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Simulating the propagation of elastic waves in multi-layered media has many applications. A common
approach is to use matrix methods where the elastic wave-field within each material layer is
represented by a sum of partial-waves along with boundary conditions imposed at each interface.
While these methods are well-known, coding the required matrix formation, inversion, and analysis
for general multi-layered systems is non-trivial and time-consuming. Here, a new open-source toolbox
called ElasticMatrix is described which solves the problem of acoustic and elastic wave propagation
in multi-layered media for isotropic and transverse-isotropic materials where the wave propagation
occurs in a material plane of symmetry. The toolbox is implemented in MATLAB using an object
oriented programming framework and is designed to be easy to use and extend. Methods are
provided for calculating and plotting dispersion curves, displacement and stress fields, reflection and
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1. Motivation and significance

Matrix models of wave propagation in multi-layered elas-
tic solids have had a significant contribution to research areas
such as acoustics, geophysics and electromagnetics. A few ex-
amples include: structural health monitoring [1], characterisation
of interface bonding [2], detection of debonding in joints [3],
measuring material properties [4], designing composite layered
structures [5], mode sorting of guided waves [6], the physical
interpretation of guided wave structures [7], the investigation
of anisotropy on amplitude-versus-offset synthetic modelling [8],
investigating the position and width of band gaps [9], modelling
the directional response of Fabry-Pérot ultrasound sensors [10],
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reflection and transmission of plane waves [11], elastography of
layered soft tissues [12], and ice detection on wind turbines [13].

Matrix methods, in particular the partial-wave and global
matrix method, represent the stress and displacement fields as
a sum of partial-waves for each material of the layered-structure.
Each partial-wave represents an upward or downward travelling
(quasi-)compressional or (quasi-)shear wave. The field proper-
ties (stresses and displacements) of every layer in the medium
are represented by a field matrix multiplied by the relevant
partial-wave amplitudes. By invoking boundary conditions at the
interfaces of adjacent layers, the partial-wave amplitudes and
field properties of the first layer can be related to the last in the
form of a ‘global’ matrix. The resulting matrix equation can be
used in two different ways. Firstly, the roots of the equation can
be found which give the modal solutions or dispersion curves.
Secondly, a subset of partial-wave amplitudes can be defined
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Fig. 1. Diagram for an n-layered elastic medium. In the 2D plane there are
four partial-waves with amplitude Bj, these represent (quasi-)compressional
(solid arrows) and (quasi-)shear (dashed arrows) waves travelling upwards and
downwards in each layer.
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and the remaining amplitudes solved for. This can be used to
calculate the displacement and stress fields within the multi-
layered structure when a plane wave is incident. This method will
be discussed further in Section 2.

Despite its usefulness, there are few available implementa-
tions of the partial-wave method. The current state-of-the-art
implementation is Disperse [14]. This software has been in de-
velopment since 1990 and is primarily focused on calculating
the dispersion solutions for multi-layered structures. The Dis-
perse software was originally based on the partial-wave method,
however, is currently being updated to use the spectral collo-
cation method [14-18]. The main limitation with Disperse is
that it is closed-source. For this reason it is not easily adapt-
able for applications that are not dispersion analysis, for exam-
ple, extracting reflection coefficients or slowness profiles. Other
open source code modelling the partial-wave method include
LAMB [19] (however this is limited to modelling only an isotropic
plate) and ANIVEC [20] (however this code is not easily available).

In this paper, a new open-source toolbox called Elastic—
Matrix is introduced which uses the partial-wave method for
multi-layered structures with an arbitrary number of isotropic
and transverse-isotropic materials. Where possible, it is vali-
dated against existing literature and has been implemented so
that it is both easy to use and extend. Some potential uses of
this software are: (1) plotting the slowness profiles of materi-
als, (2) determining the reflection and transmission coefficients
of multi-layered structures, (3) finding the dispersion curves of
multi-layered structures, (4) plotting the displacement and stress
fields, (5) extending the toolbox for other applications, for exam-
ple modelling the directional response of Fabry-Perot ultrasound
sensors [10,21].

