ∇φ = k2. (24)
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3.4.2. Rays. In this paper, we solve (24) using the concept of rays. Rays are curves that are
perpendicular to surfaces of constant phase, i.e. they are tangent to the wavevector k, which
satisfies

k = ∇φ, (25)

and therefore (24). The following definition of a ray will be useful.

Definition 2. A ray connecting an emission point xe to an arbitrary point x ∈ Ω is defined
using f (k,x;xe)(x′) = 0. A ray is parameterised by the arc length along it, s, by describing it as
the line of points {x′(s), s ∈ [0, Lray]} that satisfy f (k,x;xe)(x′) = 0, where Lray is the physical
arc length of the ray, and s = 0 corresponds to the emission point xe. Here, f (k,x;xe)(x′) = 0 is
an implicit representation of the eikonal equation, i.e. the points x′ which satisfy ∇φ(x; xe) ·
∇φ(x; xe) = k2, where φ(x; xe) is the phase at point x with respect to the emission point xe.

The numerical procedure for tracing the rays such that they obey (24) will be described in
section 5. Once the rays have been computed, the phase and amplitude of the acoustic field can
be calculated along the rays.

3.4.3. Phase along a ray. The phase in the homogeneous, non-dispersive, case is φ0(x; xe) =
k0|x− xe|, as we saw above. In the heterogeneous, dispersive case, the phase on a ray can be
calculated as the line integral

φ(x; xe) =
∫

C
k · dx′ + φ(xe), (26)

=

∫
Ω

k(x′)δ( f (k,x;xe)(x′))dx′ + φ(xe), (27)

where the curve C is the ray joining the start point, xe, to the point of interest x. The second
form arises from the fact that the tangent to curve C is everywhere parallel to k.

3.4.4. Absorption along a ray. The amplitude will be written as two factors,

A = AabsAgeom, (28)

where the first accounts for amplitude decay due to absorption losses, and the second for geo-
metric spreading and refractive effects. The absorbing factor is the decay along the ray due to
absorption. In the homogeneous but absorbing case we have

Aabs(x; xe) = exp (−ki · (x − xe)) , (29)

which generalises in the case of a non-straight ray to the line integral

Aabs(x; xe) = exp

(
−
∫

C
ki · dx′

)
= exp

(
−
∫

C
α

(
k
k

)
· dx′

)
, (30)

= exp

(
−
∫
Ω

α(x′)δ( f (k,x;xe))dx′
)
. (31)
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3.4.5. Geometric spreading and refractive losses along a ray. By substituting (28) into (23),
with Aabs given by (30), gives

2kαAgeom + 2∇Ageom · ∇φ− 2Ageom
α

k
k · ∇φ+ Ageom∇2φ = 0, (32)

where we have used ∇Aabs = −(αk/k)Aabs. Using (25), this collapses to

∇ · (A2
geom∇φ) = 0. (33)

This transport equation describes the effect of geometric spreading (including refractive bend-
ing) on the amplitude of the wave. From (33), it is possible to derive Green’s law, which relates
the amplitude at two different points along the same ray through knowledge of the ray tube area,
S, at those points [63]:

Ageom(x) =

[
(S/ρc)xref

(S/ρc)x

]1/2

Ageom(xref). (34)

How the reference point xref is chosen will be explained below. Section 6, will describe the
numerical implementation of the equations in this section.

3.4.6. Reference point. The area of the ray tube at the emission point vanishes [32], so, for
a finite pressure source s(t, xe), if the emission point xe were chosen as the reference point xref

then the pressure amplitude calculated using (34) would vanish everywhere. To avoid this, the
reference point is chosen to be xref = xe′ ∈ N (xe) on the ray connecting xe to x, where N (xe)
is a small neighborhood of the emission point xe and the distance |xe′ − xe| is a small scalar
value. (Here, the reference point is chosen as the first ray point after the emission point.)

Note that lim
xe′→xe

S(xe′)Ageom(xe′) is required to be nonzero and bounded and satisfy (34) for

a given Ageom(x) in a homogeneous medium [32]. For this to remain true for the heterogeneous
case, the acoustic properties inside N (xe) are assumed homogeneous. A(xe′) is then calculated
as the amplitude of the analytic Green’s function solution to the wave equation for homoge-
neous media using (20). Correspondingly, given the source function and the emitter position,
(34) can be used to calculate the pressure amplitude at an arbitrary point x under an assumption
that the area of the ray tube does not vanish across the medium.

4. Ray-based inversion accounting for scattering

In this section, the approach taken for minimising the objective function (6) in terms of the
approximate Green’s function introduced in sections 3.3 and 3.4 is explained. The objective
function in terms of Green’s function in the frequency domain is in the form

F (c) =
1
2

∫ ∑
e,r

|δPres|2 dω, (35)

where δPres is the residual, and has components

δpres(c;ω, r; e) = p(c;ω,r;e) − p̂(ω,r;e), (36)

where p(c;ω,r;e) = g(c;ω, xr; xe)s(ω, xe). The minimisation of (35) involves moving to the mini-
mum of an objective function in steps from some starting point c(0). The approach taken in this
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study is finding the steps δc(n) which minimise the Taylor series approximation [57]

F (c(n) + δc(n)) ≈ F(c(n)) +
∫

∂F
∂c(n)(x′)

δc(n)(x′)dx′ + O
(
(δc(n))2

)
, (37)

where n is the iteration number, and the second-order terms and higher are truncated. Taking
the gradient of (37) with respect to c yields [57]

∂F
(
c(n) + δc(n)

)
∂c(n)(x)

≈ ∂F (c(n))
∂c(n)(x)

+

∫
∂2F (c(n))

∂
(
c(n)(x)

)
∂
(
c(n)(x′)

)δc(n)(x′)dx′

= ∇F (n)(x) +
∫

H(n)(x, x′) δc(n)(x′)dx′,

(38)

where the first term on the right-hand side is the gradient of F at iteration n, and the second
term is the action of the Hessian, H(n), on a perturbation δc(n). Finding the perturbation that
makes this right-hand side zero is equivalent to finding a search direction using a second-order
optimisation approach for minimising F . This leads to a linear minimisation sub-problem,
which can be solved by matrix-free approaches, and its solution gives a direct step towards the
local minimum of the objective function. Taking this approach for minimising the objective
function in (35) using the usual good approximation of the Hessian described below is called
a GN algorithm, and requires the solution of a normal equation for each sub-problem (see
section 4.3).

Note that replacing the Hessian with the identity in the above equation will give the steepest
descent search direction, which is equivalent to taking a first-order optimisation approach, in
which the nonlinear objective function (35) is minimised using a search direction which uses
only the information included in the gradient term in (38). First-order approaches [5] are cur-
rently in widespread use for full-wave inversion [2, 50–53], because they do not require the
additional expense of computing the Hessian. Here, however, the use of a second-order min-
imisation is the key to incorporating the effects of scattering in the inversion. Unlike with some
forward models, this does not impose a significant computational burden, because the Hessian
matrix can be efficiently computed using the Greens functions already used for computing the
gradient. To understand why the scattering effects are included, note that the pressure p(c;ω,r;e)
modelled using the ray approach described in section 3 above only captures the accumulated
information along a ray linking emitter e and receiver r, i.e. the first-arriving signal, and scat-
tering, which allows any point in the medium to contribute to the pressure p(c;ω,r;e), is neglected.
Therefore, using only the information included in the gradient for taking a search direction,
scattering effects are neglected. On the other hand, (38) can be expressed as a minimisation
sub-problem of the form

δc(n) ≈ argmin
δc

1
2

∫ ∑
e,r

|δp(c(n) ;ω,r;e)(δc) − δpres(c(n);ω, r; e)|2 dω, (39)

which seeks to find the search direction δc(n) which fits the induced perturbed pressure on
the receivers to the residual in a least square sense. The order of dependence of the perturbed
pressure δp(c(n);ω,r;e) on δc, which is the same as the order of Taylor series in (37), determines the
extent to which scattering is included in (39). Here, the dependence of δP on δc is first order,
leading to linear minimisation subproblem, in which δP captures single-scattering (which is
usually sufficient for soft biological tissue). Therefore, by solving (35) through a sequence of
linear minimisation problems of the form given in (39), scattering can be included in the image
reconstruction.

