
Pseudospectral time-domain (PSTD) methods for the wave

equation: Realising boundary conditions with discrete sine and

cosine transforms

Elliott S. Wise1, Jiri Jaros2, Ben T. Cox1, and Bradley E. Treeby1,*

1Department of Medical Physics and Biomedical Engineering, University College
London, United Kingdom

2Centre of Excellence IT4Innovations, Faculty of Information Technology, Brno
University of Technology, Czech Republic

*b.treeby@ucl.ac.uk

Abstract

Pseudospectral time domain (PSTD) methods are widely used in many branches of acoustics for
the numerical solution of the wave equation, including biomedical ultrasound and seismology. The
use of the Fourier collocation spectral method in particular has many computational advantages.
However, the use of a discrete Fourier basis is also inherently restricted to solving problems with
periodic boundary conditions. Here, a family of spectral collocation methods based on the use of a
sine or cosine basis is described. These retain the computational advantages of the Fourier collocation
method but instead allow homogeneous Dirichlet (sound-soft) and Neumann (sound-hard) boundary
conditions to be imposed. The basis function weights are computed numerically using the discrete
sine and cosine transforms, which can be implemented using O(N logN) operations analogous to
the fast Fourier transform. Practical details of how to implement spectral methods using discrete
sine and cosine transforms are provided. The technique is then illustrated through the solution of
the wave equation in a rectangular domain subject to different combinations of boundary conditions.
The extension to boundaries with arbitrary real reflection coefficients or boundaries that are non-
reflecting is also demonstrated using the weighted summation of the solutions with Dirichlet and
Neumann boundary conditions.

1 Introduction

Simulating the propagation of acoustic waves requires the spatial and temporal derivative operators in
the wave equation to be replaced with discrete formulas that can be implemented using a computer. A
widely-used approach is the pseudospectral time domain (PSTD) method [1, 2]. This uses the Fourier
collocation spectral method to calculate spatial gradients, and a finite-difference method to integrate
forwards in time [3]. For smooth wave fields, the error in the Fourier collocation spectral method decays
exponentially with the number of grid nodes [4, 5]. This means only a small number of grid points per
wavelength are required to reduce the effects of numerical dispersion, often close to the Nyquist limit
of two points per wavelength (PPW) [6, 7]. In comparison, the finite-difference time-domain (FDTD)
method typically requires 10 to 20 PPW to minimise dispersion, and this number increases with the
domain size due to the accumulation of numerical errors [8]. The difference in the number of PPW is
critical for the tractability of many large-scale problems in which waves propagate across domains that
are hundreds of wavelengths in each spatial dimension [9, 10].

While the PSTD method has many advantages, the use of a discrete Fourier basis to compute spatial
gradients is also inherently restricted to solving problems with periodic boundary conditions. This is
because the discrete Fourier transform of a finite sequence assumes this sequence is periodically repeated
outside its finite support. Practically, this means when the PSTD method is used to solve the wave

1



computational domain

periodic extension

wave wrapping
direction of wave 

propagation

(1)

(2)

(3)

Figure 1: Wave wrapping due to the periodicity assumed by the discrete Fourier transform. Three
snapshots in time are shown. As the wave exits the computational domain on the right, the wave from
the periodically repeated image source appears on the left.

equation, waves exiting the computational domain on one side will reappear on the other side. This can
be understood in terms of image sources, where the pressure field is periodically (and infinitely) repeated
as shown in Fig. 1. In this example, as the wave within the computational domain exits to the right, the
wavefield from the periodic image source appears within the domain on the left. In 1D where there is no
decay of the wavefield with distance, this wave wrapping will continue ad infinitum.

In most circumstances in acoustics, a periodic boundary condition is neither physical nor desirable.
To model non-reflecting boundaries (where the outgoing waves propagate as though in free-space), the
periodicity is generally counteracted through the application of a perfectly matched layer (PML) [11, 3].
This is designed to absorb outgoing waves at the edge of the computational domain. A large body of
literature now exists on the optimisation and implementation of PMLs and they can be highly effective
[12]. However, in some cases, other boundary conditions are required, and these are not straightforward
to directly implement when using PSTD methods [13, 14].

To model reflecting boundaries, image sources can be used (assuming the wave propagation is linear).
In this case, the true source and an image source are placed on opposites sides of the intended boundary
(this idea was introduced by Lord Kelvin in the study of electrostatics [15]). In the simplest case,
the image source is placed equidistant from the intended boundary and is either positive (in-phase) or
negative (out-of-phase) relative to the true source, but otherwise identical. As the waves propagate, they
pass each other at the (virtual) boundary and the summation of the two wave fields gives rise to the
correct boundary and scattering behaviour.

An illustrative example of using image sources to impose boundary conditions in 1D is given in Fig.
2. A positive image source corresponds to a sound-hard or Neumann boundary condition, where the
gradient of the pressure field is always zero on the boundary, and the reflected wave is in phase with the
incident wave. Considering the propagation of a wave between two acoustic half-spaces, this is equivalent
to a boundary where the second medium has a much higher acoustic impedance. Similarly, a negative
image source corresponds to a sound-soft or Dirichlet boundary condition, where the pressure is always
zero on the boundary (this is sometimes called a pressure-release boundary [16]), and the reflected wave
is out-of-phase with the incident wave. Considering two acoustic half-spaces, this is equivalent to a
boundary where the second medium has a much lower acoustic impedance.

Using the idea of image sources, boundary conditions can be imposed within a PSTD wave model
by increasing the size of the computational domain and directly including the image source terms.
For example, this approach has been used to model wave propagation within reverberant cavities with
reflecting walls [17]. However, the significant drawback is that the domain size must be increased in each
Cartesian direction to allow the image sources to be defined. This can increase the computational load
considerably, particularly in 3D. An alternative approach is to use another basis to compute the spatial
gradients that already imposes the required boundary conditions. In the current work, the Fourier basis
normally used in the PSTD method is replaced with a sine or cosine basis. These implicitly enforce
homogeneous Dirichlet and Neumann boundary conditions while still retaining the same computational

2



gradient is zero

on boundary

pressure is doubled

on boundary

(1)

(2)

(3)

(4)

(1)

(2)

(3)

(4)

Neumann (sound-hard)

!elds cancel

pressure is zero

on boundary

boundary boundary

Dirichlet (sound-soft)

positive

image source

negative

image source

source

positive 

re"ected wave

negative

re"ected wave

source

Figure 2: Neumann (sound-hard) and Dirichlet (sound-soft) boundary conditions realised using image
sources. The Neumann case uses a positive (or in-phase) image source, which results in a pressure
doubling and zero pressure gradient on the boundary. The Dirichlet case uses a negative (or out-of-
phase) image source, which results in the pressure on the boundary always equal to zero. Acoustically,
the Neumann case corresponds to the propagation of a wave from a low to high impedance medium (i.e.,
z1 � z2), where the reflected wave is in phase with the incident wave. The Dirichlet case corresponds to
the propagation of a wave from a high to a low impedance medium (i.e., z1 � z2), where the reflected
wave is out of phase with the incident wave. The numbers (1) to (4) correspond to four snapshots
showing the interaction of the incident wave with the boundary.

benefits as a Fourier collocation method [18].
Using sine and cosine transforms to compute spectral gradients as part of the PSTD method has

previously been discussed by several authors. In acoustics, Kosloff & Kosloff used a cosine basis to
solve a one-dimensional wave equation with a Neumann (or sound-hard) boundary condition at each
end of the domain [19]. Sine and cosine transforms have also been used in elastodynamics for modelling
applied forces that are symmetric or antisymmetric in the plane [20], and in electromagnetics to ensure
field components vanish at the boundary, e.g., when modelling wave guides [21, 22]. Outside of wave
problems, sine and cosine transforms have also been used to impose Dirichlet and Neumann boundary
conditions for reaction-diffusion problems [23], to impose slip boundary conditions within fluid simula-
tions [24], to impose symmetric boundary conditions when solving the Elder problem in hydrology [25],
to impose Dirichlet boundary conditions when solving the Klein-Gordon-Zakharov (KGZ) system [26],
and to calculate spectral gradients through symmetric extensions [27].