A brief overview of the underlying mathematical model is
described in Section 2. A selection of code snippets and examples
are shown in Section 3. (More extensive examples are available
with the toolbox documentation.) The impact and conclusions are
described in Section 4.

2. Model description
2.1. Overview

ElasticMatrix uses the partial-wave method to model wave
propagation in multi-layered elastic media. The method describes
elastic plane-wave propagation along a plane of symmetry for n-
layers of rigidly bonded transverse-isotropic materials. An exam-
ple of an isotropic material is glass, where the material properties

are the same when measured from every direction. An example
of a transverse-isotropic material is a bundle of fibres, where the
properties have translational symmetry axially along the fibre,
and are isotropic in the plane perpendicular to this. ElasticMa-
trix can model layered transverse-isotropic materials if they are
aligned such that they have rotational symmetry about the axis
perpendicular to the plane of each layer, or if the wave-vector of
the propagating wave lies in the plane of symmetry. For example,
if the user were to consider a material with fibres aligned in the
same direction, there are three acceptable orientations for the
model. These are when the fibre axial dimension is parallel to one
of the three axes of the model, x1, X, X3. Taking a cross section,
for example the (x1, x3) plane, one would see either circular or
rectangular cross sections of the fibres. In these cases, if the
incident wave-vector lay in the (xq, x3) plane, the displacement
in x; and x3 could be uncoupled from the displacement in x,.
In this case, the multi-layered structure can be modelled in
two-dimensions. This is illustrated in Fig. 1.

Each partial-wave represents the superposition of waves that
have been multiply reflected or transmitted at the interfaces
between each layer in a steady-state. The polarisation vector and
wave-vector of each of these partial-waves can be found from
the Christoffel equation which is described in Section 2.2. The
degree of reflection and transmission depends on the boundary
conditions at the interfaces and material properties of each layer.
The coupled equations that arise from the boundary conditions
can be combined into a ‘global-matrix’ which allows them to be
solved simultaneously, this is discussed in Section 2.3. This global
matrix approach can be used to tackle various problems in elastic
wave propagation. For example, the singularities of the global
matrix give the dispersion curves, and by specifying an incident
wave, the resulting wave-field throughout the structure can be
calculated. More detailed descriptions of the partial-wave and
global-matrix method can be found in [4,5,22-27].

2.2. Wave-vectors and polarisation

Firstly, the solution for a plane wave propagating in an un-
bounded medium is derived. This is needed to calculate the
polarisation and wave-vectors for each partial-wave component
and the process is repeated independently for every layer. The
wave-equation for an anisotropic unbounded medium is

%u ]C a9 [ oy N duy 1)
Porr = 2 Mox \on  ox )

where the indices i,j,k,I € {1,2,3}, x and t are the spatial
and temporal variables and Einstein summation notation is used.
The variable u; is the displacement in direction i. The elastic
properties of each material are described by the density p and
the stiffness-tensor Cjj;. The stiffness tensor has 81 components
which can be reduced to 21 independent coefficients to describe
a fully-anisotropic medium [5]. Here, the analysis is restricted to
materials that are either isotropic or transverse-isotropic, which
reduces the number of independent coefficients further. As de-
scribed previously, the wave-vectors of the partial-waves lie in a
plane of material symmetry, (x{, Xx3). Here du;/d0x, = 0 and the
expanded form of the wave-equation Eq. (1) is

’ur _ . azu1+c U et o) %13
o — o T TP T g
BZUQ azuz 82u2
Lt Cap—2 4 Cpy——=
T o
92u; 9%us 92u; 32U,
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912 P 2 + CG3— 8x§ + (Ci3 + Gss) 9%, 0%3 (2)
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where Voigt notation has been used to contract the indices of
the stiffness-matrix (where 11 — 1,22 — 2,33 — 3,23 —
4,13 — 5,12 — 6). A single-frequency plane wave can be
written in the form

u; = A; exp(i(¢xq + faxs — wt)), (3)

where i € {1, 2, 3}, w is the circular frequency, « is the ratio of
the vertical and horizontal (¢) wavenumbers, and A; is the polar-
isation unit vector which describes the direction of displacement
relative to the direction of wave propagation. Substituting Eq. (3)
into Eq. (2) gives the Christoffel equation

Tj(a)A; =0, (4)
where the components of the Christoffel matrix (I") are

Iy = (Ci1 — pv? + Cssa?) Iy = (Cos — pv* + Caact?)

