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Abstract
Ultrasound tomography (UST) has seen a revival of interest in the past decade,
especially for breast imaging, due to improvements in both ultrasound and com-
puting hardware. In particular, three-dimensional UST, a fully tomographic
method in which the medium to be imaged is surrounded by ultrasound trans-
ducers, has become feasible. This has led to renewed attention on UST image
reconstruction algorithms. In this paper, a comprehensive derivation and study
of a robust framework for large-scale bent-ray UST in 3D for a hemispher-
ical detector array is presented. Two ray-tracing approaches are derived and
compared. More significantly, the problem of linking the rays between emit-
ters and receivers, which is challenging in 3D due to the high number of
degrees of freedom for the trajectory of rays, is analysed both as a minimi-
sation and as a root-finding problem. The ray-linking problem is parameterised
for a convex detection surface and two robust, accurate, and efficient derivative-
free ray-linking algorithms are formulated and demonstrated and compared
with a Jacobian-based benchmark approach. To stabilise these methods, novel
adaptive-smoothing approaches are proposed that control the conditioning of
the update matrices to ensure accurate linking. The nonlinear UST problem of
estimating the sound speed was recast as a series of linearised subproblems,
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each solved using the above algorithms and within a steepest descent scheme.
The whole imaging algorithm was demonstrated to be robust and accurate on
realistic data simulated using a full-wave acoustic model and an anatomical
breast phantom, and incorporating the errors due to time-of-flight (TOF) pick-
ing that would be present with measured data. This method can used to provide
a low-artefact, quantitatively accurate, 3D sound speed maps. In addition to
being useful in their own right, such 3D sound speed maps can be used to ini-
tialise full-wave inversion methods, or as an input to photoacoustic tomography
reconstructions.

Keywords: ultrasound tomography, ray tracing, ray linking, breast imaging,
time-of-flight, refraction

(Some figures may appear in colour only in the online journal)

1. Introduction

Ultrasound tomography (UST) has received growing interest in the past decade, especially
for breast imaging [18, 23, 32, 51, 67, 68]. Despite first being proposed nearly 50 years ago
[19], it was not until recently that improvements in both ultrasound (US) and computing hard-
ware have begun to be exploited to bring UST to the point where it can potentially compete
with, and complement, the more established medical imaging modalities. UST is a fully tomo-
graphic method in which the medium to be imaged is surrounded by transducers (emitters and
receivers) and US is sequentially transmitted from the transmitters (or from small groups) into
the imaging target. The US propagates through the tissue, is scattered, refracted and attenuated,
and finally detected by the array of detectors. The inverse problem is to recover images of the
acoustic properties of the target. These typically include images of sound speed or acoustic
attenuation, which can be quantitative, and reflection images (which are usually qualitative
but related somewhat to the gradient of the acoustic impedance). The hope is that this quan-
titative information about the tissue properties can be used to aid diagnosis [58]. (It should
be noted that UST is very different from conventional ultrasound imaging as widely-used in
clinical settings, which is a backward-mode imaging modality that uses a small-area probe to
give qualitative reflection images in real time.) In addition, photoacoustic tomography, which
has similarly been receiving a great deal of attention in the past decade for 3D breast imaging
[38, 49], depends on quantitatively accurate knowledge of the sound speed distribution. Even
a low resolution (smoothed) sound speed map, if quantitatively accurate, could significantly
improve 3D photoacoustic tomography reconstructions in heterogeneous media such as breast,
where the image extends to deeper than superficial regions.

The majority of UST approaches have been limited to 2D cases, and thus out-of-planeeffects
are neglected, leading to image artefacts. This study concentrates on 3D volumetric recon-
struction of the sound speed distribution from measurements made on a hemispherical surface
around the imaging target.

The UST inverse problem can be tackled using full-waveform inversion approaches, such
as are used in seismic applications, which are based on a minimisation of the L2-norm of the
discrepancy between the measured acoustic pressure and that from a numerical model [6, 39,
43, 44, 70]. To do this, the acoustic pressure is modelled using the wave equation for heteroge-
neous media, and the unknown acoustic property (here the sound speed) is iteratively updated
using a computation of gradient of the L2-norm of the discrepancy [54]. This class of methods
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can provide high spatial resolution images, are flexible, in the sense that different forward mod-
els can be used, and make use of all the information in the measured data. (See, for example,
[43, 44, 70] for time-domain methods and [67, 68] for frequency-domain approaches.) How-
ever, one problem with these approaches is that they are very computationally expensive, and
tackling 3D imaging scenarios remains challenging [43, 44, 70]. They are also vulnerable to
uncertainties in the forward modelling, e.g., in the transducer properties [25], and the solution
tends to converge to the nearest local minimum instead of the global minimum of the problem.
As a result, minimisation-based full-wave approaches typically require a good initial guess.
There is therefore still a great deal of interest in other approaches to UST, especially methods
that are less intensive computationally.

