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ABSTRACT:
A full-wave model for nonlinear ultrasound propagation through a heterogeneous and absorbing medium in an axi-

symmetric coordinate system is developed. The model equations are solved using a nonstandard or k-space pseudo-

spectral time domain method. Spatial gradients in the axial direction are calculated using the Fourier collocation

spectral method, and spatial gradients in the radial direction are calculated using discrete trigonometric transforms.

Time integration is performed using a k-space corrected finite difference scheme. This scheme is exact for plane

waves propagating linearly in the axial direction in a homogeneous and lossless medium and significantly reduces

numerical dispersion in the more general case. The implementation of the model is described, and performance

benchmarks are given for a range of grid sizes. The model is validated by comparison with several analytical solu-

tions. This includes one-dimensional absorption and nonlinearity, the pressure field generated by plane-piston and

bowl transducers, and the scattering of a plane wave by a sphere. The general utility of the model is then demon-

strated by simulating nonlinear transcranial ultrasound using a simplified head model.
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I. INTRODUCTION

Simulating the propagation of nonlinear acoustic waves

is important for many branches of acoustics, including

diagnostic ultrasound imaging, therapeutic ultrasound,

underwater acoustics, and the study of sonic booms.

Computationally, the key challenge is resolving the features

of the nonlinear wave field while still remaining tractable to

follow the evolution of the wave over many hundreds or

thousands of wavelengths.1 In the last decade, so called full-
wave models have become popular. These directly solve the

nonlinear wave equation (or the constitutive equations that

are used to form it) and thereby inherently include the

effects of nonlinear wave steepening, interaction with het-

erogeneous medium properties, and acoustic losses.2–7

Despite recent advances, for many problems that

involve moderate or strong nonlinearity, full-wave model-

ling in three dimensions (3D) remains computationally chal-

lenging due to the very large grid sizes needed (often

>1� 109 grid points).1,8 When the source geometry and the

propagation medium are axisymmetric, the problem is

reduced to two dimensions and the computational load is

significantly reduced. This geometry is of practical interest,

for example, in the study of nonlinear resonantors9 and

modelling the output of therapeutic ultrasound trans-

ducers.10 Previous full-wave models that consider nonlinear

wave propagation in an axisymmetric coordinate system

have been formulated using the finite difference time

domain (FDTD) and finite element (FE) methods and used

to solve the nonlinear Westervelt equation11,12 or the corre-

sponding constitutive equations.9,13–16

In the current work, the formulation, implementation,

and validation of the axisymmetric wave model in the open-

source k-Wave toolbox is described.17 The model is based

on the k-space pseudospectral time domain (PSTD) method

as previously used to solve the nonlinear wave equation in a

Cartesian coordinate system.5,18 This formulation has

advantages over FDTD and FE methods due to the reduced

number of grid points needed per wavelength to reach con-

vergence.19 Fourier PSTD methods in an axisymmetric

coordinate system have previously been used to solve the

equations of linear acoustics,20 Maxwell’s equations,21,22

and the equations of linear elasticity.23–26 Here, the PSTD

method is applied to solve the equations of nonlinear acous-

tics with two extensions: an approximate k-space correction
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is used to improve the accuracy of the time integration, and

discrete trigonometric transforms (DTTs) are used for gradi-

ent calculations in the radial direction to enforce the correct

symmetry conditions in a computationally efficient

manner.27

II. MODEL FORMULATION

A. Governing equations

The nonlinear propagation of acoustic waves through a

medium with spatially varying acoustic properties and clas-

sical thermoviscous absorption can be described using a sys-

tem of coupled partial differential equations5

@u

@t
¼ � 1

q0

rpþ F;

@q
@t
¼ � 2qþ q0ð Þr � u� u � rq0 þM;

p ¼ c2
0 qþ d � rq0 þ

B

2A

q2

q0

þ 2a0c0

@q
@t

 !
: (1)

Here, the acoustic field is described by the pressure p, parti-

cle velocity u, particle displacement d, and acoustic density

q, which vary as a function of position x and time t. The

propagation medium is described by the mass density q0,

sound speed c0, nonlinearity parameter B/A, and absorption

coefficient a0, all of which can vary as a function of posi-

tion. For the parameter range of interest, the loss term in the

pressure-density relation accounts for acoustic absorption of

the form a � a0x2, where a0 is the absorption coefficient

pre-factor given in units of Np (rad/s)�2 m�1. Two linear

source terms are also included, where F is a force source

term that represents the input of body forces per unit mass

in units of N kg�1 (or m s�2) and M is a mass source term

that represents the time rate of the input of mass per unit

volume in units of kg m�3 s�1.1 These equations can be

combined to give a form of the Westervelt equation28
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; (2)

where b ¼ 1þ B=2A.