Iy3 = (Gss — pv* + C30?) I3 = I31 = (Ci3 + Css)o
F12=F21=F32=F23=O.

The phase velocity v along the x; axis is calculated from the
relation v = w/¢. Solving Eq. (4) admits three solutions for o?
and therefore 6 solutions for . From here, the notation «g, where
qe{1,2,...,6}, will be used to indicate each solution.

It can be seen from Eq. (4) that the plane wave component A,
is only dependent on I3,, hence displacement occurring in the
(X1, x3) plane is independent of displacement in x,. Four solutions
(q=1,2,3,4)of ag Eq. (4) can be found when

I'ny I3
Iz I3

These describe upwards and downward travelling quasi-shear-
vertical (qSV) and quasi-longitudinal (qL) waves with the dis-
placement restricted to the (x1, x3) plane. The remaining two
solutions (q = 5, 6) are found from I3, = 0, and correspond to
upward- and downward-travelling quasi-shear-horizontal (qSH)
waves. The notation Ay will be used to indicate polarisation
vector for each solution g. The components of Aj; can be found
by calculating the eigenvectors of I'. The displacement field can
now be written as
4

U = ZAiqu exp(i({‘)ﬁ + {aqx3 - wt))7 (6)
q=1

det = 0. (5)

where i € {1, 3} and By is the amplitude of each partial-wave.
Additionally, the stress field within the unbounded medium can
be found using Hooke’s law

811]( Bul
e —, 7
Oij ijkl < ax, + an> (7)
where i,j,k,1 € {1,2,3}. For a multi-layered medium, the

Christoffel equation Eq. (4) is solved independently for every
layer to calculate the polarisation vector and wave-vector of each
partial-wave. However, the amplitude B; of each partial-wave is
solved by invoking the boundary conditions at the interfaces of
adjacent layers. This is discussed in the following section.

2.3. Boundary conditions and partial-wave amplitudes

As mentioned previously, the wave-vector of the plane waves
are constrained to a plane of symmetry of the transverse-isotropic
material, reducing the analysis to two dimensions, (X1, x3). From
Eq. (6) and Eq. (7), the normal and transverse displacement and
stress describing (quasi-)longitudinal and (quasi-)shear-vertical
waves for a single layer is written in the form

uq A A Az Au
u3 _ | A1 An Az Ay
033 D11 D12 D13 Dy

o13 Da1 Dy Da3 Doy

el By

where

D1q = (Ci3A1q + CazargAsg (i)
eq = exp(i(¢x1 + {agxs — wt)).

Dyq = Css(atgAiq + Asg)ic),

Only the first four solutions of o are needed as the motion in
(x1, x3) is decoupled from (x;). The left hand vector of Eq. (8)
contains the components of the displacement and stress, and
the right hand vector contains the amplitude of the partial-wave
components. The product of the matrices in Eq. (8) will be written
as a field matrix F. At an interface x3 = d between material
layers in welded contact, the normal and transverse stress and
displacement must be continuous across the interface. Therefore,
the product of the field matrix and partial-wave amplitudes at
the interface of one layer is set equal to the field matrix and
wave amplitudes of the adjacent layer. This process is repeated
for every interface of the layered medium. For n-layers, there are
4(n — 1) boundary conditions and 4n wave amplitudes which can
be arranged into a global matrix. This assumes the first and last
layers are semi-infinite in thickness and every layer is elastic. For
example, for a medium consisting of 4 layers, the global matrix
equation is written