9
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4.1. Fréchet derivative

The Fréchet derivative, ∂p(c(n);ω,r;e)/∂c(n)(x) indicates the size of the pressure field perturba-
tion δP that will arise from a perturbation in the sound speed δc. The gradient and Hessian
can be written in terms of the Fréchet derivative, as will be shown below. The form of the
Fréchet derivative of the forward operator (4) will depend on the particular form of the lossy
Helmholtz equation used, i.e. it will depend on the form of the dispersion relation, (11). To
retain the generality of the derivation, we first find the Fréchet derivative ∂P/∂k with respect
to the wavenumber k. The Fréchet derivative with respect to the sound speed can be found from
that straightforwardly using the chain rule:

∂P
∂c

=
∂P
∂k

∂k
∂c

, (40)

where ∂k/∂c depends on the specific form of the dispersion relation, (11). Recall the lossy
Helmholtz equation, (7). A perturbation of k(x) at a single point x′ by δk will perturb the
acoustic field everywhere by δp(x). Substituting these into (7) gives(

(k + δk)2 − α2 + 2iα(k + δk) +∇2
)

(p+ δp) = −s, (41)

which, using (7) and neglecting the products of the perturbations, gives(
k2 +∇2

)
δp(x) = −pΥδkδ(x − x′), (42)

where Υ = 2(k + iα) and Υδk is a complex scattering potential. The solution of this can be
written in terms of the Green’s function, (14), so we can write the perturbation of the pressure
at any point x as

δp(x; x′) =
∫

g(k, x; x′′)p(x′′)Υ(x′′)δk δ(x′′ − x′)dx′′, (43)

= g(k, x; x′)Υ(x′)δk(x′)g(k, x′; xe)s(xe), (44)

where the latter step used (16). So the Fréchet derivative of the pressure at a point x when
emitted from a source at xe is

∂p(x; xe)
∂k(x′)

= g(k, x; x′)Υ(x′)g(k, x′; xe)s(xe). (45)

In particular, the Fréchet derivative of the pressure at the detector position xr can be computed,
for the nth iteration, using

∂p(k(n),r;e)

∂k(x′)
= g(k(n), xr; x′)Υ(n)(x′)g(k(n), x′; xe)s(xe). (46)

This has a clear interpretation, reading from right to left: the source s at point xe is propagated
to the point x′ in the domain by the Green’s function g(x′; xe), whereupon it is multiplied by
Υ and propagated to the receiver point xr by the Green’s function g(xr; x′).

4.1.1. Szabo absorption model. In order to obtain the Fréchet derivative with respect to the
sound speed c, rather than k, we need to use a dispersion relation linking these quantities, i.e.
we need to decide on a particular absorption model. In section 3.2.1, a form of the dispersion
relation for Szabo’s absorption model was introduced in (13):

k =
ω

c
+ α tan(πy/2), (47)

10
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so

∂p
∂c

=
∂p
∂k

∂k
∂c

= − ω

c2

∂p
∂k

,

∂p(c(n);r;e)

∂c(x)
= g(c(n); xr; x)Υ(n)

c (x)g(c(n); x; xe)s(xe),

(48)

where

Υ(n)
c (x) =

−2ω
c(x)2

(
ω

c(x)
+ α(x)(tan(πy/2) + i)

)
. (49)

4.2. Gradient and Hessian

The gradient can be written as the action of the Fréchet derivative on the conjugate of the
residual δP∗

res as

∇F (n) (x) =
∑

e,r

∫
Re

{
∂p(c(n) ;r;e)

∂c(n)(x)
δp∗res(c

(n); r; e)

}
dω, (50)

=
∑

e,r

∫
Re
{
Υ(n)

c (x)
[
g(c(n); x; xe)s(xe)

]
×
[
g(c(n); xr; x) δp∗res(c

(n); r, e)
]}

dω, (51)

where we have used (48). Similarly, the action of the Fréchet derivative on the perturbation
δP gives a commonly used, and very good, approximation to the action of the Hessian on the
sound speed perturbation:

(H(n)δc(n))(x) ≈
∑

e,r

∫
Re

{
∂p(c(n);r;e)

∂c(n)(x)
δp∗(c(n) ;r;e)

}
dω, (52)

=
∑

e,r

∫
Re
{
Υ(n)

c (x)
[
g(c(n); x; xe)s(xe)

]

×
[
g(c(n); xr; x) δp∗(c(n) ;r;e)

]}
dω, (53)

where again we have used (48). In both of these integrals, all the factors of the integrand depend
on frequency ω. The square brackets here and above just indicate a way of interpreting this
formulation of the gradient as the product of a forward propagation of the source by the Green’s
function, and backwards propagating of the residual by its adjoint. In other words, in (48),
g(xr; x) acts as a forward propagator from x to xr, whereas in equations (51) and (53), it acts
as a backward propagator from xr to x. Note that the Green’s function obeys the reciprocity
relation g(x; x′) = g(x′; x).

We emphasise here again the reason for using the Hessian in the inversion. The residual,
δpres, which appears in the expression for the gradient, (51), depends only on the points along
a ray linking e and r, and therefore it includes only refractive effects. However, the pressure
perturbation δp which appears in the expression for the Hessian, (53), can be affected by any

11
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point in the medium, because it is obtained from the action of the Frećhet derivative, on the
sound speed perturbation, δc, which can vary anywhere. Therefore, solving the minimisation
subproblem (39), which gives the normal equation (38), can account for single scattering in a
way that the ray-based gradient cannot. This is the reason why, when using a ray-based forward
model, a GN approach to the inversion step, rather than a purely gradient-based approach, is
critical for obtaining good reconstructions.

4.3. Normal equation and update computation

Having defined the gradient and Hessian, this section explains how they are included in (38) and
a GN step direction is calculated. In this case, the linear subproblem, (38), takes the form of the
normal equation, which is solved using a conjugate gradient (CG) algorithm. The procedure
is outlined below.

In algorithm 1, l is the number of cg iterations, and the CG algorithm is terminated after a
fixed lmax number of iterations. The sound speed is then updated using a step length τ , which
is fixed for all linear subproblems n. Also, the Green’s functions included in ∇F (n) and H(n)

are dependent on the chosen angular frequencies ω. Algorithm 1 is iteratively implemented by
choosing a range including small frequencies for c(0), and increasing the frequency range for
the next linearised subproblems.

5. Numerical ray tracing

This section, and the following section, describe the numerical implementation of the method
described above for implementing UST. It is therefore worth taking stock at this point and
recapping the essential principles. We aim to reconstruct an image of the sound speed by min-
imising the objective functionF in (35) through an iterative formation of the linear subproblem
(38), and solving it by means of a CG algorithm given in algorithm 1. The first term in (38)
is the functional gradient ∇F , and is calculated using (51). The second term is an action of
the Hessian matrix on a perturbation to the sound speed, and is calculated using (53) and (43).
These formulae are functions of the Green’s functions g(c(n);ω, x; xe) and g(c(n);ω, xr; x). The
phase in the Green’s function is computed from equation (26), and the amplitude A is computed
from equations (30) and (34). All these formulae rely on the rays introduced in section 3.4.2.
How those rays are traced in practice is described in this section.

5.1. Ray equations

In section 3.4, as a means of solving the dispersive eikonal equation (24), rays with direction
vector k(x) = ∇φ(x) were introduced. It can be straightforwardly shown that the unit vector
dx/ds, describing how the position vector x(s) changes with distance along the ray s, and the
wavevector k must satisfy the coupled ray equations

dx
ds

=
k
k

,
dk
ds

= ∇k. (54)

In UST, the rays must always start at an emission point xe and end at a receiver point xr. Com-
puting rays to link two points like this is known as two-point ray tracing [25]. In this context
it is instructive to consider Fermat’s principle [34, 63], which states that the path between two
points taken by a ray makes the acoustic length stationary under variations in a family of nearby
paths.

The trajectory of a ray passing from point p1 to p2 can be interpreted in the Lagrangian sense
in different ways. Here, following [34], the trajectories of rays are chosen as the stationary
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Algorithm 1. CG algorithm for computing update.