Ray-based methods, which use a high-frequency approximation to reduce the wave prop-
agation problem to a ray-propagation problem, are still popular. Indeed, ray-based methods
are commonly used to provide the initial guess for full-wave inversions [39, 44, 67, 68, 70].
This approach, initially inspired by x-ray tomography, uses measurements of the time-of-flight
(TOF) of the acoustic signals across the imaging target to reconstruct the slowness distribution
(the reciprocal of the sound speed) using radon-type inversion techniques [3]. Typically, two
sets of data are recorded, one from a known homogeneous reference medium such as water
and another from the target. The inverse problem then becomes reconstructing the difference
in the slowness distributions between the target and water from the differences in the TOFs
measured between every pair of emitter and receiver [15]. To solve this inverse problem, a
method of relating the TOFs to the slowness is required. This is usually achieved by comput-
ing the TOFs as the integrals of the slowness along the rays that link the pairs of emitters and
receivers. The inverse problem now becomes a minimisation of the norm of the discrepancy
between the measured and modelled TOFs via an iterative adjustment of the slowness distri-
bution. This is often done using a successive enforcement of a radon-type forward operator
and its adjoint using the trajectories of the rays [32]. This raises the question of how the ray
trajectories are computed.

Early approaches to UST used an assumption that the acoustic waves propagate along
straight lines [15], thus neglecting diffraction, refraction and scattering [14]. Refraction (bend-
ing) of the rays can be incorporated by basing the calculation of each ray trajectory on Fermat’s
principle, which states that the energy tends to propagate along the path with minimal acoustic
length [4, 14, 16, 50]. However, because rays inherently assume a high-frequency approxi-
mation, diffraction and scattering effects are still neglected [14]. An approach was recently
published that applies to weak heterogeneities and broadens the concept of a ray to a sensitivity
kernel that includes these phenomena to some extent [42].

One class of ray-tracing approaches is based on tracking the wavefront from an emitter
across the medium to all receivers simultaneously [29]. Among them, the fast marching method
(FMM) [61, 64] has received much attention for UST [2, 37]. However, because this approach
is based on a calculation of the wavefronts through the entire domain, it becomes computa-
tionally intensive for the 3D UST [13], and has predominantly been used for 2D studies [24].
In addition, this approach solves the trajectory of rays on the grid points, and therefore, the
accuracy is limited by the grid spacing. For example, in [2], FMM was used to compute TOFs
for a 2D medium encompassed by a circular detection surface. In [37], out-of-plane refraction
is accounted for by applying the FMM to a slab-like volume including the target slice aligned
with the circular transducer array. An application of FMM to 3D UST was also reported in
[13].

Another class of ray-tracing approaches, two-point ray tracing, treats the emitters and
receivers as ray-emission and ray-reception points and computes only the rays between them
(for all emitter–receiver pairs). The numerical methods for calculating the trajectory of a ray
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that links a pair of emission and reception points can be categorised into bending [27, 46, 48,
52, 66, 69] and shooting [4, 5, 50] approaches. In the bending method, the problem is framed
as a two-point boundary value problem. By fixing both end-points of the ray, its trajectory
is iteratively computed until the perturbation in the path becomes smaller than a tolerance
[27, 46, 48, 52, 65, 66, 69]. In [27, 66], central finite difference approaches were used for solv-
ing a second-order differential equation derived from an Euler Lagrange equation describing
the trajectory of the rays (see section 3.1).

In [52], a method for ray bending based on a reduction of the second-order ray equation
to a set of first-order equations was proposed, and was numerically solved using adaptively-
varying finite difference methods and varying meshes. It was shown that bending methods are
more efficient than shooting methods for a simple distribution of the sound speed, but they
are less efficient, or may fail for more complex media [11]. In the shooting method, the ray’s
path is solved as a sequence of initial value problems, given the starting position and an initial
direction for the ray. With the initial position of the ray fixed at the emission point, the initial
direction of the ray is iteratively controlled until the end point of the ray intercepts the reception
point to within a small tolerance. This is known as the ray-linking problem [4, 56, 57]. Shooting
methods have been widely used for 2D UST imaging [4, 5, 50], but little work has been done
on their extension to 3D.

Both classes of two-point ray-tracing approaches, shooting and bending methods, are non-
linear inverse problems, and are subject to instability or divergence, especially for 3D scenarios
[52, 62]. For example, when the sound speed is non-differentiable or causes shadow zones
[52, 57], the data may no longer depend continuously on the unknown function, leading to ill-
posedness in the Hadamard sense. This is easier to deal with in shooting methods, as testing the
convergence of (and setting a convergence criterion for) a shooting method is straightforward,
because the error functional is a measure of the distance between the end point of the ray and
the reception point.

One further comparison between full-wave and ray-based approaches relates to rotat-
ing measurement systems. The computational load of full-wave inversions, or ray-based
approaches based on wavefront tracking, does not change as the number of receivers increases,
as it only scales with the number of emitters. While this can be an advantage, it is not neces-
sarily so. For example, consider a fixed array with N transducers, which act both as emitters
and receivers. The number of unique emitter–receiver pairs will be N(N − 1)/2. For some
applications, including breast imaging, it may not be possible to fit enough transducers in the
array because of their finite size, and it is necessary to rotate or translate the system to obtain
sufficient data [18]. In this case, the number of effective emitters is Neff = NrotN ′, where Nrot

is the number of rotations, and N ′ < N is the number of transducers. The number of unique
emitter–receiver pairs is given in the rotating case by Neff(N′ − 1)/2, so for the rotating system
to measure as much data as the equivalent fixed system, it is necessary for Neff > N. In other
words, data collected using a rotating array, as opposed to an equivalent fixed array, leads to an
increased computational burden during the reconstruction when using full-wave or wavefront
methods. For two-point ray tracing approaches, however, it will remain the same.