In the continuous case, the use of a cosine or sine basis to enforce Dirichlet or Neumann boundary
conditions is straightforward to conceptualise—a sine wave is zero at the origin and thus satisfies a
Dirichlet condition, while the gradient of a cosine wave is zero at the origin and thus satisfies a Neumann
condition [18]. However, in the discrete case, the different combinations of discrete symmetry leads
to some complexity, with sixteen different discrete trigonometric transforms (DTTs) [28, 29] that each
correspond to different boundary conditions and spatial grid definitions. To form a spectral collocation
method, it is also important to understand how the discrete symmetry changes under differentiation and
with the use of staggered computational grids.

In this paper, we review how the sixteen discrete trigonometric transforms fall into four distinct

3



transform classes (see e.g., Ref. [29]), and then discuss how each of these can be used to spectrally
compute derivatives assuming different combinations of discrete symmetry. In §2, the conventional
Fourier PSTD method is reviewed for the wave equation. In §3, the discrete cosine and sine transforms
are reviewed, and the differentiation and interpolation properties of these transforms are discussed. An
example of a DTT-based spectral collocation method is then given in §4. In §5, an extension to non-
reflecting boundaries and arbitrary reflection coefficients is given. Discussion and summary are provided
in §6.

2 The Fourier PSTD method for the wave equation

Before discussing the machinery of using cosine and sine transforms to impose Dirichlet and Neumann
boundary conditions, it is constructive to revisit the conventional Fourier PSTD method applied to the
solution of the wave equation. The background to much of what follows can be found in several numerical
methods texts, e.g., Refs. [30, 2, 4, 5]. Consider the following coupled system of equations which describes
linear acoustic wave propagation in a homogeneous medium in one-dimension

∂u

∂t
= − 1

ρ0

∂p

∂x
,

∂p

∂t
= −ρ0c

2
0

∂u

∂x
. (1)

Here u is the acoustic particle velocity, p is the acoustic pressure, ρ0 is the mass density, c0 is the sound
speed, and x and t represent the space and time variables, respectively. This system of coupled first-order
equations is commonly used in computational acoustics instead of the second-order wave equation as it
allows velocity inputs and outputs to be used, and a split-field perfectly matched layer to be applied [31].

Now consider the numerical solution of Eq. (1) using the Fourier PSTD method where u is calculated
on a temporally and spatially staggered grid relative to p, where the grid is shifted by half the temporal
and spatial grid spacing (the use of a staggered grid improves the accuracy and stability of PSTD
methods [32, 33]). Three ingredients are required: (1) discretisation of the spatial gradients using the
Fourier collocation spectral method, (2) transformation of the gradient values to and from the spatially
staggered grid, and (3) discretisation of the temporal gradients using a finite difference scheme.

Starting with the spatial gradient calculation, in the Fourier collocation spectral method, the pressure
and velocity fields are decomposed into a sum of complex exponential basis functions using a Fourier
transform. In the continuous case, the forward and inverse Fourier transforms over one spatial dimension
can be written as (other conventions can equally be used)

F{f(x)} ≡ g(k) =
1√
2π

∫ ∞
−∞

f(x)e−ikx dx ,

F−1{g(k)} ≡ f(x) =
1√
2π

∫ ∞
−∞

g(k)eikx dk , (2)

where i =
√
−1, k is the spatial frequency or wavenumber, and g(k) represents the complex basis

function weights, i.e., the amplitude and phase of each frequency component needed to make up the
original function f(x). Using these transformations, it is straightforward to write an expression for the
Fourier derivative of a bounded function, where [2]

d

dx
f(x) =

d

dx

1√
2π

∫ ∞
−∞

g(k)eikx dk

=
1√
2π

∫ ∞
−∞

(ik)g(k)eikx dk

= F−1 {ikF {f(x)}} . (3)

In the discrete case, f(x) is given by a finite periodic sequence, and the Fourier transforms are calculated
using the discrete Fourier transform, generally using the fast Fourier transform (FFT). The discrete
wavenumber vector k is given by

kn =
2π

N∆x
n where n =

{
−N−1

2 ,−N−1
2 + 1, . . . , N−1

2 if N is odd

−N2 ,−
N
2 + 1, . . . , N2 − 1 if N is even

. (4)

4



Here, N is the length of f(x) (i.e., the number of samples in the sequence), and ∆x is the spacing between
the grid points assuming the spatial samples are uniformly spaced.

Next, to transform the calculated gradient values to and from the staggered grid, the shift property
of the Fourier transform is used, where

F {f(x+ a)} = eikaF {f(x)} . (5)

This follows from Eq. (2). Here a is a scalar shift variable which for a staggered grid is set to half the
grid spacing, i.e., ∆x/2.

Finally, to integrate forwards in time, an explicit first-order accurate forward difference is used [34],
where

∂f

∂t
≈ fn+1 − fn

∆t
. (6)

Here fn represents the discrete function values at the nth time point, where t = n∆t and n = 0, 1, 2, . . ..
Note, higher-order time integration schemes are also possible (e.g., Refs. [35, 31, 36, 37, 38]). However,
these are not discussed here as they do not influence the implementation of Neumann and Dirichlet
boundary conditions using DTTs, which is the focus of the current work.

Combining the three ingredients then gives an explicit time-stepping solution to Eq. (1) using the
Fourier PSTD method on a staggered grid (solutions in higher dimensions follow analogously)

un+
1
2 = un−

1
2 − ∆t

ρ0
F−1

{
ikeik∆x/2F {pn}

}
,

pn+1 = pn −∆tρ0c
2
0F−1

{
ike−ik∆x/2F

{
un+

1
2

}}
. (7)

To run the model, initial values for p and u are required. Time dependent source terms can also be
added [39], but they are not discussed here. Note, the temporal staggering between the pressure and
particle velocity arises because the update steps are interleaved with the spatial gradient calculations. As
mentioned in §1, the use of the discrete Fourier transform inherently assumes the wave field is periodically
repeated, which leads to wave wrapping when the waves reach the edge of the computational domain
(see Fig. 1). In §3, the Fourier transforms are replaced with sine and cosine transforms, and in §4 these
are applied to allow Dirichlet and Neumann boundary conditions to be imposed in the solution of the
wave equation.