1: input: c(n) , F(c(n)), lmax

2: initialise: l = 0, δc(n)
l = 0

3: rl ←∇F (n) using (51) � Initialise the cg (inner) residual
4: dl = rl � Initialise the cg (inner) step direction
5: while l < lmax do � Iterate for a fixed number of iterations
6: zl ← H(n)dl � Update the action of the Hessian on the cg step direction using (52)

7: αl ←
rT
l rl

dT
l zl

� Update the cg step size 1

8: δc(n)
l+1 ← δc(n)

l + αldl � Update the sound speed perturbation
9: rl+1 ← rl − αlzl � Update the cg residual

10: βl ←
rT
l+1rl+1

rT
l rl

� Update the cg step size 2

11: dl+1 ← rl+1 + β ldl � Update the step direction
12: l ← l + 1 � Increment the counter
13: end while
14: output: c(n+1) ← c(n) + τδc(n)

∗ � Return the optimal sound speed

13
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points of an ‘action’ given by∫ p2

p1

L ds, L(ẋ, x, s) = k (x) (ẋ · ẋ)1/2, (55)

where ẋ ≡ dx/ds. Also, ds = |dx(s)| is an infinite simal distance along the ray, and thus |ẋ| = 1.
The generalised momentum variables are defined as

κi = ∂L/∂ ẋi = kẋ, (56)

which satisfies the left equation in (54). The action is minimised by the Euler–Lagrange
equation

d
ds

∂L
∂ẋ

=
∂L
∂x

, (57)

which directly leads to the right equation in (54).
Interestingly, many different Hamiltonian systems can be defined whose bicharacteris-

tic curves can be associated with the rays as defined here [3, 22–24, 32, 41].1 In practice,
equation (54) are solved using a numerical ray-tracing algorithm combined with ray-linking
techniques, as described below.

5.2. Ray tracing with Heun’s method

Several algorithms for computing rays that satisfy equation (54) are described in the literature,
see e.g. [14, 24–26, 28, 32, 41]. In reference [31], section 2.2, a short comparison has been
provided between ray tracing algorithms. An implementation of the ray equations derived in
(54) using a second-order variant of Runge–Kutta (RK) scheme provides a good trade-off
between accuracy and speed [29, 33]. Therefore, this approach has been taken in this study.

Consider a ray, and for a point m along the ray let us define ym = [xm,κm]T ∈ R
2d. Using

a second-order variant of RK method, also known as improved Euler or Heun’s method, ym+1

can be approximated in the form

ym+1 = ym +
Δs
2

(q(ym) + q(ŷm+1)), (58)

where

q(y) =

[
qx

qκ

]
=

[
κ/k(x)
∇k(x)

]
, (59)

and

ŷm+1 = ym +Δs q(ym). (60)

Each step m involves first calculating an auxiliary variable ŷm+1, which is a predictor for the
next update, and then correcting the update ym+1 through (58) using a trapezoid rule. Therefore,

1 Equivalently, rays can be expressed as the characteristic curve of the Hamiltonian H(x,κ), which can also be
defined in different ways. For example, H(x,κ) = κ · κ/(2k2) (H = 1/2) [23], H(x,κ) = (κ2 − k2)/2 (H = 0) [30],
or H(x,κ) = |κ|/k(H = 1) [24]. All these Hamiltonian formulae satisfy the eikonal equation (24) [41]. The charac-
teristic curves of these Hamiltonian systems satisfy dx/ds = ∇κH(x,κ) and dκ/ds = −∇xH(x,κ), which together
with imposing the condition |dx/ds| = 1, give the ray equation (54).

14
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Algorithm 2. Ray tracing using Heun’s method.

1: input: xe, k := k(x) � Input initial ray position and wavenumber
2: initialise: x = xē, κ = κē � Set initial ray position and direction
3: while x(s) is insideΩ do
4: κ← kκ/|κ| � Normalise the ray direction
5: qx = κ/k � Compute the update variables using (59)
6: qκ = ∇k(x)
7: κ′ ← κ+Δsqκ � Update the auxiliary ray direction
8: k′ ← k(x+Δsqx) � Update the auxiliary wavenumber
9: κ′ ← k′κ′/|κ′| � Normalise the auxiliary ray direction
10: q′x = κ′/k′ � Compute the auxiliary update variables using (59)
11: q′κ = ∇k(x+Δsqx)
12: x← x+ (Δs/2)(qx + q′

x) � Update the ray position using (58)
13: κ← κ+ (Δs/2)(qκ + q′κ) � Update the ray direction using (58)
14: end while

the improved Euler method is a predictor–corrector method [29]. In addition, the step direc-
tions are normalised such that |κ| = k, which ensures ẋ · ẋ = 1. The ray tracing algorithm
using Heun’s method is outlined in algorithm 2.

5.3. Grid-to-ray interpolation

The wavenumber field k(x) was represented on a discretised mesh of Nn points xi. A rectilin-
ear grid was used with grid points indexed with the multi-index i =

(
i1, i2

)
∈
{

1, . . . , N1
n

}
×{

1, . . . , N2
n

}
with Nn =

∏2
j=1N j

n and an equal grid spacing Δx along all Cartesian coordinates
j. (Recall that our study is restricted to d = 2.) Also, xi j is used to indicate the position of grid
point i along Cartesian coordinate j. The points along a ray can lie on any arbitrary points in
Ω, and are not restricted to the grid points. Therefore, an interpolation from the grid to the
rays must be performed to find the approximate values for k and ∇k used in the ray tracing
algorithms [25, 31]. Here, the wavenumber function k(x) is represented with a set of B-spline
functions, which therefore gives continuous values for the directional gradients. Following [30,
31], the control points for the B-spline function are chosen on the grid points Q(xi1 , xi2), and
the B-spline function is defined using

k(x) ≈ k̂(x) =
3∑

q1=0

3∑
q2=0

Yq1 (u)Yq2(v)Q(xi1+q1−1, xi2+q2−1). (61)

Here, u and v are defined as

u(x) =

⎧⎨
⎩

x1 − xi1

Δx
, if x(i−1)1 < x1 < x(i+1)1

0, otherwise

v(x) =

⎧⎨
⎩

x2 − xi2

Δx
, if x(i−1)2 < x2 < x(i+1)2

0, otherwise,

(62)
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where x(i±1) j denotes the two grid points adjacent to the grid point xi = (xi1 , xi2) along the
Cartesian coordinate j. Here, the polynomials Ym(u) and Yn(v) satisfy [31]

⎡
⎢⎢⎣

Y0(u)
Y1(u)
Y2(u)
Y3(u)

⎤
⎥⎥⎦ =

1
6

⎡
⎢⎢⎣
−1 3 −3 1
3 −6 0 4
−3 3 3 1
1 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

u3

u2

u
1

⎤
⎥⎥⎦ . (63)

Using equations (61) and (63), the approximated wavenumber field is C2 continuous [30, 31].
Therefore, the components of the directional gradients can be analytically calculated from (63).

5.4. Ray-linking

The rays initialised from an emitter at point xe are used for two tasks, (1) computing the Green’s
function at the reception points xr, i.e. g(c(n);ω, xr; xe), which is used for calculating the resid-
ual δPres, and (2) computing the Green’s function at arbitrary points within the medium x from
excitation e, i.e. g(c(n);ω, x; xe). Tracing individual rays from xe to every point in the domain
separately would be much too expensive and many of the rays would be redundant. There are
therefore two choices: (a) send rays from xe at evenly-spaced initial angles out across the whole
domain with no specific end-point in mind, and interpolate from these rays onto x and xr as
required, or (b) trace rays from xe to xr using ray-linking and then, using those rays, interpolate
onto the points x as required. The downsides of option (a) are that there will be interpolation
error in the estimate of the pressure at the reception point xr. Therefore, the spacing for the
initial angles should be sufficiently small. More importantly, the acoustic length between two
points on such a ray is less likely to be a global minimum [25]. With option (b), on the other
hand, ray-linking seeks to find a ray trajectory which provides the stationary point within a fam-
ily of neighborhood paths between xe and xr by enforcing a boundary condition on the rays’
path such that the ray initialised from an emitter e is intercepted by the receiver r after trav-
elling across the medium. For each iteration (linear subproblem) of the UST inverse problem,
and emitter–receiver pair, ray linking is done by iteratively adjusting the initial angle of the ray
emanated from the emitter using an optimisation algorithm such that the interception point of
the ray by the detection surface matches the position of the receiver within a tolerance. (See
[25, 27, 40] for further details.) The main downside of (b) is that per ray it is more expensive
than (a) because the ray-linking is iterative. However, there are several advantages to using ray-
linking. First, because of the imposition of the boundary condition on the ray, the approach is
more stable in the following sense: the trajectory of the ray for option (a) doesn’t link e to r
but to a point different from r, and the phase and amplitude difference between this point and
r may be too large to correct using a simple interpolation, resulting in errors in the phase and
amplitude. Second, the linked rays can be re-used when calculating the adjoint field, as they
link directly to the receiver points from which the adjoint sources emanate.