In this paper, a two-point ray-tracing approach for 3D transmission UST of the breast
using a hemispherical detection surface will be described. Key to this is a novel technique
to solve the problem of 3D ray-linking in this geometry. To the best of our knowledge, this
manuscript presents the first refraction-corrected two-point ray-based inversion approach for
full-3D transmission UST of the breast. Although, here, the ray-linking approach is applied to
a hemispherical detection surface, it is parameterised in a general fashion and can be straight-
forwardly used for any arbitrary convex detection surface. In section 2, the inverse problem
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of UST is defined, based on a refraction-corrected ray-based approach for a hemi-spherical
detection surface. In section 3, the ray tracing approach used is introduced, and novel efficient
approaches to solving the associated inverse problem of ray-linking are derived in section 4.
In section 5, all aspects of the method—ray-tracing, ray-linking, and quantitative sound speed
imaging—are numerically validated. Section 6 contains a discussion and the conclusions. In
the appendix A, the approach used for calculation of the TOFs (a slight modification of [33])
is presented.

2. Inverse problem of ultrasound tomography

In this section, the forward operator under consideration and the associated inverse problem,
are introduced.

2.1. Forward operator

Let x =
(
x1, . . . , xd

)
denote a spatial position in R

d with d the dimension. For UST, d can
be either 2 or 3, but here is restricted to d = 3. Ω ⊂ R

3 is an open bounded set given
by the hemispherical volume, centred at the origin, which is bounded by the surface S =
(S1 ∪ S2) ⊂ R

2, where S1 =
{

x3 < 0 ∩ |x| = R
}

is hemispherical surface of radius R, and

S2 =
{

x3 = 0 ∩
√

x12 + x22 � R
}

is a circular plane. Ω contains the spatially-varying part

of the refractive index distribution, n(x) = cw/c(x), where c(x) denotes the spatially varying
sound speed distribution, and cw is a scalar value representing the reference sound speed (here
the sound speed in water), i.e. (n(x) − 1) ∈ C∞

0 (Ω).

Definition 1. A ray is defined using f (n;e,p)(x) = 0, where e ∈ S1 denotes an initial point for
the ray, and p ∈ S represents the interception point of the ray with surface S after traveling
through the medium.

Definition 2. The continuous forward operator is defined as

A : D(Ω) → S1 × S

L(e,p) = A(n;e,p) [n(x)] =
∫
Ω

n(x) δ
(

f (n;e,p)(x)
)

dx,
(1)

where the spaceD is defined such that any function n(x) ∈ D satisfies the condition that (n(x) −
1) ∈ C∞

0 (Ω). Here, δ denotes the Dirac delta function, and L(e,p) is the acoustic length along
a ray that links the point e to the point p, and is given by the path integral of n(x) along the
ray δ

(
f (n;e,p)(x)

)
. (A ray can be parameterised by the distance along it, s, by describing it as

the line of points {xray(s), s ∈ [0, Lray]} that satisfy f (n,e,p)(x) = 0, where Lray is the physical
length—not the acoustic length—of the ray; see figure 1.)

2.2. Discrete forward operator

In practice, the calculations are done on a grid of Nn discrete grid points. n̄ ∈ R
Nn refers to

the discretised refractive index field defined on the grid, ē ∈ S1 and r̄ ∈ S1 indicate the discre-
tised emission and reception points, and Ne and Nr are the number of emitters and receivers,
respectively. Note that the discretised emission and reception points do not necessarily lie on
the grid points but rather correspond to the centres of actual transducer positions, as defined in
the experiment. (In general, an overbar, ·̄ indicates a discretised variable.) The measurements
consist of the times-of-flight T̄ ∈ R

NeNr between every physical emitter and receiver.
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Figure 1. A ray starts at the emission point e ∈ S1 (also written as in xe ∈ R
3) and ends

at the interception point p (or xp). The ray consists of the points xray(s), s ∈ [0, Lray] that
satisfy f (n,e,p) = 0 (see definitions 1 and 2).

Definition 3. A discretised variant of the forward operator can be defined as

A : RNn → R
NeNr

L̄ = A [n̄] ,
(2)

where L̄ = cwT̄ is the discretised acoustic length, and, from equation (1), the dependence of L̄
on n̄ is nonlinear. Also, L̄(̄e,̄r) is used to denote the acoustic length between an emission point ē
and reception point r̄. (Note that a ray in the continuous domain links an arbitrary point e ∈ S1

to an interception point p ∈ S, and a ray in the discretised domain links a discretised emis-
sion point ē ∈ S1 to a discretised reception point r̄ ∈ S1 ⊂ S.) The emitters and receivers are
assumed to be points in space and emit and receive rays in all directions with equal weighting.