F! —F! B,
! F22 F2 B 2o 9
2 i3 B; = Y. ( )
FE -B
3 4 B,

Here, FY is the 4 x 4 field matrix and B, a 4 x 1 vector of
partial-wave amplitudes of layer n at interface N. By assigning
values to four of the partial-wave amplitudes, Eq. (9), can be
rearranged and solved for the remaining partial-wave ampli-
tudes. For example, if a compressional wave in the first medium
is incident on the layered-structure, the downward-travelling
partial-wave amplitude relating to shear (B;, Fig. 1) in the first
layer and upward-travelling partial-wave amplitudes relating to
compressional (B}) and shear (B}) waves in the last (nth) layer
are set to zero. Finally, the downward-travelling partial-wave
amplitude relating to a compressional wave in the first layer is
set Bl = 1. In this case, the solved amplitudes describe the
solution for an incident single-frequency plane-wave at an angle
6 or wavenumber ¢ and frequency f. Separating the known wave
amplitudes from the unknown wave amplitudes, Eq. (9) can be
written as

F1+ _Fl B*l+
1 22 2 B2
F F3
B3
F —F B
4
—F}_ B,
= . (10)
3+
F, BI

Here, 4+ and — superscripts indicate the upwards and downwards
travelling partial-wave amplitudes and their respective columns
in the field matrices. The global matrix for systems with other
numbers of layers follows analogously. For example, F}* is the
third and fourth columns of F}, and B is the third and fourth
elements of By. In the example described above, the first element
of By is 1 and all the elements of B; and the second element
of By are 0. Once the unknown wave amplitudes for each layer
are found, Eq. (8) can be used to find the displacement and stress
anywhere in the layered structure. Alternatively, the dispersion
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curves can be extracted from the model by setting the incident
wave amplitudes of the layered structure to zero and finding the
frequency-wavenumber pairs in which the resulting left-hand-
side matrix of Eq. (10) becomes singular. The algorithm used is
described further in Section 2.5

2.4. Shear-horizontal waves

For the chosen coordinate system and material symmetry,
shear-horizontal waves propagate independently of (quasi-)
shear-vertical and (quasi-)compressional waves. Solutions 5 and
6 of oy correspond to shear-horizontal waves and the displace-
ment and shear stress can be written in the form

up | _ | As A es Bs (11)
023 D3s  Dsg es Bs |’
where

D3q = Caq0tqArg(i).

By setting the properties of a new medium C’ so that Cj,, C),,
(}3 = Cy4 and setting the remaining coefficients to zero, Eq. (8)
reduces to Eq. (11). Hence, the propagation of shear-horizontal
waves can be modelled with Eq. (8) by reassigning the relevant
components of the stiffness matrix.

2.5. Implementation details

To construct the global matrix, given in Eq. (9), a field matrix
F; must be calculated for each layer. To improve the conditioning
of the matrices, rows relating to stress are scaled by iz x 10°. The
stress equations have a common factor of i¢ and most material
stiffness coefficients are on the order of gigapascals. The global
matrix is constructed by looping over each interface, calculating
the 4 x 4 field matrices above and below each interface and
arranging them into a single matrix. This leads to a rectangular
matrix which has 4n columns and 4(n — 1) rows. Additionally
there are 4n partial-wave amplitudes. Four partial-wave ampli-
tudes are defined and the global-matrix in Eq. (9) is rearranged
to be square as shown in Eq. (10). The resulting equation is solved
using the mldivide function in MATLAB. This function solves
a system of linear equations using the fastest algorithm based
on the matrix structure. However, the global-matrix becomes
singular at values of ¢ and w on or close-to dispersion curve
solutions.

The computation of dispersion curves follows the algorithm
described in [4]. Firstly, the wavenumber parameter is fixed and
the determinant of the global-matrix is found over a range of
frequencies. Close to dispersion solutions the determinant of the
global-matrix tends to zero. Using these as starting points and
taking a limit either side, the exact frequency and wavenumber
of the dispersive solution is found using a bisection algorithm.
ElasticMatrix makes use of MATLAB's fminbnd () function for
this. These solutions are the starting points for each dispersion
curve. To find the second point on each dispersion curve, the fixed
value of wavenumber is increased and the search is performed
again. The algorithm then uses linear interpolation to estimate
the location of the third, fourth and fifth points on the dispersion
curve, similarly using a bisection algorithm to find the exact
frequency-wavenumber pairs. After five points have been found,
a cubic-spline interpolation scheme is used to more accurately
predict points on the dispersion curve. The algorithm imple-
mented in ElasticMatrix only searches in the real domain of ¢
which is a good-estimate for simple plate structures in a vacuum,
however, it may be inaccurate for leaky solutions, for example a
plate embedded in soil.