If the wave field and propagation medium are axisymmet-

ric such that there is no angular variation about an axis of sym-

metry, Eq. (1) can be rewritten in cylindrical coordinates where

u ¼ uxx̂þur r̂ and the gradients with respect to the angular var-

iable are zero (see Fig. 1). This gives the following expansions

for the gradient, divergence, and Laplacian operators:

r p ¼ @p

@x
x̂ þ @p

@r
r̂;

r � u ¼ @ux

@x
þ @ur

@r
þ ur

r
;
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þ 1

r
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@r
; (3)

where x̂ and r̂ are unit vectors in the axial and radial direc-

tions, respectively. Using these expansions, Eq. (1) becomes
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where the u � rq0 and d � rq0 terms in Eq. (1) are omitted

as they cancel when these equations are solved.5

B. Nonstandard PSTD method

To solve Eq. (4), a nonstandard or k-space PSTD

method is used.19,29 This approach uses the Fourier

FIG. 1. (a) Axisymmetric coordinate system, where x is the axial coordinate and r is the radial coordinate. The dashed cylinder shows the angular symmetry.

(b) Staggered grid formulation, where the radial particle velocity is calculated on a staggered grid in the radial direction (triangles), and the axial particle

velocity is calculated on a staggered grid in the axial direction (crosses). (c) Summary of the update steps and corresponding radial symmetry.
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collocation spectral method to calculate spatial gradients

and a k-space corrected finite difference scheme to integrate

in time, and can be considered as an extension to nonstan-

dard finite difference methods.30 The merits of this scheme

have been discussed in detail elsewhere, e.g., Refs. 5, 18, 19,

29, and 31. In short, the scheme is exact and unconditionally

stable in the limit of linear wave propagation in a homoge-

neous and lossless medium and can significantly reduce

numerical dispersion compared to other methods for nonlin-

ear wave propagation in heterogeneous and lossy media.

Here, the general formulation of the nonstandard PSTD

method given in Ref. 32 is used to derive the k-space correc-

tion term for the wave equation in an axisymmetric coordi-

nate system. Consider the linear and lossless wave equation

for homogeneous media written in the following form:

@2pðx; r; tÞ
@t2

¼ Lpðx; r; tÞ; (5)

where L is a spatial differential operator given by

L ¼ c2
0

@2

@x2
þ @2

@r2
þ 1

r

@

@r

� �
: (6)

An exact time stepping scheme for Eq. (5) is given by32

pðx; r; tþ DtÞ � 2pðx; r; tÞ þ pðx; r; t� DtÞ
Dt2

¼ F�1 j2kF pðx; r; tÞ
� �n o

; (7)

where k is the Fourier representation of the differential oper-

ator L, and j is the k-space correction term given by

j ¼ sinc
ffiffiffiffiffiffiffi
�k
p

Dt=2

� �
; (8)

where sinc ¼ sin ðxÞ=x. The Fourier representation of L is

given by

k ¼ c2
0

ikr

r
� k2

r � k2
x

� �
: (9)

However, in this case, k is a function of both k and r and,

thus, cannot be directly applied in k-space (note, it is possi-

ble to apply mixed-domain k-space operators, e.g., Ref. 33,

however, this is computationally expensive). An approxi-

mate k-space correction term can still be derived by consid-

ering that away from the radial origin, the contribution of

the 1=r term decreases, where

lim
r!1

k ¼ �c2
0 k2

r þ k2
x

	 

; (10)

which gives

j � sinc c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

r þ k2
x

q
Dt=2

� �
: (11)

Equation (11) is the same as the exact k-space term used for

the wave equation in Cartesian coordinates19 and, here, is

exact for plane waves propagating in the x̂ direction and

approximate for cylindrical waves propagating in the r̂

direction (with the accuracy increasing as r increases).

While j is derived using the second-order wave equation, it

can also be applied when solving a system of coupled first-

order equations as discussed in Refs. 29 and 31.

The k-space correction derived above accounts for

numerical errors in the discretisation of the @2p=@t2 term

using a finite difference scheme (or the equivalent first-order

expressions). A similar correction is needed to account for

the discretisation of the time varying source terms in Eq. (4)

as discussed in Ref. 34. By again considering the limit as

r !1, the k-space source correction r is given by

r � cos c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

r þ k2
x

q
Dt=2

� �
: (12)

Numerical experiments demonstrating the accuracy of the k-

space correction terms are given in Sec. III.

C. Spatial gradient calculation

In an axisymmetric coordinate system, the pressure field

is symmetric about the axial coordinate axis (see Fig. 1).

One approach to calculate spatial gradients in the radial

direction is to mirror the field values about the origin to cre-

ate the correct symmetry, and then use the Fourier

collocation spectral method.21,23 However, this doubles the

size of the computational domain and, therefore, reduces the

computational performance. An alternative approach is to

use another basis to compute the spatial gradients that

already imposes the required symmetry. In the current work,

the Fourier basis normally used in the PSTD method is

replaced with a sine or cosine basis.27 In the discrete case,

the basis function weights are calculated using the discrete

cosine transform (DCT) and discrete sine transform (DST),

collectively called the DTTs. In the axial direction, the stan-

dard Fourier collocation spectral method is used.