Definition 4. A linearisation of A around a fixed refractive index distribution n̄ gives a
Jacobian matrix of the form

J ∈ R
NeNr×Nn

δL̄ = J [n̄] δn̄,
(3)

where δL̄ denotes the change in the acoustic length due to perturbation δn̄ in the refractive
index field. The action of J on δn̄ for each pair of emitters and receivers is equivalent to an
inner product of the corresponding row in J by δn̄, and gives the integral of the refractive index
distribution along a ray that links this pair. Further details are given in section 3.4.

2.3. Inverse problem

The UST inverse problem is to find the refractive index distribution of an object n̄object(x) from
the discrepancies between the measured acoustic lengths across the object and across a refer-
ence medium (water), i.e. to find n̄object(x) from ΔL̄ = cwΔT̄, where ΔT̄ = T̄object − T̄w and
T̄w are the times-of-flight through water with known sound speed c̄w. This can be posed as a
nonlinear minimisation problem of the form

n̄∗ = arg min
n̄

E [n̄] = arg min
n̄

‖A [n̄] − A [n̄w] −ΔL̄‖2
2, (4)

where the ‘object’ subscript has been dropped and from now on is implied. This nonlin-
ear problem can be solved as a sequence of linearised problems. A linearisation of the for-
ward operator A about a fixed n̄q, the qth update for the refractive index field, gives the
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approximations

A [n̄] ≈ A
[
n̄q

]
+ J

[
n̄q

] (
n̄ − n̄q

)
A [n̄w] ≈ A

[
n̄q

]
+ J

[
n̄q

] (
n̄w − n̄q

) (5)

Substituting equation (5) into equation (4) gives the qth linearised minimisation

n̄q+1 = arg min
n̄

Ẽq [n̄] = arg min
n̄

‖J
[
n̄q

]
Δn̄ −ΔL̄‖2

2, (6)

whereΔn̄ = n̄ − n̄w with n̄w = 1 for all grid points. Each linearised subproblem equation (6) is
solved by setting ∇Ẽq [n̄] = 0, where the operator ∇ (·) denotes the gradient. (By convention,
the first iteration is q = 0.) As these are least squares problems, they lead to normal equations,
which here are solved using a steepest descent algorithm with a fixed step length 1, and termi-
nated after a fixed number of iterations. The sequence of linearised subproblems is recursively
repeated until

1 − Ẽ
[
n̄q+1

]
/Ẽ

[
n̄q

]
< εn, (7)

where εn is a user-defined stopping threshold.

Remark 1. Early-stopping of the steepest descent iterations in the solution of the subprob-
lems can act implicitly as a regulariser, but an explicit regularisation term was not included in
the objective function equation (4) so that the reconstructed image depends only on the pro-
posed ray-based reconstruction algorithm and not on the value of a regularisation parameter.
See, for example, [2, 32] for the application of regularisation to the UST inverse problem.

3. Ray tracing

Here, the method used for finding the rays f (n,e,p)(x) = 0 (see definition 1) is described.

3.1. Ray equation

A general form of the acoustic wave equation in free space is

utt(x, t) − c(x)2uxx(x, t) = 0, x ∈ R
3, t > 0, (8)

where u is the acoustic pressure, and t time. When c is constant, a harmonic wave solution of
equation (8) can be written as u(x, t) = U(x) exp(i(k · x− ωt)), where U is the amplitude, ω is
the angular frequency, and k is a wavevector describing the direction of propagation. U and ω
are specified by the initial conditions [59]. For a spatially varying c(x), this can be modified,
under a high frequency approximation, into the form [31]

u(x, t) ≈ U(x)eiω(W(x)/c0−t), (9)

where k · x has been replaced by (ω/c0)W(x), the accumulated phase, and c0 is a reference
sound speed. For the high frequency approximation to hold, the fractional change in sound
speed gradient over the longest wavelength involved in the problem must be small com-
pared to the sound speed [31]. Now, substituting equation (9) into equation (8) gives the two
equations

∇2U − ω2

c2
0

U∇W · ∇W = − ω2

c2(x)
U, 2∇W · ∇U + U∇2W = 0. (10)
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For the left-hand-side equation, neglecting the first term because of the same high frequency
approximation gives [31]

∇W · ∇W = n2(x). (11)

This is known as the eikonal equation. The surfaces on which W(x) is constant are surfaces of
constant phase called wavefronts, and the lines which are always normal to these wavefronts
are rays. The acoustic energy propagates along these rays in the direction defined by the unit
vector dxray/ds, where [4]

dxray

ds
=

∇W(x)
n(x)

. (12)

As d/ds(n dxray/ds) = d/ds(∇W) = ∇(dW/ds) = ∇n, this leads directly to another form of
the eikonal equation which here is called the ray equation:

d
ds

(
n

dxray(s)
ds

)
= ∇n. (13)

In addition, the right-hand-side equation in equation (10) is called transport equation, and can
be used for computation of the amplitude of the field along the ray [57, 59], although it is not
used in this study.

3.2. Fermat’s principle

The ray equation can also be found using Fermat’s principle [22, 53], which states that the
path between two points taken by a ray makes the acoustic length stationary under variations
in a family of nearby paths. As above, let s denote the distance along a ray, and x(s) ∈ R

3 and
(dx/ds)(s) ∈ S2, denote the ray’s position vector and (unit) direction vector, respectively. (The
subscript on xray(s) has been dropped for this section for conciseness.)