Slowness profiles are calculated by defining a range of phase-
speeds and calculating the horizontal and vertical component
of wavenumber by solving the Christoffel equation Eq. (5). The
values from the calculation may be complex, however, only the
real values are plotted.

3. Software description and examples
3.1. Overview

The ElasticMatrix toolbox implements the partial-wave
method using an object-oriented framework in MATLAB. This
allows the toolbox to be used with either a simple scripting or
command line interface, and makes it easy to use and expand.
The software is divided into three classes. The first class, Medium,
defines the multi-layered geometry and material properties of
each layer. The second class ElasticMatrix is initialised by
a Medium object. This class contains the partial-wave method
implementation and methods for extracting additional details
such as dispersion curves and reflection coefficients. By default,
all the calculations use double (64-bit) precision. The final class,
FabryPerotSensor, is an example of how numerical models
can be built from the ElasticMatrix and Medium objects. This
class inherits ElasticMatrix and can be used to model the
directional response of a Fabry-Pérot ultrasound sensor. More
details can be found in [10,21]. Each class in the toolbox inherits
the MATLAB handle class. Consequently, the object does not need
to be reassigned when a method is called. The classes and their
respective attributes and methods can be seen in Fig. 2. The
toolbox is self contained and has been tested with MATLAB 2016a
and above.

This section presents a small selection of code snippets and
examples. More detailed examples can be found in the Elas-
ticMatrix ./examples folder and html documentation can
be accessed via the MATLAB help by clicking ElasticMatrix
toolbox. There are three steps to using the toolbox. Firstly, the
geometry of the layered medium must be defined. Secondly, the
input parameters to the model should be defined, which are gen-
erally a range of angles, frequencies or wavenumbers. Finally, the
model can be solved and details such as the reflection coefficients
and dispersion curves can be extracted. Note, for clarity in the
code implementation, the x; and x3 coordinates are referred to
as x and z, respectively.

3.2. Medium

The Medium class is used to define the material properties and
thickness of each layer. The class is initialised by calling the class
constructor with input arguments of the material name followed
by its thickness. However, the thickness of the first and last layers
are semi-infinite and their values should be set with the Inf
keyword. Even if the keyword is not used, the first and last layers
are considered semi-infinite in any subsequent calculations. An
example is given below.

my_medium = Medium(. ..
‘water’, Inf, ‘blank’, 3e-3, ‘PVDF’,
le-3, ‘glass’, Inf);

Here, my_medium is an object array and every index in the
object array corresponds to a different layer in the medium. In
the current example, my_medium(3) will return a object with
the material properties and thickness associated with PVDF. The
‘blank’ keyword can be used for a material which is not prede-
fined. The material properties and names can be set using their
respective set functions. Additionally, a free-surface boundary
condition can be simulated using the ‘vacuum’ keyword. User
defined materials can be added to the script materiallist.m.
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Medium

ElasticMatrix

- name : string

- thickness : double

- density : double

- stiffness_matrix : double

- slowness : struct

+ Medium(material, thickness,...)
+ setName(index, material)

+ setThickness(index, thickness)
+ setDensity(index, density)

+ setStiffnessMatrix(index, matrix)

+ state() : string

+ plus(medium_1, medium_2) : Medium

+ times(value, medium) : Medium

+ mtimes(value, medium) : Medium

+ calculateSlowness()

+ plotSlowness() : figure_handle

+ availableMaterials()