There are 16 DTTs (8 DCTs and 8 DSTs),35 and the

choice of transform depends on the symmetry at both ends

of the computational domain in the radial dimension. Using

the standard staggered grid formulation, the acoustic pres-

sure is calculated at the radial origin, while the radial parti-

cle velocity is calculated on a staggered grid offset from the

origin by half the grid point spacing.29 The origin symmetry

of the pressure p and the axial particle velocity ux is WS

(whole-sample symmetric), whereas the symmetry of the

particle velocity in the radial direction ur is HA (half-sample

antisymmetric). At the outer boundary, a perfectly matched

layer (PML) is used to absorb outgoing waves as described

in Sec. II D. This means the outer radial boundary condition

is not important and either symmetric or antisymmetric

extensions can be chosen. In this case, a WA (whole-sample

antisymmetric) extension is used for the acoustic pressure

and axial particle velocity as this corresponds to DCT-III,

which is more computationally efficient to compute than

some of the other DTTs.36 It also belongs to a transform

group in which the representative samples have the same
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length, making implementation easier.27 The corresponding

outer symmetry for the radial particle velocity is given by

HS (half-sample symmetric).

Following Ref. 27, spectral gradient calculations can

now be computed, including a shift to and from the spatially

staggered grid. Assuming WSWA symmetry in the radial

dimension, the spatial gradient of the pressure is given by

@p

@x
¼ C�1

3 fF�1fikxeikxDx=2 FfC3fpgggg;

@p

@r
¼ S�1

4 fF�1f�kr FfC3fpgggg: (13)

Here, C3 is DCT-III and S4 is DST-IV (etc.) applied in the

radial direction, F is the Fourier transform applied in the

axial direction, i ¼
ffiffiffiffiffiffiffi
�1
p

; Dx is the grid spacing in the axial

direction, and kx and kr are the axial and radial wavenum-

bers, respectively (see Ref. 27 for definitions of the discrete

wavenumber vectors). Similarly, assuming WSWA symme-

try for the axial particle velocity and HAHS symmetry for

the radial particle velocity, the corresponding spatial gra-

dients are given by

@ux

@x
¼ C�1

3 fF�1fikxe�ikxDx=2 FfC3fuxgggg;

@ur

@r
¼ C�1

3 fF�1fkr FfS4furgggg: (14)

Note that due to the application of the k-space operator, the

transformations to k-space are always calculated in two

dimensions, not in one dimension as in the conventional

PSTD method.29 The Fourier transforms are always per-

formed over the axial or x-dimension, and the DTTs are

always performed over the radial or r-dimension. In the

radial dimension, the grid shifting is implicit through the

choice of DTT, so no additional shift term is required.27

Note also that the spatial gradients in the radial direction

could alternatively be computed using a Hankel transform.37

However, currently there are no exact discrete Hankel trans-

forms with equivalent computational performance to a fast

Fourier transform (FFT) or DTT.

D. PML

To absorb the outgoing waves when they reach the edge

of the computational domain, a split-field PML is used as

derived in Ref. 29. The PML profile is given by

PML ¼ e�lDt=2; where l ¼ /c0

Dx

m

M

� �4

: (15)

Here, M is the size of the PML in grid points, m ¼ 1; 2;
3;…;M is the index of the grid coordinate within the PML

starting from the inner boundary, and / is the absorption

coefficient within the PML given in units of Nepers per grid

point. In the axial direction, the PML is applied at both ends

of the domain. In the radial direction, the PML is only

applied at the outer edge. On the staggered grid, the grid

index m is offset by 1/2. The performance of the PML is

evaluated in Ref. 38 using the one-dimensional (1D) and

two-dimensional (2D) Cartesian wave models in k-Wave,

which use the same PML formulation.17 For waves close to

normal incidence, the reduction in wave amplitude is typi-

cally �80 to �100 dB, depending on the layer thickness and

frequency of the incident wave.

E. Time stepping and model solution

To run the model, the acoustic field variables are

updated in a time stepping fashion as detailed below. The

superscripts n and nþ 1 indicate the field variables at the

current and next time steps, respectively, and n� 1
2

and

nþ 1
2

indicate the field variables at the current and next time

steps on the time staggered grid, respectively. A summary

of the steps is given in Fig. 1(c). Implementation and bench-

marking of the corresponding computer code are described

in the Appendix.

(1) Calculate the spatial gradients of the pressure field using

a Fourier/DTT spectral collocation method as given in

Eq. (13), including the application of the k-space correc-

tion j given in Eq. (11)

@pn

@x
¼ C�1

3 F�1 ikxeikxDx=2j F C3 pnf gf g
� �� �

;

@pn

@r
¼ S�1

4 F�1 �krj F C3 pnf gf gf g
� �

: (16)

The individual transforms are applied in one dimension

with DTTs applied in the radial dimension and FFTs

applied in the axial dimension.

(2) Update the particle velocity using a first-order forward

difference with a step size of Dt, including application

of a split-field PML

unþ1=2
x ¼ PMLx PMLx un�1=2

x � Dt

q0

@pn

@x

� �
;

unþ1=2
r ¼ PMLr PMLr un�1=2

r � Dt

q0

@pn

@r

� �
: (17)

The PML profile is defined in Eq. (15). Note, the tempo-

ral staggering between the pressure and particle velocity

arises because the update steps are interleaved with the

spatial gradient calculations.