3 Gradient calculations using discrete trigonometric transforms

3.1 The Fourier sine and cosine transforms

Putting the numerical solution of the wave equation and the imposition of different boundary conditions
to one side for a moment, consider now the Fourier sine and cosine transforms and their application to
the calculation of spectral gradients. These transforms arise naturally as an extension of the Fourier
transform (see e.g., Ref. [40]). This can be seen by rewriting the complex exponential basis functions of
Eq. (2) in terms of sines and cosines

F{f(x)} =
1√
2π

∫ ∞
−∞

f(x) (cos(kx)− i sin(kx)) dx . (8)

If the function fo(x) is odd such that fo(−x) = −fo(x), the cosine terms in Eq. (8) will integrate to zero,
which leads to the definition of the forward and inverse Fourier sine transforms

S {fo(x)} ≡ go(k) =

√
2

π

∫ ∞
0

fo(x) sin(kx) dx ,

S−1 {go(k)} ≡ fo(x) =

√
2

π

∫ ∞
0

go(k) sin(kx) dk , x ≥ 0 . (9)

5



If the input function fe(x) is instead even such that fe(−x) = fe(x), the sine terms in Eq. (8) will
integrate to zero, which leads to the definition of the forward and inverse Fourier cosine transforms

C {fe(x)} ≡ ge(k) =

√
2

π

∫ ∞
0

fe(x) cos(kx) dx ,

C−1 {ge(k)} ≡ fe(x) =

√
2

π

∫ ∞
0

ge(k) cos(kx) dk , x ≥ 0 . (10)

Using these definitions, it is possible to show the derivative properties for the sine and cosine transforms.
For an odd function this is

d

dx
fo(x) =

d

dx

(√
2

π

∫ ∞
0

go(k) sin(kx) dk

)
,

=

√
2

π

∫ ∞
0

kgo(k) cos(kx) dk ,

= C−1 {kS {fo(x)}} . (11)

Similarly for an even function
d

dx
f(x) = S−1 {−kC {fe(x)}} . (12)

Comparing Eqs. (11) and (12) with Eq. (3), it can be seen that the differentiation properties for the
cosine and sine transforms are very similar to those of the Fourier transform. The primary difference
is that the function is multiplied by either k or −k after transformation to k-space rather than by
−ik, and the inverse transform differs from the forward transform. The latter reflects the fact that after
differentiation, an odd function becomes even and vice versa. The cosine and sine transforms also produce
real-valued outputs if the input function is real-valued, unlike the Fourier transform which produces a
complex output.

3.2 The discrete trigonometric transforms

In the continuous case, there are two possible symmetries a function may exhibit about x = 0, even
and odd. This leads to the definition of the two trigonometric transforms described in the previous
section. However, in the discrete case, the number of possible symmetries increases to four [28, 29].
These symmetries are shown in Fig. 3(a), and correspond to

• whole-sample symmetry (WS),

• whole-sample antisymmetry (WA),

• half-sample symmetry (HS), and

• half-sample antisymmetry (HA).

The terms whole-sample (W) and half-sample (H) describe whether the point of symmetry lies on a grid
point, or halfway between two grid points, respectively. The terms symmetric (S) and antisymmetric
(A) are analogous to even and odd in the continuous case. Together, the four types of symmetry may
be used to define sixteen types of symmetric periodic sequence (SPS) by periodically extending each end
of a discrete signal of finite length (called the representative sample) using one of the four symmetry
types [29]. The sixteen possible SPSs are shown in Fig. 3(b). The naming convention is based on the
symmetric extension used at each end. For instance, a WSHA-type sequence has a WS extension on its
left end and a HA extension on its right. The extension is repeated indefinitely, such that the symmetry
of a WSHA-type sequence is . . .-WS-HA-WS-HA-. . . and so on.

Each of the sixteen possible SPSs correspond to a unique discrete trigonometric transform (DTT)
as given in Fig. 3(b), where DST-I is denoted as S1 and DCT-I as C1, etc. The eight SPSs that have
symmetric extensions on the left correspond to the eight types of discrete cosine transform (DCT),
while the eight SPSs with antisymmetric extensions on the left correspond to the eight types of discrete
sine transform (DST). The discrete equations for each of these transforms are defined in several places,
including Refs. [29, 40, 41], and are not repeated here.

6



The set of sixteen DTTs (eight DCTs and eight DSTs) can be divided into four groups based on
whether the corresponding SPS becomes periodic or antiperiodic after it has been symmetrically extended
at one end, and whether this periodM is an even or odd number. Note here that a sequence is antiperiodic
with period M if f(x) = −f(x + nM) for n = 1, 3, 5, . . .. Considering the first factor, groups I and III
correspond to the SPSs that become periodic with period M , while groups II and IV are antiperiodic
with period M . Considering the second factor, the implied period is always an even number for groups I
and II, while the implied period is always an odd number for groups III and IV. The properties of these
four groups are summarised in Table 1 and Fig. 3(b).

Figure 3: Discrete trigonometric transforms and symmetry (after Martucci). (a) The four types of
discrete symmetry. The point of symmetry is indicated by the dashed line. (b) Examples of the 16 types
of symmetric periodic sequence (SPS), and their corresponding DTTs. The white diamonds indicate the
representative samples, and the black circles give the implied symmetric-periodic extension. Each SPS
is either periodic or antiperiodic with period M . For the example shown, M = 8 for groups I and II,
and M = 7 for groups III and IV.

When using DTTs to transform to and from k-space, attention must be given to the discrete wavenum-
ber vector k, as this varies depending on the DTT used as shown in Table 1. The different wavenumber
ranges can be understood by considering the assumed symmetry of each sequence. For example, a se-
quence of WAWA-type is implicitly assumed to have a zero at either end of the representative sample
(see Fig. 3). Because of this, both the DC and Nyquist components of the signal must be zero. This is
reflected in the range of wavenumbers for which the discrete trigonometric transform is defined, and thus
the appropriate frequency components must be appended or removed when using combinations of trans-
forms for which the wavenumber range varies. The different assumed symmetries between transforms

7



Table 1: The sixteen DTTs and their corresponding symmetries grouped by wavenumber. The four
groups of transforms correspond to those shown in Fig. 3. Here N is the length of the representative
sample, M is the corresponding implied period of the symmetric periodic sequence, ∆x is the grid
spacing, and kn is the discrete wavenumber.

Periodic Antiperiodic

kn = 2π
M∆xn kn = 2π

M∆x

(
n+ 1

2

)
Symmetry DTT n = . . . M = . . . Symmetry DTT n = . . . M = . . .

WSWS C1 0, 1, . . . , M2 2(N − 1) WSWA C3 0, 1, . . . , M2 − 1 2N

HSHS C2 0, 1, . . . , M2 − 1 2N HSHA C4 0, 1, . . . , M2 − 1 2N

WAWA S1 1, 2, . . . , M2 − 1 2(N + 1) WAWS S3 0, 1, . . . , M2 − 1 2N

HAHA S2 1, 2, . . . , M2 2N HAHS S4 0, 1, . . . , M2 − 1 2N

WSHS C5 0, 1, . . . , M−1
2 2N − 1 WSHA C7 0, 1, . . . , M−1

2 2N − 1

HSWS C6 0, 1, . . . , M−1
2 2N − 1 HSWA C8 0, 1, . . . , M−1

2 2N + 1

WAHA S5 1, 2, . . . , M+1
2 2N + 1 WAHS S7 0, 1, . . . , M−1

2 2N + 1

HAWA S6 1, 2, . . . , M+1
2 2N + 1 HAWS S8 0, 1, . . . , M−1

2 2N − 1

also means the length of the sequence before and after differentiation may change, as the representative
samples may be defined at different points in space.

Each of the DTTs is unitary (the basis vectors are orthogonal) and thus the inverse transformations
can be defined in terms of the forward transforms as described in Refs. [28, 40]. Letting Tj represent
either Cj or Sj , where j = 1, 2, . . . , 8 is the DCT or DST type, the inverse transform T −1

j is given by

T −1
j =


1
M Tj−1 if j = 3, 7
1
M Tj if j = 1, 4, 5, 8
1
M Tj+1 if j = 2, 6 .

(13)

The 1/M scaling factor comes from the discrete transform definitions used in the widely used FFTW
library in which the forward transforms are not normalised [41]. These relationships are practically
useful when implementing DTT-based collocation methods. Note, however, it is the properties of the
inverse transform (and not its related forward transform) that must be used when considering the range
of wavenumbers and symmetry for which the transform is defined.