+ getAcousticProperties(material) : Medium
+ lameConversion(lambda, mu) : double

+ soundSpeedDensityConversion(cl, cs. rho) : double

FabryPerotSensor

- mirror_locations : double
- spot_size : double
- spot_type : double

+ filename : string

+ frequency : double

+ angle : double

+ wavenumber : double

+ phasespeed : double

- medium : Medium

- partial_wave_amplitudes : double
- x_displacement : struct

- z_displacement : struct

- sigma_zz : struct

- sigma_xz : struct

- dispersion_curves : struct

+ setMirrorLocations(interface_vector)
+ setSpotSize(diameter)

+ setSpotType(type)

+ calculateDirectivity() : directivity

+ plotDirectivity() : figure_handle

+ ElasticMatrix(medium_class)

+ setFilename(filename)

+ setFrequency(frequency_range)

+ setAngle(angle_range)

+ setWavenumber(fwavenumber_range)

+ setPhasespeed( phasespeed_range)

+ setMedium( medium_class)

+ calculate()

+ getPartialWaveAmplitudes(index) : struct
+ calculateDispersionCurves()

+ calculateDispersionCurvesCoarse()

+ calculateField(frequency, angle, varargin) : struct_field
+ plotField(struct_field)

+ plotDispersionCurves() : figure_handle

+ plotinterfaceParameters() : figure_handle
+ plotRTCoefficients() : figure_handle

+ save(filename)

Fig. 2. UML class diagram for Medium, ElasticMatrix and FabryPerotSensor. The top field for each box indicates the name of the class, the second field lists
the properties, and the third field lists the methods. Here, ElasticMatrix is composed from Medium and FabryPerotSensor inherits ElasticMatrix. The (—)
indicates a private method or property and (+) indicates a public method or property. Underlined methods are static. The variable type is indicated after the colon

(:). Terms inside brackets are inputs to methods.
3.3. Slowness profiles

Slowness profiles are a plot of the inverse of the phase velocity
of each bulk wave component. They can be used to determine
the angles of reflection and transmission between multi-layered
media as well as the direction of energy propagation and skew
angle [25]. Slowness profiles are found by solving the Christoffel
equation, Eq. (4), and only depend on the material properties of
each material. The method .calculateSlowness is part of the
Medium class, and calls the function

calculateAlphaCoefficients(...)

which is an implementation of Eqgs.(4) and (5). This takes input
arguments of the material properties and phase-velocity and
returns the polarisation and wave-vectors. The slowness profiles
given by this function are plotted in terms of ky/w vs k;/w.
For an isotropic material, the slowness profiles for each bulk
wave are spherical, however, this is not true for an anisotropic
material. An example of the slowness profiles for isotropic-glass
and transverse-isotropic beryl is shown in Fig. 3. This figure has
been reproduced from [28]. The slowness profiles of the (quasi-
Jlongitudinal, (quasi-)shear-vertical and (quasi-)shear-horizontal
bulk waves are shown. As glass is an isotropic material, the
slowness profiles are spherical and the magnitudes of L, SV and
SH when ky/w = 0 or k,/w = 0 are equal to the reciprocal of
the compressional- and shear-speeds of glass. For the transverse-
isotropic case, when ky/w = 0, the value of gL is equal to \/p/Cs3
and qSV is equal to /p/Css. When k,/w = 0, the value of gL
is equal to +/p/Cy; and the value of gSV is equal to /p/Css.
These have been checked in the toolbox example script and all
are within numerical precision.

my_medium = Medium(‘glass’, Inf, ‘beryl’, Inf);
my_medium.calculateSlowness;
my_medium.plotSlowness;

3.4. Elasticmatriz

The medium class is used to initialise the ElasticMatrix
class which runs the partial-wave method over a range of fre-
quencies, wavenumbers, phasespeeds and angles. Two of these
must be defined using the .set functions. The .calculate
method is then used to run the partial-wave procedure. The
.calculate method constructs, rearranges and solves the
global-matrix, Eq. (10), using the function

calculateMatrixMethod(...)