Definition 5. The acoustic length of a path x(s) taken by a ray in passing from point p1 to
p2 is defined by

L(p1,p2) =

∫ p2

p1

n (x(s)) ds, (14)

where ds = |dx(s)| is an infinitesimal distance along the ray (see equation (1)).

Definition 6. A family of C2 continuous paths x(s, ε) ∈ R
3, which smoothly depends on ε,

gives a set of smooth transformations of the ray path x(s) in an interval including ε = 0, and
satisfies [22]

x(sp1 , ε) = x(sp1 ), x(sp2 , ε) = x(sp2 ). (15)

An infinitesimal variation of the path x(s) is defined in the form [22]

δx(s) :=
d
dε

∣∣∣∣
ε=0

x(s, ε), (16)

where, from equation (15), δx(sp1 ) = δx(sp2 ) = 0.
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Definition 7. Using definitions 5 and 6, together with the fact that that dx/ds is a unit vector,
the stationary acoustic length under variation in a family of nearby paths satisfies [22]

δL(p1,p2) = δ

[∫ sp2

sp1

n (x(s))

(
dx
ds

· dx
ds

)1/2

ds

]
= 0. (17)

Lemma 1. Using definition 5 and the boundary conditions in equation (15), the stationarity
of the optical length defined in equation (17) yields a path x(s) that satisfies equation (13).

Proof. Consider the integrand in equation (17) as a Lagrangian function in the form
F(x, x′, s) = n(x)(x′ · x′)1/2, where x′ = dx/ds has been used for brevity. Using definition 6,
a perturbation of the first order, δx, is applied to the path x(s) to give

δL(p1,p2) =

∫ sp2

sp1

[
F
(
x+ δx, x′ + δx′

)
− F

(
x, x′

)]
ds

=

∫ sp2

sp1

[
δx · ∂F

∂x
+ δx′ · ∂F

∂x′

]
ds. (18)

Now, applying an integration by parts to the second term in the integrand, together with the
boundary conditions in definition 6, gives

δL(p1,p2) =

∫ sp2

sp1

δx ·
(
∂F
∂x

− d
ds

∂F
∂x′

)
ds. (19)

The proof is straightforwardly completed by substituting F into the above equation and setting
the first order change δL(p1,p2) to zero for all perturbations ε. �

3.3. Numerical ray tracing

In this section, two numerical ray-tracing algorithms are derived.

3.3.1. Dual-update algorithm. Consider a ray starting from an emission point x = x̄e. A Taylor
series expansion of the ray’s position vector x(s) can be written

x(s +Δs) = x(s) +
dx
ds

∣∣∣∣
s

Δs +
1
2

d2x
ds2

∣∣∣∣
s

Δs2 + O(Δs3), (20)

where dx/ds|s and d2x/ds2|s denote the first-order and second-order derivatives of the position
vector at point s, respectively. The second derivative can be found by expanding equation (13)
to get,

d2x
ds2

∣∣∣∣
s

=
1
n

[
∇n −

(
∇n · dx

ds

∣∣∣∣
s

)
dx
ds

∣∣∣∣
s

]
, (21)

which is orthogonal to dx/ds|s. For the first step, the first-order derivative, the ray tangent, is
given by the user but for subsequent steps it needs to be found. A Taylor series expansion for
dx/ds can be written as

dx
ds

∣∣∣∣
s+Δs

=
dx
ds

∣∣∣∣
s

+
d2x
ds2

∣∣∣∣
s

Δs + O(Δs2). (22)
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Algorithm 1. Ray tracing: dual-update approach.

1: input: x̄e ∈ R
3, dē ∈ S2 � Input initial ray position and tangent vectors

2: initialise: x(0) = x̄e, d(0) = dē � Set initial ray position and tangent vectors
3: while x(s) is inside Ω do � Run the loop while the ray remains in the domain
4: h = (∇n − (∇n · d) d)/n � Compute the second derivative from equation (21)
5: g= d + hΔs/2 � Calculate the ray position update direction
6: g← g/|g| � Make the update direction a unit vector
7: x← x+ gΔs � Update the ray position vector
8: d ← d + hΔs � Update the ray tangent vector using equation (22)
9: d ← d/|d| � Make the tangent vector a unit vector

10: end while

The two Taylor series, equations (20) and (22) can be combined with equation (21) into a
dual-update iterative scheme to calculate the next step along the ray x(s +Δs) from the cur-
rent point x(s). This is written below as algorithm 1. The normalisation of the update vector
in line 6 is included because it makes numerical integration along the ray easier if the ray is
defined at evenly spaced points. The normalisation of the ray tangent vector, d, in line 9 is
there to ensure that it, like dx/ds that it is an approximation to, is a unit vector. In numerical
tests in which n and ∇n are known exactly, the error in the path of the ray as calculated by
algorithm 1 converges at a rate of O(Δs2), see section 5.1.3. In many practical scenarios, such
as in the inverse problem considered in this paper, the error in the ray path will, however, be
dominated by error in the approximations of n and ∇n (section 3.4). Furthermore, it is often
the acoustic length—the integral of n along the ray—that is the salient quantity, not the ray
path per se, and that will include errors due to the numerical approximation of the path inte-
gral as well. It can therefore be beneficial to trade a reduction in the formal rate of convergence
of an algorithm for an increase in its computational efficiency, particularly when the former
has little detrimental effect on the accuracy in the overall problem and the latter can signifi-
cantly reduce the computational burden. With this in mind, a second ray-tracing algorithm was
derived.