(3) Add force (velocity) source terms, including the k-space

source correction r given in Eq. (12),

unþ1=2
x ¼unþ1=2

x þDtC�1
3 fF�1frFfC3fFn

xgggg;
unþ1=2

r ¼unþ1=2
r þDtS�1

4 fF�1frFfS4fFn
rgggg: (18)

Here, F ¼ Fxx̂ þ Fr r̂ and the source terms vary as a

function of position and time. Without the k-space

source correction, the transforms are not needed, and the

source terms are added directly to the velocity field.

Analogous to the gradient calculations, the DTTs used

to transform to and from k-space in the radial direction
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are chosen based on the radial symmetry, where WSWA

! DCT-III and HAHS! DST-IV.

(4) Calculate the spatial gradients of the particle velocity

using a Fourier/DTT spectral method and calculate ur=r

@unþ1=2
x

@x
¼C�1

3 F�1 ikxe�ikxDx=2jF C3 unþ1=2
x

n on on on o
;

@unþ1=2
r

@r
¼C�1

3 F�1 krjF S4 unþ1=2
r

n on on on o
;

unþ1=2
rr ¼C�1

3 F�1 jF C4 unþ1=2
r =r

n on on on o
: (19)

Here, urr � ur=r after application of the k-space correc-

tion. Note, the symmetry of ur changes from HAHS to

HSHA after division by r (which is the radial position

vector defined on the staggered grid), thus, DCT-IV is

used as the forward transform for this term instead of

DST-IV. The k-space correction term is applied to the

entire right-hand side of the mass conservation equation

given in Eq. (4), which includes both the spatial gra-

dients and the ur=r term. Computationally, the @ur=@r
and ur=r terms are always used together, therefore, the

inverse transforms can be combined.

(5) Update the acoustic density using a first-order forward

difference with a step size of Dt, including application

of a split-field PML,

qnþ1
x ¼PMLx PMLx qn

x�Dt 2qnþq0ð Þ@unþ1=2
x

@x

� �
;

qnþ1
r ¼PMLr PMLx qn

r�Dt 2qnþq0ð Þ
 

� @unþ1=2
r

@r
þunþ1=2

rr

� �!
: (20)

Here, qn ¼ qn
x þ qn

r , and the PML profile is defined in

Eq. (15).

(6) Add the mass source term, including a k-space source

correction,

M̂ ¼ C�1
3 F�1 rF C3 Mnf g

� �� �� �
;

qnþ1
x ¼ qnþ1

x þ DtM̂=2;

qnþ1
r ¼ qnþ1

r þ DtM̂=2: (21)

Here, M̂ is the mass source after applying the source

correction, and the source is divided evenly between the

split field components of the density.

(7) Update the acoustic pressure using the pressure-density

relation

pnþ1 ¼ c2
0 qnþ1 þ B

2A

qnþ1
	 
2

q0

�a0c0q0

@unþ1=2
x

@x

� 

þ @unþ1=2
r

@r
þ unþ1=2

rr

��
; (22)

where qnþ1 ¼ qnþ1
x þ qnþ1

r . To avoid needing to calcu-

late the temporal derivative of the density, the @q=@t
term is replaced here using the linearised version of the

conservation of mass given in Eq. (4). Under the

assumption that the absorption has a second-order effect

on the wave field, the substitution of first-order terms

into second-order terms leads to third-order errors,

which can be neglected.

Note, the use of a spatially and temporally staggered grid

means care must be taken when defining sources and

extracting outputs from the model. In particular, the discrete

values of the particle velocity are calculated on a grid offset

by Dx=2 and Dt=2 relative to the acoustic pressure.

Additionally, there is an offset of Dt=2 between the inputs

and outputs, i.e., between the force source term and the cal-

culated particle velocity and the mass source term and the

calculated density and pressure.

III. NUMERICAL EXPERIMENTS

A. Nonlinearity and absorption for a plane wave

To demonstrate the performance and capabilities of the

developed model, a series of numerical experiments was

performed. First, to simulate the propagation of a plane

wave in the axial direction, the radial symmetry at the outer

edge of the domain was modified to be symmetric (i.e.,

WSWS) and the PML was disabled in the radial dimension.

In this case, simulations compared with the 1D k-space code

in k-Wave agreed to machine precision (with normalised

maximum errors of <1� 10�14).

For the linear propagation of an axial plane wave in a

homogeneous and lossless medium, the model is exact and

unconditionally stable.29 When the medium is absorbing,

the model is no longer exact, but still highly accurate.

Figure 2 shows results from a numerical example of a 1D

plane wave propagating through a lossy medium with differ-

ent absorption coefficients. In this example, the propagation

of a broadband pulse (defined as a discrete spatial delta

function filtered using a Blackman window39) was recorded

at two sensor positions spaced 1 mm apart. The grid size

was defined using 1024 axial grid points, with Dx ¼ 7:5 lm,

c0 ¼ 1500 m s�1, and Dt ¼ 0:25 ns (the radial dimension

does not affect the simulation for an axial plane wave). The

frequency dependent absorption was then calculated from

the amplitude spectra of the two recorded signals.