This function takes input arguments of the material proper-
ties and the parameters to calculate over (angles, frequencies,
wavenumbers). It returns the determinant of the system matrix
and the stresses and displacements at the layer interfaces. Each
individual field-matrix is calculated using the function

calculateFieldMatrixAnisotropic(...)

which is an implementation of Eq. (8). This takes input argu-
ments of the material properties, the wave-vector components,
polarisation components and the phase velocity and returns the
field-matrix. The default calculation is to find the partial-wave
amplitudes, interface stresses and displacements when there is a
single-frequency compressional wave incident on the structure
from the first layer. An example is given below for a titanium
plate.

my_medium = Medium(. ..

‘water’, Inf, ‘titanium’, 1e-3, ‘water’, Inf);
my_model = ElasticMatrix (my_medium) ;
my_model.setFrequency(linspace(le6, 5e6, 100));
my_model.setAngle(linspace(0, 45, 100));
my_model.calculate;
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Fig. 3. The slowness curves for isotropic-glass and transverse-isotropic beryl materials where (q)L, (q)SV, (q)SH correspond to the reciprocal of the (quasi-)longitudinal,
(quasi-)shear-vertical and (quasi-)shear-horizontal partial-wave speeds. Note, the SV and SH curves overlap for glass.

3.5. Reflection and transmission coefficients

For a plane wave incident at an oblique angle on a multi-
layered structure, the reflection and transmission coefficients
determine the amplitude of the wave that is reflected and trans-
mitted at each interface. Knowing these coefficients is useful for
a number of applications. For example, selecting the appropriate
launch angle when coupling energy into particular modes in a
wave-guide, or determining the thickness and material properties
of matching layers for ultrasonic transducers [25,29].

The angles of refraction at the interfaces between multi-
layered media can be found by studying the slowness profiles.
However, slowness profiles do not take into account the boundary
conditions at the interfaces. Consequently, the magnitude of each
of the refracted waves cannot be calculated directly. For a plane
wave incident on a multi-layered structure, the magnitude of the
reflection and transmission coefficients are found by normalis-
ing the partial-wave amplitudes B} by the incident plane wave
amplitude B}. This is automatically calculated when using the
.calculate method.

An example of the reflection and transmission coefficients
at a PVDF-aluminium interface is given below and shown in
Fig. 4. For a plane compressional wave incident on a PVDF-
aluminium interface, there are four resulting refracted waves.
These are a reflected R and transmitted T compressional L and
shear S wave. The reflection and transmission coefficients have
been compared to the analytic solutions for a two-layered elastic-
medium from [25] and have an average error less than 1le~ !
which is within numerical precision for a 64 bit floating point
number. For clarity, the analytical solutions have not been plotted
but can be seen in the toolbox examples folder.

my_medium = Medium(‘PVDF’, Inf, ‘aluminium’, Inf);
my_model = ElasticMatrix(my_medium) ;
my_model.setFrequency(1e6) ;
my_model.setAngle(linspace(0, 90, 90));
my_model.calculate;

my_model.plotRTCoefficients;

3.6. Dispersion curves

Dispersion curves describe the modal solutions of the mul-
tilayer structure. Knowledge of the dispersion curves is useful
for determining the most appropriate modes to excite and for
optimising the inspection process.

As mentioned in Section 2.5, the modal solutions are found
when the global matrix becomes singular. The ElasticMatrix
software can calculate dispersion curves for simple layered struc-
tures (i.e., a plate in a vacuum or water). However, it is not
robust for very-leaky cases, for example a plate embedded in

— R -- R
18 T T T T T T T T

.

-~

"
.

16

Angle []

Fig. 4. Longitudinal L and shear S reflection R and transmission T coefficients
for a PVDF-Aluminium interface.

soil. For these types of cases either Disperse, or other techniques
based on the spectral-collocation method or semi-analytic finite
element method are more appropriate [14-18,30]. An example
of the dispersion curves for a 1 mm titanium plate in a vacuum is
shown in Fig. 5(a). The dispersion curves are plotted on a graph
of frequency vs wavenumber and show the first three symmetric
S and anti-symmetric A Lamb modes. The results from Disperse
are also plotted and have excellent agreement.

my_medium = Medium(. ..