3.3 Spectral gradient calculations

Given a discrete input sequence (for example, the acoustic pressure or particle velocity defined on a
regularly sampled Cartesian grid), spectral gradient calculation using a discrete trigonometric basis
proceeds according to Eqs. (11) and (12), where the continuous cosine and sine transforms are replaced
by their discrete counterparts from Table 1. The forward transform is chosen based on the symmetry
of the input sequence (which is linked to the desired boundary conditions as discussed in §1 and §4.1).
This then defines the appropriate inverse transform to use, as the symmetry of the function changes from
symmetric to antisymmetric and vice versa after differentiation [42].

Consider an input sequence f which has N representative samples and WSWA symmetry. From
Table 1, the appropriate forward transform to use is C3. After differentiation, the symmetry of the
output sequence will be WAWS, thus the corresponding inverse transform must be S−1

3 , which from Eq.
(13) can be computed using 1

M S2. Using Eq. (12), the derivative can thus be computed via

d

dx
f = S−1

3 {−kC3{f}} =
1

M
S2{−kC3{f}} , (14)

where M = 2N .

8



Despite the apparent simplicity of DTT–based gradient calculation, there is one complicating factor
related to its numerical implementation. As mentioned in §3.2, within each of the transform groups, the
DTTs may be defined for different ranges of the same set of wavenumbers (see Table 1). For instance,
the C1 transform is defined for n = 0, 1, . . . , M2 where kn = 2π

M n, while the S1 transform is defined for

n = 1, . . . , M2 − 1. Thus, to differentiate a sequence of WSWS-type in an analogous manner to Eq. (14),

the first and last frequency components (corresponding to n = 0, M2 ) must be dropped from the discrete
array before taking the inverse transform to obtain the differentiated result. For some combinations
of DTTs, the reverse is true, and zeros must be appended and prepended to the discrete array before
taking the inverse. The required sequence of operations for calculating the gradient of a function using
DTTs is summarised in Table 3 for periodic transforms (groups I and III) and in Table 6 for antiperiodic
transforms (groups II and IV) in the Appendix.

3.4 Interpolation on staggered grids

DTTs can also be used for interpolation analogous to the shift property of the Fourier transform given
in Eq. (5). The general relations are discussed by Britanak [40], although in some circumstances the
expressions are rather complex. The simplest case is resampling a function from whole-sample symmetry
to half-sample symmetry and vice-versa (this corresponds to shifting by half a grid point as required
for staggered grid calculations). This can be achieved by converting to and from k-space using the
appropriate DTTs. For example, to interpolate a sequence of WSWA-type to a sequence of HSHA-type,
the function is transformed into k-space using C3, and back using C−1

4 , which from Eq. (13) can be
computed using 1

M C4.

g = C−1
4 {C3{f}} =

1

M
C4{C3{f}} . (15)

Again, attention must be paid to the range of wavenumbers for which the forward and inverse transforms
are defined. The required sequence of operations for interpolating a function using DTTs is summarised
in Table 4 for periodic transforms (groups I and III) and in Table 7 for antiperiodic transforms (groups
II and IV) in the Appendix.

Of particular interest in the context of PSTD methods is the combination of differentiation and
interpolation, where the gradient values are resampled at points shifted forwards or backwards by half
the grid point spacing [32]. The combination of these operations follows analogously to the discussion of
the individual differentiation and interpolation operations. The required sequence of operations for both
differentiating and interpolating a function using DTTs is summarised in Table 5 for periodic transforms
(groups I and III) and in Table 8 for antiperiodic transforms (groups II and IV) in the Appendix. An
illustration of a symmetric periodic sequence of WSWS-type after differentiation, interpolation, and
differentiation and interpolation is shown in Fig. 4.

Note, each of the four transform groups in Table 1 is closed under differentiation and interpolation.
Because of the direct relationship between DTTs and SPSs, this is equivalent to saying that differentiating
or interpolating a SPS will always produce another SPS in the same group. The closed nature of these
groups is clear when considering that under differentiation the symmetry of a function changes (symmetric
↔ antisymmetric) and that under interpolation the point of symmetry changes (whole-sample ↔ half-
sample).

4 The PSTD method with discrete trigonometric transforms

4.1 Formulation

Now that the required ingredients to form a PSTD method using DTTs have been introduced, we can
return to the solution of the wave equation given in Eq. (1) subject to different boundary conditions
at each end of the domain. In 1D, there are four possible combinations of the left-right boundary con-
dition: Neumann-Neumann, Neumann-Dirichlet, Dirichlet-Neumann, and Dirichlet-Dirichlet. Assuming
the acoustic pressure p is calculated on the regular grid and the particle velocity u on the staggered
grid (analogous to the Fourier PSTD solution given in Eq. (7)), these correspond to symmetries for the
acoustic pressure field of WSWS, WSWA, WAWS, and WAWA, respectively. The particle velocity will

9



differentiation

interpolation

differentiation &

interpolation

Figure 4: Illustrative example showing the transformation of a symmetric periodic sequence by differ-
entiation, differentiation + interpolation onto a staggered grid, and interpolation onto a staggered grid.
In each case, a different set of group I transformations is used which yields a different symmetry and
representative sample size (illustrated with the white diamonds).

instead have half-sample symmetries (i.e., W→H) with the symmetries reversed (i.e., S→A and A→S).
These symmetries are summarised in Table 2.

Given the chosen boundary conditions at each end of the domain (and thus the appropriate symmetries
and DTTs to use), the spatial gradients shifted to and from the staggered grid can be calculated as
discussed in §3.4. Using the first-order accurate forward difference from Eq. (6) to integrate in time, a
DTT-based PSTD solution for Eq. (1) can be written as

un+
1
2 = un−

1
2 − ∆t

ρ0
T −1

2 {a1T1{pn}} , (16a)

pn+1 = pn −∆tρ0c
2
0T −1

1

{
a2T2

{
un+ 1

2

}}
. (16b)

The transforms T1 and T2 and k-space coefficients a1 and a2 for the different boundary conditions are
given in Table 2. As u has the same symmetry as ∂p/∂x, the forward transform in Eq. (16b) matches
the inverse transform used in Eq. (16a) and vice-versa.

Table 2: Transforms and k-space coefficients used for the DTT-based PSTD solution of the wave equation
given in Eq. (16). The k-space coefficients in the periodic case also include shift terms to move to and
from the staggered grid points. These shifts are implicit in the DTT pairs specified.

Boundary condition Sequence type Transforms k-space coefficient

left right p u T1 T2 a1 a2

Neumann Neumann WSWS HAHA C1 S2 −k k

Neumann Dirichlet WSWA HAHS C3 S4 −k k

Dirichlet Neumann WAWS HSHA S3 C4 k −k
Dirichlet Dirichlet WAWA HSHS S1 C2 k −k

Periodic F F ikeik
∆x
2 ike−ik

∆x
2

10



4.2 Numerical results

The discrete equations given in Eq. (16) were implemented in MATLAB (R2019b), with the DTTs
computed using a MEX interface to the C++ FFTW library [43]. FFTW provides an efficient imple-
mentation of both the FFT and the group I and II DTTs [41]. MATLAB uses FFTW to compute FFTs
as part of its inbuilt functions, however, it does not currently provide functions that link to the DTT
implementations in FFTW. The MEX interface and example scripts used in this paper are available
open-source from GitHub [44].