The open circles in Fig. 2 correspond to the simulation

results using a Courant-Friedrichs-Lewy (CFL) number of

CFL ¼ c0Dt=Dx ¼ 0:05. There is very close agreement

between the model and the corresponding analytical power

law across the full simulation bandwidth (up to the Nyquist

limit of 100 MHz), including at very high absorption values

up to 500 dB/cm. As the CFL is increased, the accuracy

decreases slightly due to errors in the calculation of @q=@t
using the linearised mass conservation equation. This is

because the velocity gradient values are offset from the

acoustic density values by Dt=2. The corresponding results

for a CFL of 0.3 are shown with the filled dots in Fig. 2.
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However, even in this case, the numerical results are still

accurate up to approximately half the simulation bandwidth

or 4 grid points per wavelength (PPW), which is sufficient

for most practical applications.

In a second numerical experiment, the nonlinear propa-

gation of a harmonic plane wave through an absorbing

medium was simulated for different values of the shock

parameter and Gol’dberg number (see, e.g., Ref. 47 for defi-

nitions) as shown in Fig. 3. In this case, a 20 MPa 1 MHz

continuous wave source was propagated for 20 wavelengths

and the recorded sensor data compared with the series solu-

tion given by Mendousse.28 The grid size was defined using

4374 axial grid points, with Dx ¼ 7:5 lm, c0 ¼ 1500 m s�1,

q0 ¼ 1000 kg m�3, and Dt ¼ 0:5 ns. This gave a Nyquist

limit of 100 MHz, meaning the model captured the first 100

harmonics of the source frequency. Uniform values for B/A
and a0 were set based on the values for the shock parameter

and Gol’dberg number, respectively. There is close quantita-

tive agreement between the model and reference solution

with the maximum error in the spectral amplitudes in all

cases less than 0.2%.

B. Accuracy of the k-space correction

For linear wave propagation in homogeneous and lossless

media, the k-space correction used as part of the finite differ-

ence time integration scheme is exact for plane waves travel-

ling in the axial direction but only approximate for cylindrical

waves travelling in the radial direction (see Sec. II B). To

examine the accuracy of this approximation in practice, the

propagation of a broadband cylindrical wave pulse was simu-

lated. The source position was moved along the radial axis,

and the source-to-sensor distance was kept fixed at 50 mm.

The grid size was defined using 128 radial grid points with

Dr ¼ 1 mm, c0 ¼ 1500 m s�1, and Dt ¼ 33:3 ns (giving a

CFL of 0.5). In the axial direction, the PML was disabled and

the source replicated to allow the simulation of an infinite

cylindrical wave. The simulations were repeated with and

without the k-space correction and with the time step reduced

by a factor of 2 and a factor of 500 for reference.

The error as a function of the source position and CFL

and an example of the recorded waveforms are shown in

Fig. 4. Although the k-space correction in the radial direc-

tion is only approximate, in practice, it significantly reduces

the dispersion error. There is a small increase in the error

when the source is placed at the origin, but otherwise the

error is relatively constant with the source distance as shown

in Fig. 4(b). Both with and without the k-space correction,

the simulation converges (the error reduces) as the time step

is reduced. The error convergence with the time step size is

shown in Fig. 4(c). For this simulation, when the k-space

correction is included, a CFL of 0.26 is required to reduce

the maximum error to less than 1%, and a CFL of 0.08 is

required to reduce the error below 0.1%. Without the k-

space correction, a CFL of 0.05 is required to reduce the

error to less than 1%, which corresponds to a fivefold

increase in the number of time steps required.

A cylindrical wave corresponds to an infinite line

source in three dimensions. In a 2D Cartesian coordinate

system, this can be simulated using a point source.

However, simulations of a cylindrical wave using the 2D

and axisymmetric models in k-Wave do not agree to

machine precision in the same way as the simulation of a

FIG. 2. Frequency dependent acoustic absorption calculated for a plane

wave in a lossy medium compared to the analytical values for different val-

ues of the absorption coefficient a0 given in units of dB MHz�2 cm�1. The

open circles correspond to model results for a CFL number of 0.05, and the

filled dots correspond to model results for a CFL of 0.3.

FIG. 3. (Color online) Recorded time series and corresponding amplitude

spectra after propagating a nonlinear plane wave through an absorbing

medium for different values of the shock parameter rsh and Gol’dberg num-

ber C. (Top) rsh ¼ 0:1 and C¼ 5, (middle) rsh ¼ 1 and C¼ 20, (bottom)

rsh ¼ 10 and C¼ 50.
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1D plane wave does. This is because the discretisation of

the wavenumber domain in the 2D Cartesian code is square,

thus, the band-limited interpolant is not rotationally sym-

metric. For simulations in which the bandwidth is restricted

(i.e., using a Gaussian shaped source), there is very close

agreement between the two models when a small time step

is used (maximum error< 0.1%). For larger time steps, pro-

vided the source shape is not staircased, the 2D Cartesian

code is more accurate as the k-space correction has the same

accuracy for waves propagating in all directions.

C. Modelling piston and bowl sources

A common application for axisymmetric wave models

is the simulation of plane piston and focused bowl acoustic

sources. These transducers are widely used, for example, in

non-destructive testing, ultrasound metrology, and ultra-

sound therapy. To demonstrate the accuracy of the devel-

oped model in this case, two transducers were simulated and

compared to analytical results.