3.3.2. Mixed-step algorithm. The ray tracing algorithm derived in this section and used in
the examples below, sometimes known as the mixed-step algorithm, [8, 14, 26] is computa-
tionally more efficient than algorithm 1, although converges more slowly with Δs. Starting
from the Taylor series expansion for the ray position vector, equation (20), and replacing
the first derivative with the central difference approximation dx/ds|s = (x(s +Δs) − x(s −
Δs))/(2Δs), gives a result which can be rearranged into the form

x(s +Δs) = x(s) + d|sΔs +
d2x
ds2

∣∣∣∣
s

Δs2, (23)

where d|s := (x(s) − x(s −Δs))/Δs is a backward difference. Equation (23) can be rewritten
as

x(s +Δs) = x(s) + d|s+ΔsΔs, (24)

where the ray-direction update is given by

d|s+Δs = d|s +
d2x
ds2

∣∣∣∣
s

Δs, (25)
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Algorithm 2. Ray tracing: mixed-step approach.

1: input: x̄e ∈ R
3, dē ∈ S2 � Input initial ray position and tangent vector

2: initialise: x = x̄e, d = dē � Set initial ray position and tangent vector
3: h = (∇n − (∇n · d) d)/n � Compute the initial second derivative using equation (21)
4: d ← d + hΔs/2 � Update the ray direction based on equation (20)
5: d ← d/|d| � Make the update direction a unit vector
6: x← x+ dΔs � Update ray position vector
7: while x(s) is inside Ω do � Run the loop while the ray remains in the domain
8: h = (∇n − (∇n · d) d)/n � Compute the second derivative using equation (21)
9: d ← d + hΔs � Update the ray direction using equation (25)

10: d ← d/|d| � Make the update direction a unit vector
11: x← x+ dΔs � Update the ray position vector
12: end while

(see the Taylor series, equation (22)). Note that the ray-direction update d|s+Δs must be nor-
malised to ensure that Fermat’s principle holds (see equation (21)) and it gives steps along
the ray of equal length Δs. Using equation (24) to calculate the next position along the ray
requires d|s+Δs to be calculated from equation (25), which raises the question of how to com-
pute d2x/ds2. This must be done using the ray equation, equation (21), as it is via this equation
that the refractive index affects the ray path, but dx/ds|s in equation (21) is not known. In deriv-
ing equation (23) from the Taylor series, dx/ds|s was approximated using a central difference.
However, here the backward difference d|s is preferred for reasons of computational efficiency
(and for Fermat’s principle to hold it must be normalised, as mentioned above). The use of a
backward difference raises one issue, which is that it is necessary to know x(s −Δs) at each
step, and for the first step this is not known. This can be overcome by defining d|0 as the user-
defined initial ray tangent, and using equations (20) and (21) to compute x(Δs) given x(0). The
resulting algorithm is shown in algorithm 2. This algorithm can be coded more efficiently than
algorithm 1 as it contains fewer steps and fewer stored variables; the trade-off is a reduction
in the convergence rate due to the first-order backward difference approximation used in the
ray equation. However, as mentioned above, this is rarely a problem in practice as typically
greater errors arise from the approximation of the refractive index gradient and the numerical
path integration (described in sections 3.4 and 3.4.3 below).

3.4. Grid-to-ray interpolation

As mentioned in section 2.2, the refractive index is defined on a grid of points. In contrast,
the points along the ray computed using the algorithms above can lie anywhere in Ω and
are not restricted to grid points. An interpolation map from the grid to the rays is there-
fore necessary for approximating n and ∇n in the ray tracing algorithms, as well as for
forming the Jacobian matrix J

[
n̄q

]
(cf definition 4) used for solving the inverse problem in

equation (6).

3.4.1. Numerical approximation of refractive index. The refractive index field was discre-
tised on a mesh of points xi with i ∈ {1, . . . , Nn}. For simplicity, a rectilinear grid was used
with grid points indexed with the multi-index i =

(
i1, i2, i3

)
∈
{

1, . . . , N1
n

}
×

{
1, . . . , N2

n

}
×{

1, . . . , N3
n

}
with Nn =

∏3
j=1 N j

n and an equal grid spacing Δx along all Cartesian coordinates
j. Also, xi j is used to indicate the position of grid point i along Cartesian coordinate j. (Recall
that x j denotes the position in continuous Euclidean space along the Cartesian coordinate j.)