The most popular ray-linking approaches for 2D media are based on solving the associated
one-dimensional inverse problem using the regula falsi or secant approaches [25, 26, 32, 40,
41]. The regula falsi approach will be used for validation of the ray tracing using a digital breast
phantom, and a secant approach will be used iteratively for solving the optimisation problem
in a way in which the linked rays used for solving the linearised problem n will be used as an
initial guess for the ray linking for the next subproblem n + 1. (See [27] for an extension of
ray-linking to 3D.)
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5.5. Ray coordinates

In the general case, the coordinates of the ray are given by two parameters: one specifying
the initial direction of the ray and another monotonic parameter along the ray [32]. These
parameters can be chosen in different ways. For our 2D case, the ray coordinates will be defined
as the initial direction of the ray in polar coordinates, which is also called radiation angle, and
the arc length s along the ray, with s = s0 matching the emission point, and monotonically
growing along the ray.

Definition 3. The trajectory of a ray linking an emission point e to a reception point r
is defined by the points with arc lengths sm, m ∈ {0, . . . , M(e,r)}, where the number of the
sampled points along the ray is M(e,r) + 1. Therefore, the points are initialised from s0 with
x(s0) := xe, and are terminated at the point sM(e,r) with x(sM(e,r) ) := xr, the position of receiver r.
The points sm satisfy

sm =

{
mΔs, m ∈ {0, . . . , M(e,r) − 1}

(m − 1)Δs +Δs′, m = M(e,r).
(64)

Here, the second line is used in order to indicate that the last point of the ray must be matched
to the reception point r, and thus Δs′ = sM(e,r) − sM(e,r)−1 with Δs′ � Δs [27].

Definition 4. For each excitation e, the pressure field is approximated on a set of linked rays
f (k,xr ;xe) = 0, e ∈ {1, . . . , Ne} , r ∈ {1, . . . , Nr}. These rays are parameterised in space using
x(sm, θ(r,e)), which denotes the position on the arc length s of the point m along a ray linking
the emission position xe to the reception position xr. Also, the polar initial direction of this ray
is indicated by θ(r,e).

Having defined the rays linking all emitter–receiver pairs, the sampled points along these
rays are used for a spatial parameterisation of the medium and for a numerical implementation
of the method approximating the acoustic field as described in section 3. The discretised version
of this theory is the topic of the next section.

6. Discretisation of approximate Green’s function

This section describes how the model outlined in section 3 is discretised for implementation.
The Green’s function, g(ω, x; xe), is discretised at the sampled points along the rays linking the
emitter e to all receivers r using the coordinates defined in definition 4

g
(
ω; x(sm, θ(r,e))

)
≈ A (x(sm; θ(r,e)) exp

(
i
(
φ
(
x(sm, θ(r,e))

)
+ π/4

))
, (65)

where φ
(
x(sm, θ(r,e))

)
and A

(
x(sm, θ(r,e))

)
are the phase and amplitude on point m on the ray

linking emitter e to receiver r, respectively.

6.1. Acoustic absorption

The acoustic absorption on the ray is computed in the form

Aabs
(
x(sm, θ(r,e))

)
= exp

(
−
∫ sm

s0

α
(
x(sm, θ(r,e))

)
ds

)
, (66)

where Aabs

(
x(s0, θ(r,e))

)
= 1.
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6.2. Geometrical spreading

The effect of geometric spreading on the amplitude of Green’s function is described in (34),
which relates the amplitudes at two points along a ray by considering how the area of the ray
tube around the ray changes between the two points, as described in section 3.4.5. To compute
this numerically requires us to estimate the rate at which two closely-spaced rays diverge, for
which we turn to the concept of the ray Jacobian [32].

First, note that the relations between the ray coordinates, γ = [γ1, γ2]T =
[
θ(r,e), sm

]T
and

the general Cartesian coordinates, x = [x1, x2]T, follows

Qii′(sm, θ(r,e)) =
∂xi

∂γi′
(sm, θ(r,e)), (67)

where Q is called the transformation matrix, and satisfies

dx(sm, θ(r,e)) = Q(sm, θ(r,e))dγ. (68)

The Jacobian J on the point m along the ray initialised by the angle θ(r,e) then satisfies

J(sm, θ(r,e)) = det Q(sm, θ(r,e)), (69)

where det denotes the determinant. This ray Jacobian is closely connected to the density of the
ray field, which is described by the cross section area of ray tube. Here, the ray tube for the ray
θ(r,e) is defined as a family of rays with an initial angle in the interval

(
θ(r,e) −Δθ, θ(r,e) +Δθ

)
.

We can estimate the Jacobian J as the determinant of a matrix which includes the derivative of
a ray’s trajectory with respect to the ray coordinates using finite differences [34]

J
(
sm, θ(r,e)

)
= det

([
∂x
∂θ

(
sm, θ(r,e)

)
,
∂x
∂s

(
sm, θ(r,e)

)]T
)
. (70)

The derivative of the ray’s trajectory with respect to the arc length s can be approximated using
finite differences in the form

∂x
∂s

(
sm, θ(r,e)

)
≈ x

(
sm+1, θ(r,e)

)
− x

(
sm−1, θ(r,e)

)
2Δs

, (71)

where Δs is the user-defined step size used for calculation of the trajectory of the ray (cf
section 5). In the same way, the derivative with respect to the polar initial direction can be
numerically approximated using

∂x
∂θ

(
sm, θ(r,e)

)
≈ x

(
sm, θ(r,e) +Δθ

)
− x

(
sm, θ(r,e) −Δθ

)
2Δθ

, (72)

where Δθ is a user-defined perturbation in the initial angle of the linked ray, and is here fixed.
The above equation requires tracing two additional auxiliary rays with angles θ(r,e) ±Δθ for
each emission–reception pair after ray linking [32]. When the reception points are sufficiently
close together the computation of auxiliary rays can be avoided by modifying (72) into the
form

∂x
∂θ

(
sm, θ(r,e)

)
≈ x

(
sm, θ(r+1,e)

)
− x

(
sm, θ(r−1,e)

)
θ(r+1,e) − θ(r−1,e)

. (73)

Here, x
(
sm, θ(r±1,e)

)
denotes the position of the two rays linking the emission position xe to

the two nearest reception points xr±1. (Note that a rotational indexing must be used for the
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reception points for a circular detection geometry, i.e. the receivers adjacent to r = Nr are r =
{Nr − 1, 1}.) Using (73), the two auxiliary rays used in (72) are replaced by two adjacent linked
rays, which have already been calculated. (Note that (72) is used in this study.) Considering
(34), the geometrical attenuation satisfies

Ageom
(
x(sm; θ(r,e))

)
=

[
c
(
x(sm, θ(r,e))

)
c
(
x(s1, θ(r,e))

) J(s1, θ(r,e))
J(sm, θ(r,e))

]1/2

, (74)

where J
(
s1, θ(r,e)

)
is the Jacobian of the ray on the reference point, which is chosen as the sec-

ond point along the ray, using an assumption that a neighborhood of the emission point with a
radius greater than ray spacingΔs is acoustically homogeneous. It is reminded that the acoustic
density has been assumed homogeneous in this study.

6.3. Phase

The accumulated phase is discretised in the form

φ
(
x(sm, θ(r,e))

)
=

∫ sm

s0

k
(
x(sm, θ(r,e))

)
ds + φ

(
x(s0, θ(r,e))

)
+

π

2
K(sm, θ(r, e)),

(75)

where x(s0, θ(r,e)) := xe is the emission point. Also, K(sm, θ(r, e)) is the cumulative times
the sign of the ray Jacobian along the ray has been changed. Points on which the ray Jacobian
changes sign are called caustics, and will lead to a π/2 shift in the phase [32].

7. Numerical results

This section will describe numerical experiments demonstrating the effectiveness of the pro-
posed ray-based inversion approach for a quantitative reconstruction of the sound speed dis-
tribution of an object from the measured pressure time series. In section 7.1, the details for
simulation of ultrasound pressure time series are explained. In section 7.2, the Green’s function
solution to the Szabo’s second-order wave equation (12) is compared to a full-wave solution
using a k-space pseudo-spectral method [35, 46]. This numerical wave solver is freely avail-
able in the open-source k-Wave toolbox [61, 62]. The reconstructed images will be presented
in section 7.3.

7.1. Data simulation

7.1.1. Imaging system and breast phantom. UST data was simulated for an imaging system
which consists of 64 emitters and 256 receivers uniformly distributed along a circle with radius
R = 9.5 cm. A horizontal slice of a 3D digital phantom mimicking the acoustic properties of
the breast was used in this study. This digital phantom is freely available [58]. The sound
speed was set to a range 1470–1580 m s−1, and the absorption coefficient α0 was set to a
range 0–1 dB MHz−y cm−1, and the power law exponent y was set to 1.4. The sound speed and
absorption phantoms are shown in figures 1(a) and (b), respectively. The computational grid
consisted of 670 × 670 grid points with position [−10.05,+10.02] × [−10.05,+10.02] cm2

and a grid spacing of Δx = 3 × 10−2 cm along all the Cartesian coordinates. With this sound
speed distribution and grid spacing, the maximum frequency supported by the grid, fmax, was
2.45 MHz.
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Figure 1. Phantom used for the simulation of the synthetic data using the k-wave tool-
box: (a) sound speed (m s−1), (b) absorption coefficient (dB MHz−y cm−1), and a
homogeneous power law exponent y = 1.4.