First, the acoustic field generated by a plane piston trans-

ducer with a diameter of 10 mm driven by a continuous wave

1 MHz sinusoid was simulated in a homogeneous and lossless

medium. The source was defined with the staircase-free for-

mulation described in Ref. 40, using the exact band-limited

interpolant and an upsampling rate of 100. The domain size

was set to 40 mm in the axial direction and 20 mm in the

radial dimension with c0 ¼ 1500 m s�1 and q0 ¼ 1000 kg

m�3. The grid step and time step were defined using a vari-

able number of PPW from 3 to 6 and CFL numbers from

0.025 to 0.5. The simulations were repeated with and without

the k-space source correction term r (the k-space correction

for the time integration j was always used). The simulation

results were compared with the analytical solution for the

axial pressure from a piston transducer given in Ref. 41.

An example of the amplitude of the simulated pressure

field in steady state using 5 PPW and a CFL of 0.15 is

shown in Fig. 5(a), with a comparison against the analytical

solution shown in Fig. 5(b). (Note, for display, the pressure

field is always mirrored in the radial dimension.) The error

as a function of the CFL number for different PPW both

with (solid lines) and without (dashed lines) the k-space

source correction is shown in Fig. 5(c). At 4 PPW, a CFL of

0.275 is sufficient to reduce the error to 1%. Without the

source correction, the error is increased by a factor of 3, and

a CFL of 0.15 is required to reduce the error to 1%. At

higher PPW, the CFL required to achieve a certain accuracy

is relaxed, as the same CFL number corresponds to an

increased number of points per period (PPP), where

CFL¼ PPW / PPP. For this example, the k-space correction

is exact for the plane wave component of the field, whereas

it is only approximate for the toroidal edge wave that inter-

acts to form the complex pattern of near-field interference.

Next, the acoustic field generated by a focused bowl

transducer with a radius of curvature and aperture diameter

of 30 mm driven by a continuous wave 1 MHz sinusoid was

simulated in a homogeneous and lossless medium. The

source was again defined with the staircase-free formulation

described in Ref. 40, using the approximate band-limited

interpolant with a truncation threshold of �¼ 1% and an

upsampling rate of 100. The domain size was set to 45 mm

in the axial direction and 27.5 mm in the radial dimension.

The simulations were repeated with the same parameters as

the plane piston transducer and compared with the analytical

solution for the axial pressure given in Ref. 42.

An example of the amplitude of the simulated pressure

field in steady state using 5 PPW and a CFL of 0.15 is shown

in Fig. 6(a) with a comparison against the analytical solution

shown in Fig. 6(b). The error as a function of the CFL number

is shown in Fig. 6(c). The accuracy of the focused bowl simu-

lation is similar to the plane piston results. However, in this

case, there is an error floor that is reached as the CFL is

decreased. This is due to approximations made in the defini-

tion of the source geometry as discussed in Ref. 40 and related

to the choice of the truncation threshold and upsampling rates.

D. Scattering of plane wave by a fluid sphere

One of the advantages of a full-wave model is that it

can account for multiple scattering from medium heteroge-

neities. For the case of a plane wave propagating through a

layered medium, the accuracy of the axisymmetric model is

FIG. 4. (Color online) Accuracy of the k-space correction for a cylindrical wave. (a) Example of the recorded pressure signals when the source is 5 mm from

the radial origin (the source pressure is 1 Pa). The reference simulation is calculated using a CFL of 0.001 and compared with the k-space corrected (KS)

and conventional pseudospectral (PS) models using a CFL of 0.5. (b) L1 error (maximum difference between the two signals normalised by the maximum

of the reference signal) as a function of the source position relative to the radial origin for CFL numbers of 0.5 and 0.25. (c) L1 error as a function of the

CFL number for a source position of 5 mm.
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identical to that reported in Refs. 5 and 38. To examine the

accuracy of the model in the more general case, the scatter-

ing of an axial plane wave by a fluid sphere was simulated.

This is a challenging problem for simulations based on

structured grids as the complex diffraction pattern depends

on the modes generated within the perfectly smooth sphere,

whereas in the numerical model the representation of the

sphere is staircased, particularly at low PPW.

Figure 7(a) shows the simulated pressure amplitude for

the scattering of a 1 MHz monochromatic plane wave by a

sphere of radius 2.5 mm. The medium properties were set to

c0 ¼ 1500 m s�1, q0 ¼ 1000 kg m�3, csphere ¼ 1700 m s�1,

and qsphere ¼ 1100 kg m�3. The analytical solution given by

Ref. 43 is also shown for comparison. There is good agree-

ment between the two simulations; however, the conver-

gence is slow compared to the other numerical experiments

as shown in Fig. 7(c). In this case, to reduce the L2 error to

FIG. 5. (Color online) Simulation of the steady state pressure field from a

plane piston transducer. (a) Simulated pressure amplitude using 5 PPW and

a CFL number of 0.15. (b) Comparison of the axial pressure against the ana-

lytical solution. (c) Error in the axial pressure as a function of the CFL for

different PPW both with (solid lines) and without (dashed lines) the k-space

source correction.