11
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Let {φi(x), i = 1, . . . , Nn} denote a set of basis functions for which basis function φi(x) is
related to grid point i. An arbitrary continuous scalar field z(x) (this could be the refractive
index or a component of its gradient) can be approximated as a linear combination of these
basis functions

z(x) ≈ ẑ(x) =
Nn∑
i=1

z̄iφi(x). (26)

Here, trilinear basis functions defined on a regular grid were used, which take the form [14]

φi(x) =
3∏

j=1

(
1 − |u j

i (x)|
)

, (27)

where

u j
i (x) =

{(
x j − xi j

)
/Δx, x(i−1) j < x j < x(i+1) j

0, otherwise.
(28)

Here, x(i±1) j denotes the two grid points adjacent to the grid point xi along the Cartesian coordi-
nate j. The basis functionφi(x) has a pyramidal shape with the vertex on point i, and it vanishes
on the neighboring grid points. Because this basis function is a polynomial of first order along
each Cartesian coordinate j, the interpolated function ẑ is continuous but its first derivative is
not continuous [14]. Therefore, for an approximation of the directional gradients of the refrac-
tive index, we follow [4, 5], where the discretised directional gradients are first calculated
from the values of field at the grid nodes using finite differences, and are then approximated
for off-grid points using the same interpolation as for the field itself. (Using this approach, the
need for different interpolation operators for the refractive index and each of the three gra-
dient components is avoided.) It has been shown that this approach gives an approximation
that is sufficiently accurate for weakly heterogeneous media [4, 5, 14], which is the case here.
We will show in section 5 that this approach provides a good trade-off between accuracy and
computational cost.

3.4.2. Interpolation operator. This section describes the map used for interpolating from the
discretised field on the grid, z̄, to an arbitrary point along the ray using equation (26) [28].

Definition 8. The positions of the first and last vertices of each cubic voxel v along each
Cartesian coordinate j are given by xvi′ j , where i′ ∈ {0, 1} denotes the first and last vertices. Any
arbitrary point x = {x j, j = 1, 2, 3} contained in v satisfies xv0 j � x j < xv1 j for all Cartesian
coordinates j. The values of the discretised field z̄ associated with the vertices of voxel v,
containing x, are notated z̄v and defined using the map

Jv : RNn → R
8

z̄v [x] = Jv [x] z̄.
(29)

Correspondingly, the elements of z̄v are written as

z̄v =
[
z̄v(0,0,0), z̄v(0,0,1), z̄v(0,1,0), z̄v(0,1,1), z̄v(1,0,0), z̄v(1,0,1), z̄v(1,1,0), z̄v(1,1,1)

]T
. (30)

We will also use

Qv [x] =
[
1, l(v,1), l(v,2), l(v,3), l(v,1)l(v,2), l(v,2)l(v,3), l(v,1)l(v,3), l(v,1)l(v,2)l(v,3)

]
, (31)

12
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where the dependence of l(v, j) on x is neglected for brevity, but is given by

l(v, j)(x) =
x− xv0 j

xv
1 j − xv

0 j

=
x− xv0 j

Δx
. (32)

Definition 9. The trajectory of a ray-linking an emission point ē to a reception point r̄ is
defined by the points sm m ∈ {0, . . . , M(̄e,̄r)}, where the initial point s0 matches the emission
point ē, the final point sM(̄e,̄r) matches the reception point r̄, and the number of the sampling
points along the ray is M(̄e,̄r) + 1. For ray tracing algorithms that take equal sized steps along
the ray, as is the case for algorithms 1 and 2, the points sm must satisfy

sm =

{
mΔs, m ∈ {0, . . . , M(̄e,̄r) − 1}
(m − 1)Δs +Δs′, m = M(̄e,̄r).

(33)

Also, the second line in equation (33) is used in order to indicate that the last point of the ray
must be matched to the reception point r̄, and thus Δs′ = sM(̄e,̄r) − sM(̄e,̄r)−1 with Δs′ � Δs. This
is achieved using ray-linking, described in section 4.

Lemma 2. Using the trilinear basis function, equation (27), an interpolation map (operator)
from a discretised field z̄ to sampling points sm on a ray is defined as

Jint
(sm ;̄e,̄r) : RNn → R

M(̄e,̄r)+1

ẑ
[
x(sm ;̄e,̄r)

]
= Jint

(sm ;̄e,̄r)z̄ = Qv
[
x(sm ;̄e,̄r)

]
CJv

[
x(sm ;̄e,̄r)

]
z̄,

(34)

where, the matrix C ∈ R
8×8 is in the form [28]

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 0
−1 0 1 0 0 0 0 0
−1 1 0 0 0 0 0 0
1 0 −1 0 −1 0 1 0
1 −1 −1 1 0 0 0 0
1 −1 0 0 −1 1 0 0
−1 1 1 −1 1 −1 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (35)

Proof. The proof is obtained by forming ẑ in equation (26) using equations (27) and (28),
and then re-arranging into the formula equation (34) using equations (31) and (32). �

Remark 2. The interpolation operator Jint
(̄e,̄r) is used for two purposes: for approximating n

and ∇n along the rays in the ray tracing algorithm above, and in constructing the Jacobian
matrix (definition 4), described below.