To demonstrate the effect of the different boundary conditions on the propagation of an acoustic
wave, five simulations were performed using each of the transform combinations outlined in Table 2. The
grid size was set to N = 256, with a grid spacing of ∆x = 1/N . The sound speed and density were set to
the properties of water, with c0 = 1500 m.s−1 and ρ0 = 1000 kg.m−3, and the time step was given by a
Courant-Friedrichs-Lewy (CFL) number of 0.2, where ∆t = CFL∆x/c0. The initial pressure distribution
p0 was defined as a Gaussian, and the initial particle velocity u0 was defined as u0 = −p0/(ρ0c0). This
gives a travelling wave propagating in the negative x-direction.

The simulation results for each of the boundary conditions given in Table 2 are shown in Fig. 5.
When a Fourier basis is used, the wave wraps from one side of the domain to the other when it reaches
the boundary, a behaviour that is normally counteracted through the application of a perfectly matched
layer. If a cosine or sine basis is used, the waves are instead reflected from the boundaries. When a
symmetric or Neumann boundary condition is used, the reflected wave has the same phase as the incident
wave. When an antisymmetric or Dirichlet boundary condition is used, the reflected wave is 180 degrees
out-of-phase.

To demonstrate the accuracy of the implemented boundary conditions, additional simulations were
performed using a Neumman boundary condition at each end of the domain. In this case, the initial
pressure distribution was set to a Gaussian in the centre of the grid and the initial particle velocity
was set to zero (accounting for the staggered grid). The simulations were repeated for CFL numbers
decreasing from 5×10−1 to 5×10−4 (the stability limit is 2/π). For each simulation, the number of time
steps was adjusted such that the outgoing waves propagated exactly to the boundaries and back to the
centre of the grid where the reflected waves recombine to form the initial condition. The L∞ error was
then calculated by comparing the calculated pressure field at the last time step with the initial condition.

The error convergence against CFL number is shown in Fig. 6. In this case, the errors arise due
to numerical dispersion introduced by the time stepping scheme, not due the accuracy of the boundary
condition. As expected, the error reduces algebraically with the CFL number until machine precision
is reached. The rate of convergence is governed by the order of the time stepping scheme used, as with
conventional Fourier-based PSTD schemes [4]. For the chosen numerical scheme, engineering levels of
accuracy, e.g., 0.1%, can be reached with relatively modest CFL numbers.

4.3 Higher dimensions

Much of the previous discussion focuses on the solution of the 1D wave equation using a DTT-based
PSTD method. However, it is straightforward to extend this to higher dimensions. For example, in 2D,
Eq. (16) becomes

u
n+

1
2

x = u
n− 1

2
x − ∆t

ρ0
T −1
x,2 {ax,1Tx,1{pn}} ,

u
n+

1
2

y = u
n− 1

2
y − ∆t

ρ0
T −1
y,2 {ay,1Ty,1{pn}} ,

pn+1 = pn −∆tρ0c
2
0

(
T −1
x,1

{
ax,2Tx,2

{
u
n+ 1

2
x

}}
+ T −1

y,1

{
ay,2Ty,2

{
u
n+ 1

2
y

}})
, (17)

where ux and uy are the components of the particle velocity in the x and y directions. Again, the
transforms T1 and T2 and k-space coefficients a1 and a2 for the different boundary conditions are given
in Table 2. However, in this case, different boundary conditions can be chosen for the x and y directions
(denoted by the subscript x and y). This gives rise to 16 possible combinations of Neumann or Dirichlet
boundary conditions on each of the four edges of the domain. Two examples are given in Fig. 7 which
shows the propagation of a Gaussian initial pressure distribution in a rectangular cavity using either
Neumann or Dirichlet boundary conditions on all four boundaries. The application of DTT-based PSTD

11



Figure 5: Propagation of a one-dimensional acoustic wave subject to different boundary conditions. The
solution is calculated using a pseudospectral time domain method using either a Fourier basis or a sine
or cosine basis for the spatial gradient calculation (see Table 2).

12



10
-3

10
-2

10
-1

CFL number

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

L
 e

rr
o

r

Figure 6: L∞ error in the pressure field after propagating a Gaussian initial pressure distribution from
the centre of the computational domain to the boundaries and back using a DTT-based PSTD method
with a Neumann boundary condition at each end of the domain.

N
e

u
m

a
n

n
D

ir
ic

h
le

t

positive re!ection

negative re!ection

Figure 7: Four snapshots of the propagation of a two-dimensional acoustic wave in a rectangular cavity
subject to Neumann and Dirichlet boundary conditions. The solution is calculated using a pseudospectral
time domain method with a sine or cosine basis for the spatial gradient calculation (see Table 2).

methods to the solution of other partial differential equations (for example, the diffusion equation) is
also straightforward.

4.4 Computational considerations

In addition to the ability to implicitly enforce Dirichlet and Neumann boundary conditions, the use of
a sine or cosine basis compared to a Fourier basis has several computational advantages. First, the
DTTs are all real-to-real transforms (rather than real-to-complex or complex-to-complex). For 2D and

13



computational

domain

1

-1

1

-11

1

-1 -1

Figure 8: The implied image sources for the four basic cases of Neumann-Neumann, Neumann-Dirichlet,
Dirichlet-Neumann, and Dirichlet-Dirichlet boundary conditions. The corresponding reflection coeffi-
cients are shown in circles. One periodic unit is shown. (Fig. 10 shows an extended case.)

3D transforms, this means the output of the DTTs will consume half the memory required by the
corresponding FFT (in 1D, if the input is real, the output of the FFT will be symmetric so only the
unique half needs to be stored). Multiplications in k-space are also cheaper to compute, as they operate
on real data rather than complex. Finally, interpolation to and from staggered grids is done automatically
by selecting the appropriate forward and inverse transforms, rather than by multiplying by a shift-factor
in k-space.

In general, the computational complexity of computing the DCT and DST is O(N logN). However,
according to Ref. [41], due to implementation details, the transforms C2, C3, S2, S3 are the fastest, while
the transforms C1, S1 can sometimes be significantly slower. The computation time is also significantly
less when the implied period M (sometimes called the logical DTT size) has small prime factors. This
differs from the FFT, where the best performance is obtained when the sequence length N has small
prime factors. Table 1 outlines how to compute M from N for the different transform types.

Other properties of the DTT-based PSTD method are equivalent to conventional Fourier-based
schemes. For example, in both cases, the wave-field is decomposed into a finite sum of trigonomet-
ric basis functions, and thus the same constraints on smoothness and convergence apply (see e.g., Ref.
[30]). Similarly, the stability limits for the DTT-based scheme are identical to the Fourier case, and
higher-order time stepping schemes can equally be used.

5 Non-reflecting boundary conditions

As described above and shown in Fig. 5, DTTs can be used to model four basic pairs of boundary con-
ditions in each dimension: Neumann-Neumann, Neumann-Dirichlet, Dirichlet-Neumann, and Dirichlet-
Dirichlet. For convenience, these cases will be denoted in terms of the reflection coefficients of the left
and right interfaces (RL, RR): (1, 1), (1,−1), (−1, 1), and (−1,−1). Interestingly, the solution for more
general boundary conditions can be constructed as a linear combination of these four cases (up to a time
limit). In other words, the field that would result from any arbitrary real reflection coefficients on the
left and right boundaries can be found by summing the fields from these four cases with suitably chosen
weights.