7.1.2. Simulating time series data. A k-space pseudo-spectral method (k-wave) was used for
simulation of the acoustic pressure time series data [61, 62]. The emitters and receivers were
assumed as points (not necessarily lying on grid points), and the interpolation of the pressure
field from the grid to these transducers and vice versa was performed using the off-grid toolbox
[36]. To simulate the data, each emitter was individually driven by an excitation pulse, and
the acoustic pressure time series induced at the receivers were recorded simultaneously. This
was repeated for each emitter. The pressure time series were recorded at 8621 time points
with a sampling rate of 52.8 MHz (18.94 ns time spacing). Additive white Gaussian noise
was added to the simulated pressure time series to give a 40 dB signal-to-noise ratio of the
peak amplitudes. Two sets of UST data were simulated. The first data set was simulated for
only water, and the second data set was simulated for the digital phantom inside water. The
computational time for simulation of the UST data set including all excitations for the digital
breast phantom inside water using k-wave’s Matlab code [62] on a single 8-core Xeon E5-
2620 v4 2.1 GHz CPU was about 6 h. The output of physical ultrasound transducers covers
typically a finite and quite limited bandwidth, and the generated pressure field tends to be
more directional at high frequencies. In designing transducers for an imaging system, therefore,
a trade-off must be made between the range of frequencies in the excitation pulse and the
directionality of the detectors. Although here the transducers are assumed omnidirectional at
all frequencies, the frequency bandwidth of the simulated excitation pulse was nevertheless
limited. Figure 2(a) shows the normalised amplitude of the excitation pulse (pressure source)
in the time domain, and figure 2(b) shows the normalised amplitude and phase components
of the excitation pulse in frequency domain, respectively. This signal is used as the pressure
source for all excitations. Note that for practical experiments, the induced pressure source may
not be the same for different emitters, because it depends on the properties of the emission
elements, and a calibration step may be necessary.

7.2. Approximate Green’s forward model

In this section, our approximate Green’s function solution to Szabo’s wave equation (12), pro-
posed in section 3, is compared to a full-wave solution using k-wave [46, 61, 62]. Note that
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Figure 2. Excitation pulse used for all emitters: (a) time domain, (b) frequency domain:
normalised amplitude and phase. fmax indicates the maximum frequency supported by
the grid used in the k-wave simulations.

k-wave replaces the fractional time derivative in (12) with two fractional Laplacian operators
to improve the computational efficiency [46].

7.2.1. Homogeneous medium. The pressure p(ω, x; xe) was computed using (16), in which
the pressure source was simulated as in figure 2(b), and the Green’s function was calcu-
lated analytically using the formula (17). The computation was done at 50 equidistant dis-
cretised frequencies ω ∈ 0, . . . , 2π fmax, where fmax is the maximum frequency supported
by the computational grid for the k-wave simulation. Figures 3(a) and (b) show the ampli-
tude and phase components of the pressure signal measured by receiver 100 after propaga-
tion from emitter 1 through water (no breast phantom). The relative discrepancy between
the k-wave and the ray-based Green’s approach for the displayed signal was 0.75%. For
the pressure field produced by emitter 1, the mean relative discrepancy between the k-wave
and Green’s approach among the signals recorded by all the 256 receivers was 0.77%.
The major portion of the discrepancy corresponds to the interpolation from the emis-
sion points to the grid points, and the interpolation from the grid points to the reception
points.

7.2.2. Heterogeneous medium. This section compares the forward model using our approx-
imate Green’s function approach and k-wave for the case of heterogeneous media. The
pressure field p(ω, x; xe) induced by each emitter, and propagated through the digital breast
phantom, was recorded by all 256 receivers. The simulation for k-wave was performed
as explained above. The pressure field was also approximated using (16), in which the
Green’s function g(ω, x; xe) is approximated using (65) along the linked rays, as described in
section 6.

We first compare the k-wave solver with the approximate Green’s function approach for
simulating the pressure field on the receivers. For comparison, k-wave was used to simulate
the pressure field on the receivers, as described above, and the forward model using the Green’s
function approach was implemented on the same computational grid and with the same param-
eters as used for image reconstruction. In the image reconstruction below, the inverse crime
was avoided by using two inherently different approaches for the data simulation and image
reconstruction steps on different grids. This grid has a size 200 × 200 with a grid spacing of
1 mm. For implementing the Green’s approach, the wave number field has been smoothed by
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Figure 3. Frequency domain (a) amplitude and (b) phase of the pressure signal mea-
sured by receiver 100 after being produced by emitter 1 and propagating through water.
(Note that the amplitude has the same normalisation as the excitation signal shown in
figure 2(b).).

an averaging window of size 7 grid spacings. Only in this section, for making the comparison
fair, the wave number field of the digital breast phantom used for data simulation was smoothed
by an equivalent averaging window with size increasing reciprocal of the grid spacing as well.
(Note that for simulating the data used for image reconstruction, the k-wave was applied on
the unsmoothed digital breast phantom.) The reason was that the approximate Green’s forward
model neglects the scattering effects, but the primary scattering effects will be included in the
inversion process as described above.

For both comparison of forward models and image reconstruction, the step size Δs for
ray tracing was chosen the same as grid spacing. The ray linking for 2D UST is equivalent
to solving a one-dimensional optimisation problem [25]. The most popular one-dimensional
approaches for ray linking in 2D UST are regula falsi and secant methods. The regula falsi
approach is more time consuming, but is more robust, and more likely gives a stable solution
than the secant approach when a good initial guess is not available. On the other hand, secant
method is faster and is a good choice when the initial guess is sufficiently close to the true
solution. Only in this section, because ray linking was applied on the digital breast phantom
for the purpose of comparison with k-wave, a good initial guess is not available. Therefore,
regula falsi approach was used for ray linking for improving the stability [32].

The accumulated phase along the linked rays was computed using (75). Because the rays
are linked between emitters and receivers, the receivers match the last point along the rays,
and therefore, the pressure can be approximated on the receivers without any interpolation.
The changes in the amplitude because of cumulative acoustic absorption and geometrical
spreading were computed along the linked rays using (66) and (74), respectively. For the
latter, the amplitude on the second point along the ray was calculated using the analytical for-
mula (20), and using an assumption that a neighborhood of each emission point with a radius
larger than the ray spacing is acoustically homogeneous. The Jacobian on the rays’ points was
computed using (72), which required two auxiliary rays for each linked ray (emitter–receiver
pair).

Figures 4(a) and (b) show the discrepancy (φ− φ0) /ω using an exponent power y = 2
(used only for the comparison case), which makes the plot independent of frequency.

22



Inverse Problems 37 (2021) 115003 A Javaherian and B Cox

Figure 4. (a) The discrepancy of the TOF of two sets of time traces measured from the
pressure field propagating through the breast inside water and only water. The TOFs
were computed using a first-arrival picking algorithm [59], and are approximate. (b)
Computed (φ− φ0)/ω, which is the same for all frequencies for y = 2. Here, φ0 and φ
are accumulated (unwrapped) phases in water and phantom.

In figure 4(b), φ represents the accumulated phase along the linked rays for the digital breast
phantom, and was approximated using (75), and φ0 is the phase on the receivers in the only
water, and was calculated using (19). An approximate broadband variant of the accumulated
(unwrapped) phase of time traces was determined using the TOFs computed using a first-
arrival picking algorithm often used for transmission imaging for medical applications [59].
As described, using y = 2, the effects of dispersion on the plots are neglected. (Note that for the
data simulated for image reconstruction, a more realistic y = 1.4 was used.) Figure 4(a) shows
the discrepancy of the TOFs in the two sets of time traces measured on the receivers, i.e. prop-
agating in water and the digital breast phantom inside the water. (Recall that the ‘measured’
signals were simulated using k-wave.) In this figure, the columns (resp. rows) represent the
emitters (resp. receivers).