FIG. 6. (Color online) Simulation of the steady state pressure field from a

focused bowl transducer. (a) Simulated pressure amplitude using 5 PPW

and a CFL number of 0.15. (b) Comparison of the axial pressure against the

analytical solution. (c) Error in the axial pressure as a function of the CFL

for different PPW both with (solid lines) and without (dashed lines) the k-

space source correction.
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<1% requires >10 PPW. This is consistent with the numeri-

cal experiments performed in Refs. 38 and 44, which dem-

onstrate that staircasing can be a significant source of

numerical error for simulations on a regular Cartesian grid

(for both FDTD and PSTD methods).

E. Transcranial ultrasound simulation

The previous examples demonstrate the accuracy of the

developed model in a number of cases in which analytical

solutions are available. As a final example to demonstrate

the utility of the model more generally, the nonlinear

FIG. 7. (Color online) (a) Scattering of a monochromatic plane wave by a

fluid sphere calculated using an analytical series solution and the axisym-

metric model in k-Wave using 20 PPW. (b) Error as a function of PPW.

FIG. 8. (Color online) (a) Layout for a transcranial ultrasound simulation.

(b) Temporal peak positive and negative pressure over the simulation dura-

tion. The dashed lines show the position of the medium interfaces. (c) Axial

profile for the peak positive and negative pressure, along with the corre-

sponding linear simulation for reference.
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propagation of ultrasound waves through an idealised

human skull was simulated. The transducer was based on

the nominal parameters of the Sonic Concepts H-151

focused bowl transducer (Sonic Concepts, Bothell, WA),

which has an aperture diameter of 64 mm, radius of curva-

ture of 100 mm, and centre frequency of 1.1 MHz. The trans-

ducer was driven by a Gaussian-windowed four cycle burst

with a magnitude of 1.5 MPa. The medium geometry was

defined using a simplified head geometry with four curved

layers as shown in Fig. 8(a). The skull radius of curvature

was set to 80 mm, the skull thickness was 6.5 mm, and the

skin thickness was 6.5 mm. The material properties for each

layer are given in Table I (these are based on representative

values used in the literature).

The simulation domain size was 120 mm

(axial)� 40 mm (radial) with Dx ¼ Dr ¼ 27 lm to give 50

PPW at the driving frequency (i.e., modelling up to the 25th

harmonic). The resulting grid size was 4536� 1536 grid

points. The simulation was run for 100 ls with a CFL of

0.1, giving Dt ¼ 0:91 ns with 110 k time steps. The simula-

tion was performed using the CL1 machine from Table II.

The total simulation time was 49 min and consumed 900

MB of memory.

The peak positive and peak negative pressures over the

simulation duration are displayed in Fig. 8(b) with the axial

profile shown in Fig. 8(c), along with the results from a lin-

ear simulation for comparison. The peak positive and nega-

tive pressure become asymmetric due to the nonlinear

propagation of the wave with a shift in the positions of the

spatial peak positive and negative pressures compared to the

linear case. In the region of the skull, the peak positive and

negative pressures are similar to the linear case as discussed

in Ref. 8.

The time signal recorded at the position of the spatial

peak positive pressure is shown in Fig. 9, along with the cor-

responding amplitude spectrum. The pulse is distorted by

nonlinear wave propagation. The echoes following the main

pulse are due to round trip reflections within the skull. Only

a small number are discernible, which is consistent with

recent simulation results using iterative one-way methods,

which show that only a small number of reflections need to

be considered.45

IV. SUMMARY

A full-wave ultrasound model, which accounts for non-

linear wave propagation in a heterogeneous and absorbing

medium, is developed in an axisymmetric coordinate sys-

tem. The governing equations are solved using a nonstan-

dard or k-space PSTD method in which spatial gradients in

the axial direction are calculated using the Fourier colloca-

tion spectral method, and spatial gradients in the radial

direction are calculated using DTTs. The assumption of axi-

symmetry allows simulations with dense computational

grids to model the propagation of nonlinear fields over large

domains. The accuracy of the model is evaluated by

TABLE I. Material properties used for the transcranial simulation.

c0 (m s�1) q0 (kg m�3) B / A a0 (dB MHz�2 cm�1)

Water 1490 998 5.0 0.0025

Skin 1620 1110 6.7 1.5

Skull bone 2820 1730 370 2.2

Brain 1550 1050 6.7 0.55

TABLE II. Hardware parameters of machines used for benchmarking experiments. “Cache” refers to the last-level cache size per processor. DDR: double data rate.