To see how to choose the weights, first consider the implied periodicity in the four basic cases, as
shown in Fig. 8. In particular, notice the polarity and magnitude of the image sources. These can be
written into a matrix, where each column corresponds to the polarity of the image sources for a particular

14



Figure 9: Propagation of a one-dimensional acoustic wave subject to different reflection coefficients at
each end of the domain. The chosen reflection coefficients define the amplitudes of the implied image
sources r and the weightings for the four basic fields w. (left panel) RL = 0 and RR = 0. (right panel)
RL = 0 and RR = 0.5.

pair of boundary conditions, i.e., each column in M corresponds to a row in Fig. 8:

M =


1 1 −1 −1
1 1 1 1
1 −1 1 −1
1 −1 −1 1

 . (18)

Note that M/2 is unitary. Now, if the four fields calculated using the different sets of boundary conditions
are written as p = [p(1,1), p(1,−1), p(−1,1), p(−1,−1)]

T , and the corresponding weights for these fields as
w = [w(1,1), w(1,−1), w(−1,1), w(−1,−1)]

T , then the field for an arbitrary reflection coefficient at each end
of the domain can be written as

p(RL,RR)(x, t) = wTp(x, t) . (19)

The weights are calculated from

w = 1
4MT r , (20)

where r corresponds to the amplitude of the implied image sources and is given by r = [RL, 1, RR, RLRR]T .
One example of interest is the case where both boundaries are non-reflecting, i.e., RL = RR = 0. It

can immediately be seen that the weights in this case are
w(1,1)

w(1,−1)

w(−1,1)

w(−1,−1)

 =
1

4


1 1 1 1
1 1 −1 −1
−1 1 1 −1
−1 1 −1 1




0
1
0
0

 =
1

4


1
1
1
1

 . (21)

In other words, the field in the case of non-reflecting boundaries can be constructed by adding together
the four basic fields and dividing by four (see Fig. 10). This case is discussed in detail in Ref. [45]. Other
cases can be calculated similarly. For example, the case for RL = 0 and RR = 0.5 requires weights
w = [3, 1, 3, 1]T /8. Simulation results for these two cases are given in Fig. 9. In this example, the
initial pressure is defined as a Gaussian and the initial particle velocity is set to zero, and thus the wave
propagates in both directions. After the waves have left the domain, the wave cancellation is theoretically
exact, and for the examples give in Fig. 9 the pressure is zero to machine precision.

While this approach allows boundaries with arbitrary real reflection coefficients to be defined (in-
cluding non-reflecting boundaries), there are two important limitations. First, the linear combination
approach only works for times t = [0, T ). At time T , additional waves enter the field. The reason for

15



3L

L

1

-1

1

-1

0

1

-1

1

-1

0

Figure 10: An extension of Fig. 8, with the bottom line showing the weighted summation of the four
basic fields above. This represents the case where the reflection coefficients are both zero. The reflection
coefficients are shown in circles. The reason for the time limit of T = 3L/c0 in this case is that the inherent
periodicity in the transforms means that after this time there will be an arrival in the computational
domain from the image source on the left.

this limit is the inherent periodicity, which is visualised for the non-reflecting case in Fig. 10. In the case
when both boundaries are non-reflecting, the limit is T = 3L/c0, where L is the size of the computational
domain, although in the general case the limit is stricter, T = 2L/c0. Second, the calculation requires
four models to be run in the 1D case, although the models are independent and so can be computed in
parallel. The same idea (with the same time limits) can be extended to higher dimensions, however, the
number of basic models required grows as 22d, where d is the number of spatial dimensions. Thus to form
a non-reflecting boundary requires 16 simulations in 2D, and 64 in 3D. On the other hand, within the
time limits mentioned above, the approach is theoretically exact, which may be an advantage in some
situations over conventional absorbing boundary conditions or perfectly matched layers which typically
only give a few decimal points of accuracy.

6 Summary

A DTT-based PSTD method for the wave equation is described that allows Neumann (sound-hard) and
Dirichlet (sound-soft) boundary conditions to be imposed. The spatial gradients are calculated using a
spectral collocation method with a discrete cosine or sine basis, and time integration is performed using
a conventional finite difference scheme. The different combinations of staggered grids and boundary
conditions lead to the use of sixteen different discrete trigonometric transforms (8 DCTs and 8 DTSs).
These can be grouped into four distinct classes that are closed under differentiation and staggered-grid
interpolation. Practical details of how to use these transforms to compute spatial gradients are provided.
Numerical examples of the solution to the wave equation in 1D and 2D in a rectangular domain subject
to different boundary conditions are also given. Finally, the extension to boundaries with arbitrary real
reflection coefficients is discussed. The DTT library and example scripts used in this paper are available
open-source from GitHub.[44]

Acknowledgment

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC), UK,
under grant numbers EP/M011119/1, EP/L020262/1, EP/P008860/1, and EP/S026371/1. This work
was also supported by The Ministry of Education, Youth and Sports of the Czech Republic from the

16



National Programme of Sustainability (NPU II); project IT4Innovations excellence in science - LQ1602.
This work was also supported in part by the Australian Research Council/Microsoft Linkage Project
LP100100588.

References

[1] B. Fornberg and D. M. Sloan, “A review of pseudospectral methods for solving partial differential
equations,” Acta Numerica, vol. 3, pp. 203–267, 1994.

[2] L. N. Trefethen, Spectral methods in MATLAB. Philadelphia: Siam, 2000.

[3] Q. H. Liu, “Large-scale simulations of electromagnetic and acoustic measurements using the pseu-
dospectral time-domain (PSTD) algorithm,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 37, no. 2, pp. 917–926, 1999.

[4] J. P. Boyd, Chebyshev and Fourier Spectral Methods. Mineola, New York: Dover Publications, 2001.

[5] J. S. Hesthaven, S. Gottlieb, and D. Gottlieb, Spectral methods for time-dependent problems, vol. 21.
London: Cambridge University Press, 2007.

[6] T. D. Mast, L. P. Souriau, D.-L. Liu, M. Tabei, A. I. Nachman, and R. C. Waag, “A k-space
method for large-scale models of wave propagation in tissue,” IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, vol. 48, no. 2, pp. 341–354, 2001.

[7] J. L. Robertson, B. T. Cox, J. Jaros, and B. E. Treeby, “Accurate simulation of transcranial ultra-
sound propagation for ultrasonic neuromodulation and stimulation,” The Journal of the Acoustical
Society of America, vol. 141, no. 3, pp. 1726–1738, 2017.

[8] B. Fornberg, “The pseudospectral method: Comparisons with finite differences for the elastic wave
equation,” Geophysics, vol. 52, no. 4, pp. 483–501, 1987.

[9] N. Albin and O. P. Bruno, “A spectral FC solver for the compressible Navier–Stokes equations
in general domains I: Explicit time-stepping,” Journal of Computational Physics, vol. 230, no. 16,
pp. 6248–6270, 2011.

[10] B. E. Treeby, J. Jaros, A. P. Rendell, and B. Cox, “Modeling nonlinear ultrasound propagation
in heterogeneous media with power law absorption using a k-space pseudospectral method,” The
Journal of the Acoustical Society of America, vol. 131, no. 6, pp. 4324–4336, 2012.

[11] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of
Computational Physics, vol. 114, no. 2, pp. 185–200, 1994.

[12] J.-P. Bérenger, “Perfectly matched layer (PML) for computational electromagnetics,” Synthesis
Lectures on Computational Electromagnetics, vol. 2, no. 1, pp. 1–117, 2007.

[13] C. Spa, A. Garriga, and J. Escolano, “Impedance boundary conditions for pseudo-spectral time-
domain methods in room acoustics,” Applied Acoustics, vol. 71, no. 5, pp. 402–410, 2010.

[14] C. Spa, J. Escolano, and A. Garriga, “Semi-empirical boundary conditions for the linearized acoustic
euler equations using pseudo-spectral time-domain methods,” Applied Acoustics, vol. 72, no. 4,
pp. 226–230, 2011.