Figures 5(a) and (b) compare the k-wave and the Green’s function approach for the phase
component of the pressure field on the receivers at frequency f = 1 MHz after being pro-
duced by emitters 1 and 33, respectively. Note that in figure 5(a), the rays linking emitter 1
and receivers almost in the ranges smaller than 50 and larger than 200 travel in only water.
Also in figure 5(b), the rays linking emitter 33 and receivers roughly in a range 80–180 travel
in only water. Therefore, for these rays, the approximate Green’s function for only water
(equation (17)) and the absorbing breast inside water (equation (65)) give the same pressures,
and also the discrepancy with k-wave is small, as explained in section 7.2.1. For the rays trav-
elling through the breast, i.e. the rays containing useful information for UST, the k-wave and
Green’s forward model approximated for the absorbing breast give good agreement, but the
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Figure 5. The phase of the pressure field measured on the receivers at f = 1 MHz after
being produced by: (a) emitter 1 and (b) emitter 33. Approximate Green’s forward model
with: absorbing breast phantom (red) and water (green), k-wave with: absorbing breast
(blue).

Green’s forward model assuming the only water shows large discrepancies with k-wave as
expected.

Figures 6(a) and (b) compare the k-wave and the Green’s approach for the amplitude of the
pressure field induced by emitters 1 and 33, and measured on all the receivers at frequency
f = 1 MHz. Note that in contrast to the approximate Green’s forward model, which approxi-
mates the amplitude along the linked rays, the k-wave simulation also includes the scattering
effects, but the smoothing applied on the digital breast phantom (only for comparison pur-
poses), reduces the scattering effects. Note also that for the light blue plot, α0 is assumed zero,
and only the geometrical effects have been accounted for in calculating the amplitudes, i.e.
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Aabs = 1. It is also reminded that the amplitudes calculated by the analytic Green’s function
given in (17) (green line) match the amplitudes simulated by k-wave in water, as shown in
figure 3(a). Figures 6(a) and (b) show that the amplitudes approximated by the heterogeneous
Green’s forward model assuming α0 = 0 and the analytical Green’s forward model assuming
only water have considerable discrepancies with k-wave, but the approximate heterogeneous
Green’s forward model including the acoustic absorption has good agreement with k-wave in
approximating the amplitudes. The major portion of mismatch between k-wave and the het-
erogeneous Green’s forward model includes the scattering effects neglected by the Green’s
forward model. As explained in section 4, the scattering effects are accounted for in the inverse
problem through using a second-order optimisation scheme.

7.3. Image reconstruction

This section gives further details about the procedure used for image reconstruction, and shows
the reconstructed images. The grid for image reconstruction consisted of 200 × 200 grid points
with position [−9.98,+9.93] × [−9.98,+9.93] cm2 and a grid spacing of Δx = 1 mm along
all the Cartesian coordinates. The pressure time series were downsampled by two, providing a
sampling rate of 26.4 MHz (37.88 ns time spacing) for the data used for image reconstruction.
Because the sound speed is reconstructed on the grid points, the parameters of Green’s func-
tions approximated along the linked rays must be interpolated to the grid points. This was done
by enforcing a triangulation to the sampled points on the linked rays, and then interpolating the
approximated parameters on the rays’ points to the grid points using a trilinear interpolation.
For computing the Green’s function g(c; xr; x), the parameters are reversed along the linked
rays. This is equivalent to replacing e and r in formulae given in section 6. Note that for com-
puting the geometrical portion of the amplitude along each reversed ray using equation (72),
two additional auxiliary rays must be computed with initial positions xr. The accuracy of the
reconstructed images are measured in terms of relative error

RE
(
cimage

)
=

‖cimage − cphantom‖
‖c0 − cphantom‖

× 100, (76)

where cimage denotes the reconstructed sound speed distribution, and c0 is the sound speed in
water. This parameter is calculated on the grid, and inside the binary mask, used for image
reconstruction.

7.3.1. Initial guess. Because the inverse problem of reconstructing the sound speed image from
boundary pressure data is nonlinear [49], an initial guess using a TOF approach is often used
[18, 19, 50–53, 64]. Here, an image reconstruction approach based on the TOF of the mea-
sured pressure data [27, 59] was used in order to provide an initial guess for the proposed
inversion approach, but a rough initial guess was chosen using only the early iterations of the
TOF-based inversion in order to show that the success of the proposed ray-based Green’s inver-
sion approach is not strongly dependent on the image provided by the TOF-based inversion
approach.

The discrepancy of the first-arrival of the measured (simulated) pressure time series for the
two data sets simulated for the breast phantom inside water and only water was calculated using
a first-arrival picking algorithm [59]. The TOF-based inversion approach iteratively minimises
the norm of discrepancy of first-arrivals modelled by the ray tracing algorithm 2 and those cal-
culated from the measured data sets using the first-arrival picking algorithm [59]. The sound
speed distribution was initialised from the sound speed in water, and the TOFs are iteratively
modelled as the integral of the slowness (reciprocal of sound speed) along the linked rays. At
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Figure 6. The amplitude of the pressure field measured on the receivers at f = 1 MHz
after being produced by: (a) emitter 1 and (b) emitter 33. Approximate Green’s for-
ward model with: absorbing breast phantom (red), non-absorbing (light blue) and water
(green), k-wave with: absorbing breast (blue).

each iteration, the ray linking was done separately for all emitter-receiver pairs by an iterative
implementation of the ray tracing algorithm 2 using the secant method, and the initial angle of
each ray (initial guess) for ray linking was chosen as the optimal initial angle obtained from ray
linking at the previous iteration [27]. Only for ray tracing associated with the TOF-based inver-
sion approach, the dispersion effects were ignored, i.e. α = 0. For ray tracing and construction
of the system matrix at each iteration (cf [27]), the sound speed updates were smoothed by an
averaging window of size 7 grid spacings. The optimal TOF-based image was obtained after 6
iterations, i.e. one iteration using straight rays following 5 iterations using bent rays applied on
the updates of the sound speed map. The first iteration was done using straight rays, because
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Figure 7. Reconstructed images using TOF data, after: (a) one iteration using straight
rays, (b) one iteration using straight rays and 2 iterations using bent rays, (c) one iteration
using straight rays and 5 iterations using bent rays (the optimal TOF image).

the initial guess was chosen homogeneous, i.e. the sound speed in water. Figure 7(a) shows the
image reconstructed after the first iteration of the TOF-based inversion approach using only
straight rays (RE = 85.09%). Figure 7(b) shows the TOF-based reconstructed image after one
iteration using straight rays and subsequently 2 iterations using the bent rays (RE = 75.67%).
Figure 7(c) shows the optimal image reconstructed by the TOF-based inversion approach after
the 6 iterations (RE = 66.21%).

7.3.2. Green’s function-based inversion approach. The inversion approach explained in
section 4 was implemented at 140 equidistant discretised frequencies f ∈ 0.2, . . . , 1.5 MHz.
The image reconstruction was performed from low to high frequencies such that each linearised
subproblem (38) was solved at four consecutive discretised frequencies using algorithm 1. For
each linearised subproblem, the Green’s functions were approximated along the rays linked in
a medium having the last update of the sound speed, computed from the previous linearised
subproblem. The ray linking was performed separately for all emitter-receive pairs using the
secant method. For ray linking, a set of constraints was enforced on the initial angles in order
to improve the stability, as explained in [27]. The trajectory of rays are iteratively computed

27



Inverse Problems 37 (2021) 115003 A Javaherian and B Cox

Figure 8. Reconstructed images using the ray-based Green’s approach. (a) Using the
TOF initial guess shown in figure 7(a), and the true α0 as shown in figure 1(b). (b) Using
the better TOF initial guess shown in figure 7(b), and settingα0 = 0, (c) as (b) but setting
α0 = 0.5 dB MHz−y cm−1 everywhere, (d) as (b) but with the true α0.

using algorithm 2 until the end point of the rays matches the position of the reception points
within a tolerance [27]. For computing the trajectory of rays, an averaging window of size 7
grid spacings was enforced on the updated wave number fields, but the nonsmoothed updates
were used for integration along the rays and approximating the Green’s functions using the
formulae given in section 6. For each emitter–receiver pair, the initial angle of the linked ray
(optimal ray after ray linking) for the linearised subproblem n was used as the initial guess for
ray linking for the linearised subproblem n + 1 [27]. For n = 0, the initial guess for the initial
angles were chosen as those obtained from ray linking at the last iteration of the TOF-based
inversion approach. Each linearised subproblem was solved using maximum lmax = 10 cg
iterations (cf algorithm 1).