‘vacuum’, Inf, ‘titanium’, 0.001, ‘vacuum’, Inf);
my_model = ElasticMatrix(my_medium) ;
my_model.setFrequency(linspace(0.5e6, 5e6, 100)) ;
my_model.calculateDispersionCurves;
my_model.plotDispersionCurves;

3.7. Displacement and stress fields

More information about the wave-physics and guided wave
structures can be taken from dispersion curves by plotting the
displacement and stress fields at different points. In the
ElasticMatrix software implementation, the x and z ranges
over which to plot the displacement or stress fields must be spec-
ified. The .calculateField(...) method returns a structure
with the input ranges and field values at each point of the result-
ing grid. The values of the structure can be plotted independently
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Fig. 5. (a) Dispersion curves for a titanium plate in a vacuum. The solid lines are from ElasticMatrix and the points are generated using Disperse [14]. The first
three symmetric (S, black) and anti-symmetric (A, blue) have been plotted. (b) Displacement field for an anti-symmetric and symmetric mode shape.

or given as an argument to the .plotField method. An example
is given below for the displacement field within an titanium plate
for a symmetric and anti-symmetric mode. The resulting plot can
be seen in Fig. 5(b).

field_values = my_model.calculateField(...
freq, angle, {x_range, z_rangel});
my_model.plotField(field_values, plot_style);

3.8. FabryPerotSensor

One application of the toolbox is to model the directional re-
sponse of Fabry-Pérot ultrasound sensors [10]. The
FabryPerotSensor is a child class of ElasticMatrix and is an
example of how the ElasticMatrix toolbox may be expanded.
The are additional inputs to this class which are described in more
detail in the ./examples folder, and a description of the mod-
elling process can be found in [10,21]. The modelled directional
response was found to have good agreement with the measured
directional response. An example of the modelled and measured
directional response for a glass etalon Fabry-Pérot sensor can be
seen in Fig. 6. Features of the directional response correspond to
symmetric and anti-symmetric Lamb modes propagating within
the sensor.

my_medium = Medium(‘water’, Inf, ‘AlMir’, le-8,

‘glass’, 175e-6, ...

‘AlMir’, 1e-8, ‘air’, Inf);
fp_sensor = FabryPerotSensor (my_medium) ;
fp_sensor.setAngle(linspace(0, 45, 45));
fp_sensor.setFrequency

(linspace(0.1e6, 100e6, 100));
fp_sensor.setMirrorLocations([1, 4]1);
fp_sensor.calculateDirectivity;
fp_sensor.plotDirectivity;
fp_sensor.calculateDispersionCurves;

3.9. Run-time

ElasticMatrix runs the partial-wave method for every pa-
rameter pair specified. The compute time increases linearly with
the number of layers for the same number of parameter pairs.
Fig. 7 plots the calculation time versus number of layers for 50?
frequency-angle pairs. For example. the calculation took approx-
imately 12 s for a model consisting of forty layers when running
on a standard desktop computer (4-core Intel Xeon E3-1240
running at 3.50 GHz with 32 GB of DDR3 2133 MHz memory).

50

w &
o o

Frequency [MHz]
N
o

10

-20

0
Angle [°]

20 40

Fig. 6. The modelled directional response (—40° to 0°) and measured directional
response (0° to 40°) from [10]. The dispersion curves associated with this sensor
are plotted as black lines.

4. Impact and conclusions

This paper introduces a new open-source toolbox called
ElasticMatrix which models elastic wave propagation in
multi-layered media with anisotropic materials with isotropic or
transverse-isotropic symmetry. The toolbox uses the partial-wave
method which allows the calculation of slowness profiles, reflec-
tion and transmission coefficients, dispersion curves and stress
and displacement fields. The software has been implemented
using the object-oriented capabilities of MATLAB allowing for a
simple command line or scripting interface. The implementation
allows researchers to add functionality, test new algorithms and
integrate the software into other projects. For example, this tool-
box has already been used to model the directional response of
Fabry-Pérot ultrasound sensors [10]. It is anticipated the research
user-base will actively contribute to ElasticMatrix and add to
the functionality.
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Fig. 7. The run-time for the partial-wave method versus the number of layers
for 50 frequency-angle parameter pairs.
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