[15] J. D. Jackson, Classical Electrodynamics. New York: Wiley, 1999.

[16] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics. New York:
John Wiley and Sons, 1999.

[17] B. Cox and P. Beard, “Photoacoustic tomography with a single detector in a reverberant cavity,”
The Journal of the Acoustical Society of America, vol. 125, no. 3, pp. 1426–1436, 2009.

[18] G. Strang, “The discrete cosine transform,” SIAM Review, vol. 41, no. 1, pp. 135–147, 1999.

17



[19] D. Kosloff and R. Kosloff, “A non-periodic Fourier method for solution of the classical wave equa-
tion,” Computer Physics Communications, vol. 30, no. 3, pp. 333–336, 1983.

[20] T. Furumura and H. Takenaka, “2.5-D modelling of elastic waves using the pseudospectral method,”
Geophysical Journal International, vol. 124, no. 3, pp. 820–832, 1996.

[21] W.-K. Leung and Y. Chen, “Transformed-space nonuniform pseudospectral time-domain algorithm,”
Microwave and Optical Technology Letters, vol. 28, no. 6, pp. 391–396, 2001.

[22] M. W. Feise, J. B. Schneider, and P. J. Bevelacqua, “Finite-difference and pseudospectral time-
domain methods applied to backward-wave metamaterials,” IEEE transactions on antennas and
propagation, vol. 52, no. 11, pp. 2955–2962, 2004.

[23] A. Bueno-Orovio and V. M. Pérez-Garćıa, “Spectral smoothed boundary methods: the role of exter-
nal boundary conditions,” Numerical Methods for Partial Differential Equations: An International
Journal, vol. 22, no. 2, pp. 435–448, 2006.

[24] B. Long and E. Reinhard, “Real-time fluid simulation using discrete sine/cosine transforms,” in
Proceedings of the 2009 symposium on Interactive 3D graphics and games, pp. 99–106, 2009.

[25] M. Van Reeuwijk, S. A. Mathias, C. T. Simmons, and J. D. Ward, “Insights from a pseudospectral
approach to the Elder problem,” Water Resources Research, vol. 45, no. 4, 2009.

[26] W. Bao, X. Dong, and X. Zhao, “An exponential wave integrator sine pseudospectral method
for the Klein–Gordon–Zakharov system,” SIAM Journal on Scientific Computing, vol. 35, no. 6,
pp. A2903–A2927, 2013.

[27] I. Ito, “Pseudo spectral method based on symmetric extension,” in 2018 7th European Workshop
on Visual Information Processing (EUVIP), pp. 1–6, IEEE, 2018.

[28] Z. Wang and B. Hunt, “The discreteW transform,” Applied Mathematics and Computation, vol. 16,
no. 1, pp. 19–48, 1985.

[29] S. A. Martucci, “Symmetric convolution and the discrete sine and cosine transforms,” IEEE Trans-
actions on Signal Processing, vol. 42, no. 5, pp. 1038–1051, 1994.

[30] B. Fornberg, A practical guide to pseudospectral methods. London: Cambridge University Press,
1998.

[31] M. Tabei, T. D. Mast, and R. C. Waag, “A k-space method for coupled first-order acoustic prop-
agation equations,” The Journal of the Acoustical Society of America, vol. 111, no. 1, pp. 53–63,
2002.

[32] B. Fornberg, “High-order finite differences and the pseudospectral method on staggered grids,”
SIAM Journal on Numerical Analysis, vol. 27, no. 4, pp. 904–918, 1990.

[33] H.-W. Chen, “Staggered-grid pseudospectral viscoacoustic wave field simulation in two-dimensional
media,” The Journal of the Acoustical Society of America, vol. 100, no. 1, pp. 120–131, 1996.

[34] G. Strang, Computational Science and Engineering. Wellesley-Cambridge Press, 2007.

[35] G. Wojcik, B. Fomberg, R. Waag, L. Carcione, J. Mould, L. Nikodym, and T. Driscoll, “Pseudospec-
tral methods for large-scale bioacoustic models,” in 1997 IEEE Ultrasonics Symposium Proceedings,
vol. 2, pp. 1501–1506, IEEE, 1997.

[36] J. Lu, J. Pan, and B. Xu, “Time-domain calculation of acoustical wave propagation in discontinuous
media using acoustical wave propagator with mapped pseudospectral method,” The Journal of the
Acoustical Society of America, vol. 118, no. 6, pp. 3408–3419, 2005.

[37] M. Hornikx, R. Waxler, and J. Forssén, “The extended Fourier pseudospectral time-domain method
for atmospheric sound propagation,” The Journal of the Acoustical Society of America, vol. 128,
no. 4, pp. 1632–1646, 2010.

18



[38] B. Treeby, E. Wise, and B. Cox, “Nonstandard Fourier pseudospectral time domain (PSTD) schemes
for partial differential equations,” Communications in Computational Physics, vol. 24, no. 3, pp. 623–
634, 2018.

[39] J. Jaros, A. P. Rendell, and B. E. Treeby, “Full-wave nonlinear ultrasound simulation on distributed
clusters with applications in high-intensity focused ultrasound,” The International Journal of High
Performance Computing Applications, vol. 30, no. 2, pp. 137–155, 2016.

[40] V. Britanak, P. C. Yip, and K. R. Rao, Discrete cosine and sine transforms: general properties, fast
algorithms and integer approximations. Oxford: Elsevier, 2007.

[41] M. Frigo and S. G. Johnson, “FFTW (User Manual),” Massachusetts Institute of Technology, 2018.

[42] R. Reeves and K. Kubik, “Shift, scaling and derivative properties for the discrete cosine transform,”
Signal Processing, vol. 86, no. 7, pp. 1597–1603, 2006.

[43] M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” Proceedings of the IEEE,
vol. 93, no. 2, pp. 216–231, 2005.

[44] B. E. Treeby, “Matlab discrete trigonometric transform library,” 2020. https://github.com/

ucl-bug/matlab-dtts, Last accessed on 2020-04-25.

[45] W. D. Smith, “A nonreflecting plane boundary for wave propagation problems,” Journal of Com-
putational Physics, vol. 15, no. 4, pp. 492–503, 1974.

Appendix: Tables describing DTT methods

Table 3: Differentiation for periodic SPSs.

Original sequence u Final sequence v

Symmetry Representative sample Forward k-space operation Inverse Symmetry

WSWS u = {u0, . . . , uM
2
} û = C1u v̂ = {−k1û1, . . . , − kM

2 −1ûM
2 −1} v = 1

M S1v̂ WAWA

HSHS u = {u0, . . . , uM
2 −1} û = C2u v̂ = {−k1û1, . . . ,−kM

2 −1ûM
2 −1, 0} v = 1

M S3v̂ HAHA

WAWA u = {u1, . . . , uM
2 −1} û = S1u v̂ = {0, k1û1, . . . , kM

2 −1ûM
2 −1, 0} v = 1

M C1v̂ WSWS

HAHA u = {u1, . . . , uM
2
} û = S2u v̂ = {0, k1û1, . . . , kM

2 −1ûM
2 −1} v = 1

M C3v̂ HSHS

WSHS u = {u0, . . . , uM−1
2
} û = C5u v̂ = {−k1û1, . . . ,−kM−1

2
ûM−1

2
, 0} v = 1

M S5v̂ WAHA

HSWS u = {u0, . . . , uM−1
2
} û = C6u v̂ = {−k1û1, . . . ,−kM−1

2
ûM−1

2
, 0} v = 1

M S7v̂ HAWA

WAHA u = {u1, . . . , uM+1
2
} û = S5u v̂ = {0, k1û1, . . . , kM−1

2
ûM−1

2
} v = 1

M C5v̂ WSHS

HAWA u = {u1, . . . , uM+1
2
} û = S6u v̂ = {0, k1û1, . . . , kM−1

2
ûM−1

2
} v = 1

M C7v̂ HSWS

19

https://github.com/ucl-bug/matlab-dtts
https://github.com/ucl-bug/matlab-dtts


Table 4: Interpolation between staggered grids for periodic SPSs.