Reference Cores Processor name Architecture Launch Cache Instruction set Memory

IB1 1 � 4 Intel i7-3770 at 3.9 GHz Ivy Bridge Q2/2012 8 MB AVX 32 GB DDR3 1600 MHz

H1 2 � 6 Intel E5-2620v3 at 2.4 GHz Haswell Q3/2014 15 MB AVX2 64 GB DDR3 2133 MHz

S1 2 � 8 Intel Xeon Silver 4110 at 2.1 GHz Skylake Q3/2017 11 MB AVX-512 128 GB DDR4 2666 MHz

SB1 2 � 8 Intel E5-2665 at 2.4 GHz Sandy Bridge Q1/2012 20 MB AVX 64 GB DDR 2133 MHz

H2 2 � 12 Intel E5-2680v3 at 2.5 GHz Haswell Q3/2014 30 MB AVX2 128 GB DDR 2133 MHz

CL1 2 � 18 Intel Xeon Gold 6240 at 2.6 GHz Cascade Lake Q2/2019 25 MB AVX-512 192 GB DDR4 2933 MHz

FIG. 9. Time domain pressure signal recorded at the position of spatial

peak pressure for the transcranial simulation shown in Fig. 8, along with the

corresponding amplitude spectrum.
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comparing with analytical solutions for linear and nonlinear

plane waves in absorbing media, plane-piston and bowl-

shaped transducers, and the scattering of a plane wave by a

fluid sphere. Finally, the utility of the model is demonstrated

by the simulation of nonlinear wave propagation through a

simplified skull model. Both MATLAB and Cþþ versions of

the axisymmetric model can be downloaded as part of the

open-source k-Wave toolbox, available online.46
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APPENDIX: COMPUTER CODE AND PERFORMANCE
BENCHMARKS

The developed axisymmetric model was implemented

using the Cþþ programming language. The code was

designed for execution on a single shared-memory computer

with calculations and data storage performed in single preci-

sion. DTTs and FFTs were computed using the FFTW

library, and input and output files stored in hierarchical data

format (HDF5). All computational kernels performing

element-wise operations were parallelised and vectorised

using OpenMP 4.0 and manually tuned to improve cache

locality and reduce code branching. The creation of input

files and the visualisation of output files was performed

using MATLAB (The MathWorks, Natick, MA).

In the most general case (nonlinear simulation with all

medium properties heterogeneous), 17 matrices are used

within the simulation core and the memory usage can be

estimated by

memory usage MBð Þ � 17NxNr

10242=4
; (A1)

where Nx and Nr are the number of grid points in the axial

and radial dimensions, respectively. Additional memory is

also used to store the source terms and any aggregated out-

put quantities (e.g., maximum pressure).

The performance of the code was investigated on a

range of machines covering desktop computers and servers

of different sizes and ages as outlined in Table II. For the

benchmark simulations, the code was recompiled using the

most appropriate instruction set for each machine using GCC

7.3 (Free Software Foundation, Inc.). The compute times per

time step using all processor cores for grid sizes ranging

from 1282 to 32 7682 are shown in Fig. 10(a). For

comparison, the strong scaling performance of the code

using the CL1 machine is shown in Fig. 10(b). In this case,

for each domain size, the number of computational threads

was increased from 1 to 36 in powers of two.

For larger dimension sizes (above 10242), the code

exhibits excellent weak scaling as seen in Fig. 10(a) with

the execution time growing by a factor between 1.9 and 2.2

when the domain size is doubled. The differences between

the various machines are dependent on a combination of the

core count, instruction set, clock frequency, and bandwidth

of the memory subsystem (in some cases, the clock fre-

quency is automatically decreased if the advanced vector

extension (AVX) instruction set AVX-512 is used).

In contrast, the strong scaling performance is less than

ideal as seen in Fig. 10(b). The maximum speedup using 36

cores compared to 1 core is 15–17, giving a parallel effi-

ciency of 42%–47%. There are two primary causes of this

FIG. 10. (Color online) (a) Computational time per time step for different

grid sizes for the machines given in in Table II. (b) Strong scaling perfor-

mance using the CL1 machine in Table II, showing the computational time

per time step for different dimension sizes and numbers of cores. The ideal

strong scaling for each grid size is shown with a dashed grey line.
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behaviour. First, the calculations for larger grid sizes are

memory bound due to the FFT transpositions and the low

arithmetic intensity of the element-wise kernels. This means

the memory bandwidth ultimately limits the performance.

Second, the CL1 machine used for this benchmark uses

dynamic frequency scaling, which reduces the maximum

clock frequency as more cores are utilised (by 35% in the

worst case). If the central processing unit (CPU) is instead

used at a fixed frequency of 2.4 GHz, the speedup and effi-

ciency increase from 21 to 24 and 59% to 66%,

respectively.

For small dimension sizes (below 5122), the perfor-

mance of the code shown in Fig. 10(a) is almost constant. In

this case, the memory used by the simulation core is small

enough to fit within the L2 cache and, therefore, using multi-

ple cores is counterproductive because of the additional

communication overhead. This can be seen in Fig. 10(b),

where for small dimension sizes, the compute time actually

increases if more than a single core is used. Note, the IB1

machine is fastest for very small dimension sizes as it has

only four cores and a very high clock frequency [almost

4 GHz when the Intel Turbo (Intel Corporation, Santa Clara,

CA) is enabled].

For reference, compared to the MATLAB implementation

of the axisymmetric model (using a FFTW implementation

of the DTT27), the Cþþ code is on the order of 4–5 times

faster for larger domain sizes (above 10242). For small

domain sizes (below 5122), the Cþþ code using a single

core can be more than ten times faster due to improved

cache locality, reuse of FFT execution plans, and other sin-

gle instruction, multiple data (SIMD) optimisations.
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