Figure 8(a) shows the sound speed image reconstructed using the proposed Green’s func-
tion approach (RE = 45.98%), when the initial guess was chosen to be far from the optimal
solution, i.e. the TOF-based sound speed reconstructed using one straight-ray iteration (shown
in figure 7(a)), and the true absorption coefficient map shown in figure 1(b) was used for
image reconstruction. Figures 8(b)–(d) show the sound speed images reconstructed using the
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Figure 9. The reconstructed sound speed values for the grid points in the images along:
(a) horizontal row (x = 0) and (b) vertical column (y = 0). The values correspond
to the phantom interpolated onto the grid for image reconstruction (black), optimal
(best) reconstructed image using the TOF-based approach (blue), and the reconstructed
image using the Green’s approach assuming a homogeneous absorption coefficient
α0 = 0.5 dB MHz−y cm−1 across the breast phantom (red).

Green’s function approach, when the initial guess was chosen to be the sound speed shown
in figure 7(b). Figure 8(b) shows the reconstructed sound speed image (RE = 42.49%), when
the absorption and dispersion are neglected by using α0 = 0. Figure 8(c) shows the sound
speed image (RE = 38.95%), when the absorption coefficient inside the breast phantom was
set homogeneous andα0 = 0.5 dB MHz−y cm−1 in order to avoid an inverse crime. Figure 8(d)
shows the reconstructed image (RE = 37.97%), when the true absorption coefficient given in
figure 1(b) was used. As shown in these images, the discrepancy between the reconstructed
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images using the true α0 and the erroneous homogeneous α0 is small, but the reconstructed
image for which the absorption and dispersion effects are neglected includes more artefact.

Figures 9(a) and (b) provide a clearer comparison between the sound speed values recon-
structed by the TOF-based and Green’s inversion approaches, as they show profiles of the
sound speed along the central row (x = 0) and the central column (y = 0) in the reconstructed
images, respectively. The line plots correspond to the sound speed phantom interpolated onto
the grid for image reconstruction (black), the optimal image reconstructed using the TOF-based
inversion approach (blue) and the image reconstructed using the Green’s inversion approach
assuming a homogeneous α0 = 0.5 dB MHz−y cm−1 across the breast phantom (red).

It is worth mentioning that for choosing the initial guess of the Green’s inversion approach
as a sound speed image reconstructed using the TOF-based approach, a trade-off should be
made between the closeness to the optimal solution of the Green’s approach and the artefact
included in the reconstructed image [18, 19].

For purposes of comparison, a reconstruction was performed using only straight rays (not
shown). We found that using bent rays resulted in a slightly more accurate sound speed update
than using straight rays at low frequencies (200 kHz), but the improvement became greater as
the frequency increased.

8. Discussion

In this section we highlight some similarities with other approaches used to tackle UST,
and briefly discuss the advantages and disadvantages of this approach compared to other
commonly-used approaches. There is a very extensive literature on UST and seismic imag-
ing dating back decades, and, for reasons of space, we cannot reference all possible relevant
works here, but we hope those works referenced are representative and give the reader a route
into the considerable literature.

Inversions using full-wave models. The most general approach for reconstructing the
sound speed from acoustic pressure data is based on minimising the difference (in some sense)
between the measurements and a model of the acoustic propagation. This model-based min-
imisation framework is widely used for tackling inverse problems, and has also been widely
used for UST. It is also the approach taken in this paper. Arguably, the choice of model that will
achieve the most accurate results is the model that describes the physics of acoustic propagation
most accurately. For this reason, there has been great interest recently in using full-wave models
that explicitly model the acoustic wave equation for heterogenous media [2, 20, 50–53, 56]. As
expected, these approaches have been shown to provide accurate and high resolution images,
but a significant hurdle to the practical applicability of these is that the full-wave solvers are
compute intensive. Indeed, grid-based solvers become increasingly memory-hungry the higher
the frequency. (Another potential disadvantage is when using a rotating measurement system
with a sparse distribution of transducers [9, 10], as the number of forward solvers grows lin-
early with the number of rotations [27].) It is also important to consider that it is never possible
to include every conceivable physical effect in any forward model, and that even full-wave
models are based on approximations. For example, it is not necessary to model backscattered
waves when measurements are only made in front of the emitter. The challenge is balancing
the extent to which the physics is modelled accurately with the cost of computation, such that
good images can be produced in a reasonable time. For this reason, approximate models have
been proposed for use within model-based inversions [17–19]. The approach proposed here
falls into this category. Our approximate forward model is based on a ray-approximation to
the Green’s function for heterogeneous media, and takes into account geometrical spreading
(including acoustic refraction), and absorption and dispersion following a frequency power law
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evident in tissues, and first-scattered waves. This has two significant advantages over full-wave
models: it is much more computationally efficient than grid-based full-wave solvers, and the
cost does not scale with frequency. Note that with a grid-based model, the grid spacing must
be chosen to support the maximum frequency in the pulse, which is not a limitation in our
approach. Bearing this, and the computation time for the full-wave model in mind, we antici-
pate that our ray-based approach will be about two orders of magnitude faster than a full-wave
approach based on such a model for a typical UST system. (cf section 7.1) Also, it is trivial to
incorporate any arbitrary transducer element directionality in a ray-based scheme (for trans-
mit and receive), which is less straightforward in full-wave models and can be important in
practice. Now, it is well known that ray theory is a very good approximation when the fre-
quency is sufficiently high that it sees the medium as smoothly varying. Here, we showed that
this approximation, when embedded in a second-order minimisation scheme, can recover very
accurate images for the level of contrast found in soft tissue.

Inversions based on TOF. Ray-based inversion schemes for UST have typically been used
when the data is given in the form of a set of TOF between the emitters and receivers. This
computationally efficient approach has been widely used in 2D [7, 11–13, 25, 26] and more
recently in 3D [27]. In our approach here, we retain the computational efficiency of ray-tracing,
but dispense with the drawbacks of TOF picking by using the whole set of acoustic time series
in the inversion. TOF picking, by reducing each time series to a single number, removes a great
deal of information in the data, effectively reducing the signal-to-noise ratio.

It might be objected that a ray-based forward model, such as that used here and included in
the objective function F , does not account for scattering, only refraction, geometric spreading
and absorption. While that is true, a key point of our approach is that the Frećhet deriva-
tive, included in the Hessian, does take into account the primary scattered waves, so these
are included during the image reconstruction (over an increasingly good estimate of the sound
speed at each iteration). This is explained in the context of the Born approximation below.

Note that we use ray-tracing to compute the rays, rather than grid-based eikonal solvers [64]
such as fast marching, as the latter suffer from similar computational challenges to grid-based
full-wave models.

Inversions exploiting the Born-approximation. A common approach to incorporating
first-order scattered waves in simulations and inversions is to turn to the Born approximation
[16, 22, 48], and in particular the ray-Born approximation [60, 67]. The Born approximation
suggests an efficient way for approximating the wavefield using an assumption that the sound
speed model can be decomposed into a homogeneous or slowly varying background and a
rapidly varying scatterer [68]. It has been studied extensively from both theoretical [65, 66]
and numerical points of view [32, 67].

Born forward modelling assumes that the wavefield measured on the receivers consists of
two components: the free-space Green’s function solution in the homogeneous or slowly vary-
ing background medium, and a scattering integral, which accounts for the scattered waves up to
the order of a scattering series used for describing the relation between the perturbation in the
sound speed and the induced perturbation in the wavefield. This scattering series is referred
to as a Born series [68]. The first-order approximation of the Born series linearly relates a
perturbation to the sound speed to the primarily scattered waves.

The Born approximation was used for including the diffraction of plane waves in the
transmission computed tomography [15, 69]. In the context of diffraction tomography, the
Fourier diffraction theorem, which relates the Fourier transform of the scattered wavefield
to the Fourier transform of the medium’s sound speed, can be derived using a first-order
Born approximation [70]. In one study, the linearised subproblem derived from a first-order
Born approximation about a homogeneous background medium was solved using a filtered
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back-projection algorithm, and a delay-and-sum algorithm was used for back-projection of the
scattered data [16]. In one clinical application, using a similar approach in frequency domain,
it was shown that transmission diffraction tomography relying on the Born approximation pro-
vided higher resolution images than TOF-based transmission UST [71]. Recently, iterative
optimisation inversion approaches using the Born approximation have received much atten-
tion [72–74]. The synthetic data used in these studies were simulated using a similar Born
approximation and for simple geometries. In these studies, the heterogeneity of the medium
was included in the scattering potential, but the Green’s function was fixed, and was defined
using the analytic formula (17). However, as shown in figures 5(a) and 6(b), this analytical
Green’s function can be inaccurate in phase and amplitude for heterogeneous media. In gen-
eral, the validity of the Born approximation depends on the size (in L2 norm sense) of the
associated scattering integral. Therefore, the Born approximation using the analytical Greens’
function has the drawback that it diverges in the case of a strongly scattering medium [72].
Accordingly, it has been shown that Born approximation using analytical Green’s function is
valid under certain conditions that may not hold for UST of the breast, i.e. the medium must be
weakly scattering, and the object’s size must be small sufficiently that the distortion in phase
be small [64, 70].