Original sequence u Final sequence v

Symmetry Representative sample Forward k-space operation Inverse Symmetry

WSWS u = {u0, . . . , uM
2
} û = C1u v̂ = {û0, . . . , ûM

2 −1} v = 1
M C3v̂ HSHS

HSHS u = {u0, . . . , uM
2 −1} û = C2u v̂ = {û1, . . . , ûM

2 −1, 0} v = 1
M C1v̂ WSWS

WAWA u = {u1, . . . , uM
2 −1} û = S1u v̂ = {û1, . . . , ûM

2 −1, 0} v = 1
M S3v̂ HAHA

HAHA u = {u1, . . . , uM
2
} û = S2u v̂ = {û1, . . . , ûM

2 −1} v = 1
M S1v̂ WAWA

WSHS u = {u0, . . . , uM−1
2
} û = C5u v̂ = û v = 1

M C7v̂ HSWS

HSWS u = {u0, . . . , uM−1
2
} û = C6u v̂ = û v = 1

M C5v̂ WSHS

WAHA u = {u1, . . . , uM+1
2
} û = S5u v̂ = û v = 1

M S7v̂ HAWA

HAWA u = {u1, . . . , uM+1
2
} û = S6u v̂ = û v = 1

M S5v̂ WAHA

Table 5: Differentiation with staggered grids for periodic SPSs.

Original sequence u Final sequence v

Symmetry Representative sample Forward k-space operation Inverse Symmetry

WSWS u = {u0, . . . , uM
2
} û = C1u v̂ = {−k1û1, . . . , − kM

2
ûM

2
} v = 1

M S3v̂ HAHA

HSHS u = {u0, . . . , uM
2 −1} û = C2u v̂ = {−k1û1, . . . ,−kM

2 −1ûM
2 −1} v = 1

M S1v̂ WAWA

WAWA u = {u1, . . . , uM
2 −1} û = S1u v̂ = {0, k1û1, . . . , kM

2 −1ûM
2 −1} v = 1

M C3v̂ HSHS

HAHA u = {u1, . . . , uM
2
} û = S2u v̂ = {0, k1û1, . . . , kM

2
ûM

2
} v = 1

M C1v̂ WSWS

WSHS u = {u0, . . . , uM−1
2
} û = C5u v̂ = {−k1û1, . . . ,−kM−1

2
ûM−1

2
, 0} v = 1

M S7v̂ HAWA

HSWS u = {u0, . . . , uM−1
2
} û = C6u v̂ = {−k1û1, . . . ,−kM−1

2
ûM−1

2
, 0} v = 1

M S5v̂ WAHA

WAHA u = {u1, . . . , uM+1
2
} û = S5u v̂ = {0, k1û1, . . . , kM−1

2
ûM−1

2
} v = 1

M C7v̂ HSWS

HAWA u = {u1, . . . , uM+1
2
} û = S6u v̂ = {0, k1û1, . . . , kM−1

2
ûM−1

2
} v = 1

M C5v̂ WSHS

Table 6: Differentiation for antiperiodic SPSs.

Original sequence u Final sequence v

Symmetry Representative sample Forward k-space operation Inverse Symmetry

WSWA u = {u0, . . . , uM
2 −1} û = C3u v̂ = −k · û v = 1

M S2v̂ WAWS

HSHA u = {u0, . . . , uM
2 −1} û = C4u v̂ = −k · û v = 1

M S4v̂ HAHS

WAWS u = {u0, . . . , uM
2 −1} û = S3u v̂ = k · û v = 1

M C2v̂ WSWA

HAHS u = {u0, . . . , uM
2 −1} û = S4u v̂ = k · û v = 1

M C4v̂ HSHA

WSHA u = {u0, . . . , uM−1
2
} û = C7u v̂ = −k · û v = 1

M S6v̂ WAHS

HSWA u = {u0, . . . , uM−1
2
} û = C8u v̂ = −k · û v = 1

M S8v̂ HAWS

WAHS u = {u0, . . . , uM−1
2
} û = S7u v̂ = k · û v = 1

M C6v̂ WSHA

HAWS u = {u0, . . . , uM−1
2
} û = S8u v̂ = k · û v = 1

M C8v̂ HSWA

20



Table 7: Interpolation between staggered grids for antiperiodic SPSs.

Original sequence u Final sequence v

Symmetry Representative sample Forward k-space operation Inverse Symmetry

WSWA u = {u0, . . . , uM
2 −1} û = C3u v̂ = û v = 1

M C4v̂ HSHA

HSHA u = {u0, . . . , uM
2 −1} û = C4u v̂ = û v = 1

M C2v̂ WSWA

WAWS u = {u0, . . . , uM
2 −1} û = S4u v̂ = û v = 1

M S4v̂ HAHS

HAHS u = {u0, . . . , uM
2 −1} û = S4u v̂ = û v = 1

M S2v̂ WAWS

WSHA u = {u0, . . . , uM−1
2
} û = C7u v̂ = û v = 1

M C8v̂ HSWA

HSWA u = {u0, . . . , uM−1
2
} û = C8u v̂ = û v = 1

M C6v̂ WSHA

WAHS u = {u0, . . . , uM−1
2
} û = S7u v̂ = û v = 1

M S8v̂ HAWS

HAWS u = {u0, . . . , uM−1
2
} û = S8u v̂ = û v = 1

M S6v̂ WAHS

Table 8: Differentiation with staggered grids for antiperiodic SPSs.

Original sequence u Final sequence v

Symmetry Representative sample Forward k-space operation Inverse Symmetry

WSWA u = {u0, . . . , uM
2 −1} û = C3u v̂ = −k · û v = 1

M S4v̂ HAHS

HSHA u = {u0, . . . , uM
2 −1} û = C4u v̂ = −k · û v = 1

M S2v̂ WAWS

WAWS u = {u0, . . . , uM
2 −1} û = S4u v̂ = k · û v = 1

M C4v̂ HSHA

HAHS u = {u0, . . . , uM
2 −1} û = S4u v̂ = k · û v = 1

M C2v̂ WSWA

WSHA u = {u0, . . . , uM−1
2
} û = C7u v̂ = −k · û v = 1

M S8v̂ HAWS

HSWA u = {u0, . . . , uM−1
2
} û = C8u v̂ = −k · û v = 1

M S6v̂ WAHS

WAHS u = {u0, . . . , uM−1
2
} û = S7u v̂ = k · û v = 1

M C8v̂ HSWA

HAWS u = {u0, . . . , uM−1
2
} û = S8u v̂ = k · û v = 1

M C6v̂ WSHA

21


	Introduction
	The Fourier PSTD method for the wave equation
	Gradient calculations using discrete trigonometric transforms
	The Fourier sine and cosine transforms
	The discrete trigonometric transforms
	Spectral gradient calculations
	Interpolation on staggered grids

	The PSTD method with discrete trigonometric transforms
	Formulation
	Numerical results
	Higher dimensions
	Computational considerations

	Non-reflecting boundary conditions
	Summary