In the context of seismic imaging, the class of ray-based migration/inversion approaches
have received much attention [60, 75–77]. Our proposed Born approximation relies on a het-
erogeneous Green’s function for which the distortion in phase and amplitude are accounted
for using a novel ray approximation model adapted to UST. The Green’s function included in
our Born approximation accounts for geometrical spreading including refraction, and physical
absorption and dispersion following the frequency power law [43, 44]. (cf section 7.2.2) The
scattering effects are accounted for by minimising the objective function using a second-order
optimisation scheme. The objective function is minimised separately for a sequence of narrow
frequency ranges, each including few number of discretised frequencies, and the minimisa-
tion for each frequency range is done by computing a GN step direction, which provides a
direct step towards the minimum of the objective function (equation (39)) for that frequency
range. For each frequency range, the associated Born approximation provides a linear relation
between the scattered waves and the unknown scattering features. From low to high frequen-
cies, the singly scattering features are therefore included in the background medium. This is
the first study suggesting such an inversion approach for UST.

Embedding the Born approximation in the introduced optimisation framework using a nar-
row frequency window moving from low to high frequencies had two advantages. First, the
computational cost of computing the inverse of Hessian was significantly reduced, and there-
fore, including redundant information in the GN step directions was avoided. Second, min-
imising the objective function from low-to-high frequencies helped ensure the solution did
not become stuck in a local minimum. Because of the gradual inclusion of the scatterers in
the iteratively-found background medium, the problem of the multivaluedness of the ray field
may occur [68]. To tackle this, either more advanced asymptotic modeling techniques such as
Gaussian beams should be used [78] at the cost of more computational cost, or the background
medium should be smoothed. Here, the latter approach was used such that the rays’ trajec-
tory was computed on the sound speed updates that are smoothed by an averaging window.
(Note that the smoothed sound speed was used only for calculating rays’ trajectory, but phase
and amplitudes on the rays were calculated using the nonsmoothed version of the sound speed
updates using the formulae in section 6).

Our numerical experience shows that even with enforcing the averaging window on the
sound speed (or wavenumber) field, the ray linking is the key step in approximating accurate
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pressure time series at the receivers. Avoiding ray linking and tracing the rays using evenly-
spaced initial angles, and then interpolating to the reception points will lead to large errors
in the approximation of the wavefield at some receivers (not shown). This study established a
framework for approximating and discretising heterogeneous Green’s function along the linked
rays. The linked rays computed for the forward pressure field can also be used for computing
the adjoint field.

Absorption. It is evident that the physical absorption and dispersion in soft tissues is fre-
quency dependent, and follows a frequency-power law [44, 45]. This study included these
effects by deriving a ray approximation to heterogeneous Green’s function relying on Szabo’s
absorbing wave equation [43, 44]. This study was limited to an image reconstruction of the
sound speed given the absorption coefficient map, but it was shown that the proposed method
can reconstruct an accurate sound speed map for soft tissues like the breast, when only partial
information about the absorption coefficient map is available, i.e. the absorption coefficient
map across the breast phantom is assumed homogeneous. The quality of the reconstructed
image degrades slightly when the absorption and dispersion effects are fully neglected. It
should also be noted that the inversion framework presented here will allow for the exten-
sion of this approach to recovering both the absorption and the sound speed simultaneously,
because both affect the complex scattering potential Υδk.

Practical applicability. Although here, the effectiveness of the proposed inversion
approach was demonstrated in a simulation scenario, the inverse crime was avoided by using
two inherently different approaches for data simulation and for the forward model in the image
reconstruction. Also, the excitation pulse used in this study was the output of a physical trans-
ducer, and the number of excitations (emitters) was less than is often used in practice for 2D
UST [11], suggesting it will be possible to achieve similar results with experimental data.
In addition, the higher-order scattered waves will likely be buried in the noise that is always
present in measured UST data, and therefore it is not clear how great the advantage of a
full-wave inversion approach will be over our inversion approach.

For nonlinear inverse problems, regularisation is often used for reducing the ill-posedness
and improving the stability [51, 53]. Here, although explicit regularisation was avoided, the
cg iterations lmax implicitly adjusts the regularisation on the solution, i.e. early stopping of cg
iterations in the solution of the linearised subproblems acts as a regulariser.

The proposed approach was proposed and demonstrated for a 2D scenario, but the acoustic
waves actually travel in 3D medium. An extension of the proposed approach to 2.5D, i.e. imag-
ing within a slab-like volume containing a target slice along the detection ring [39], or full-3D
[9, 10], is straightforward, and will be studied in future work. A key challenge in extending
this approach to 3D is 3D ray-linking; we recently proposed an efficient and robust approach
to overcome this [27].

9. Summary

An efficient UST image reconstruction algorithm is described and demonstrated for recovering
the sound speed distribution from acoustic time series measurements made in soft tissue. The
approach is based on a second-order iterative minimisation of the difference between the mea-
surements and a model based on a ray-approximation to the heterogeneous Green’s function,
and is applied from low to high frequencies.
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Appendix A

A.1. Derivation of Hessian matrix

Here, further details will be given about the Hessian matrix (cf equation (52)). Considering
(38), the Hessian matrix satisfies

H(n)(x, x′) =
∂

∂c(n)(x′)

[
∂F (c(n))
∂
(
c(n)(x)

)] =
∂

∂
(
c(n)(x′)

)∇F (n)(x). (77)

Plugging equation (51) into the right-hand side of the above equation gives two terms [57]

H(n)(x, x′) = H(n)
1 (x, x′) + H(n)

2 (x, x′), (78)

where the first term is in the form

H(n)
1 (x, x′) =

∑
e,r

∫
Re

{
∂

∂
(
c(n)(x′)

) [g(c(n); xr; x)Υ(n)
c (x)

×
[
g(c(n); x; xe)s(xe)

]]
δp∗res(c

(n); r; e)

}
dω. (79)

Here,

∂

∂
(
c(n)(x′)

) [g(c(n); xr; x)Υ(n)
c (x)

[
g(c(n); x; xe)s(xe)

]]

=

(
∂

∂
(
c(n)(x′)

)Υ(n)
c (x)

)
g(c(n); xr; x)

[
g(c(n); x; xe)s(xe)

]

+Υ(n)
c (x)

∂

∂
(
c(n)(x′)

) (g(c(n); xr; x)
[
g(c(n); x; xe)s(xe)

])
, (80)

where in the last line in the above equation,
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∂

∂
(
c(n)(x′)

) (g(c(n); xr; x)
[
g(c(n); x; xe)s(xe)

])
= g(c(n), xr; x′)Υ(n)

c (x′)g(c(n), x′; x)
[
g(c(n); x; xe)s(xe)

]
+ g(c(n), xr; x)g(c(n), x; x′)Υ(n)

c (x′)g(c(n), x′; xe)s(xe), (81)

where the derivatives have been calculated using equation (48).
Also, the second term H(n)

2 satisfies

H(n)
2 (x, x′) =

∑
e,r

∫
Re
{[

Υ(n)
c (x)

[
g(c(n); x; xe)s(xe)

]]

×
[

g(c(n); xr; x)
∂p∗

(c(n) ;r;e)

∂(c(n)(x′))

]}
dω, (82)

where we have used ∂/∂
(
c(n)(x′)

) (
p(c(n);r;e)

)
= ∂/∂

(
c(n)(x′)

) (
δpres(c(n); r; e)

)
.

Considering that the terms in H(n)
1 is negligible compared to the second term H(n)

2 , and also
using the reciprocity of Green’s function g(c(n); xr; x), gives a very good approximation to the
action of the Hessian on the sound speed perturbation, as given in (52).

A.2. Greens function for 3D case

In the 3D case the homogeneous, lossless Green’s function is

g0,3D(ω, x; x′) = A0(x; x′) exp
(
iφ0(x; x′)

)
, (83)

whereφ0 = k0|x− x′| as for the 2D case but there is spherical rather than cylindrical spreading:

A0(x; x′) = (4π|x − x′|)−1 = k0(4πφ0(x, x′))−1. (84)

So the approximate Green’s function for the heterogeneous, absorbing case can be written by
analogy as

g3D(ω, x; x′) = A(x; x′) exp
(
iφ(x; x′)

)
. (85)
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