3.4.3. Jacobian matrix. This section follows the definition for the Jacobian matrix J in
definition 4, and gives further details about its action on a perturbation field δn̄. It is worth
mentioning that while J is dependent on n̄, it acts on Δn̄ in our iterative inversion algorithm
(see equation (6)). From equation (34), Jint

(̄e,̄r) maps δn̄ on the grid points to δn̂ on the sample
points along one ray, the one between the emission point ē and reception point r̄. Given δn̂, the
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perturbation in the acoustic length along that ray can be calculated using the map

Jl
(̄e,̄r) :RM(̄e,̄r)+1 → R

δL̄(̄e,̄r) = Jl
(̄e,̄r)δn̂

=
1
2
δn̂

[
x(0;̄e,̄r)

]
Δs +

M(̄e,̄r)−2∑
m=1

δn̂
[
x(mΔs;̄e,̄r)

]
Δs

+
1
2
δn̂

[
x((M(̄e,̄r)−1)Δs;̄e,̄r)

] (
Δs +Δs′

)
+

1
2
δn̂

[
x((M(̄e,̄r)−1)Δs+Δs′ ;̄e,̄r)

]
Δs′, (36)

which is a numerical path integration of the δn̂ along the ray using the trapezoidal rule. Using
J(̄e,̄r) to denote the row of the full Jacobian J corresponding to an emission point ē and a recep-
tion point r̄, and considering definition 4, equations (34) and (36), the action of J(̄e,̄r) on a field
δn̄ can be written as

J(̄e,̄r) : RNn → R

δL̄(̄e,̄r) = J(̄e,̄r)δn̄ = Jl
(̄e,̄r)J

int
(̄e,̄r)δn̄.

(37)

4. Ray-linking (two-point ray tracing)

The ray tracing algorithms derived in section 3 solve a path for the rays f (n;̄e,p) = 0, where
ē ∈ S1 is the emission point on the hemispherical surface S1, and p ∈ S is the interception
point of the ray with the surface S after traveling through the medium. From definitions 3 and
4, the forward operator and Jacobian matrix are given by the path integral of the refractive
index along a set of rays that link the emission points ē to the reception points r̄. These rays
are defined using f (n;̄e,̄r) = 0. Accordingly, for each pair of points ē and r̄, one seeks to find
the ray’s path f (n;̄e,p) = 0 such that p matches r̄. Applying this condition leads to a boundary
value problem called ray-linking. This boundary value problem can be solved as a sequence
of initial value problems by adjusting the initial direction of the ray until the ray intercepts S
sufficiently close to the reception point r̄ [4, 5, 56, 57, 60]. This approach fits into a class of
methods for solving boundary value problems known as shooting methods.

An alternative class of methods for two-point ray tracing is those based on ray bending.
These kinds of approaches follow directly the Fermat’s principle, and are based on fixing the
two end points of the ray at the required emission and reception points, and perturbing the ray
trajectory until the acoustic length along the ray becomes stationary under these perturbations
[30, 65, 69]. In this study, we use the former approach, ray-linking, and calculate the ray path
between each pair of emitters and receivers by solving the inverse problem of finding the initial
ray direction given the reception point through successive implementations of the ray-tracing
algorithm.

4.1. Ray-linking inverse problem

In the shooting method, the task of finding the ray that links the emission point ē to the reception
point r̄ has been recast as the inverse problem of finding the initial ray-direction that results in
the ray reaching the r̄ (or close enough to it). This must be solved for all pairs of emission and
reception points (ē, r̄). Here, this is solved for each ray by iteratively adjusting the initial ray

14



Inverse Problems 36 (2020) 125010 A Javaherian et al

direction dē until the interception point p matches the reception point r̄. To facilitate this, we
first parameterise the problem in a way that can be adapted to any convex detection surface.
Accordingly, the unknown initial direction of the ray dē = [θē,ϕē]T ∈ R

2 is written in terms of
the azimuthal and polar angles. Then for each ray, the direction from the emission point ē to the
end point of the ray, the interception point p, is defined as a unit vector in spherical-coordinates
centered on the emission point ē, i.e.,

R
2 → [0, 2π) × [0, π)

γ (̄e,p) [dē] = γ (̄e,p) [θē, ,ϕē] =
xp[dē] − x̄e

|xp[dē] − x̄e|
,

(38)

where, from algorithm 2, the dependence of xp, and therefore γ (̄e,p), on the unknown ini-
tial direction vector dē is nonlinear. Here, θē ∈ [0, 2π) and ϕē ∈ [0, π) are respectively the
azimuthal and polar angles of the reception point p with respect to the emission point ē. In the
same way, the position of the reception point r̄ is defined in terms of a unit direction vector
γ (̄e,̄r),

γ (̄e,̄r) =
(
θ(̄e,̄r),ϕ(̄e,̄r)

)T
=

x̄r − x̄e

|x̄r − x̄e|
. (39)

Using these definitions, the ray-linking problem for the pair of points ē and r̄ can be expressed
either as a problem of solving for the root of the residual function F : R2 → [−π, π) × [−π, π):

F(̄e,̄r)(dē) = γ (̄e,p) [dē] − γ (̄e,̄r) = 0, (40)

or alternatively as a minimisation of the functional E : R2 → R:

arg min
dē

E(dē) :=
1
2
‖F(̄e,̄r)(dē)‖2

2. (41)

The problem equation (41) is equivalent to solving for the root of the gradient of the residual
function. (Note that the two elements of the residual function are wrapped to their correspond-
ing intervals.) A schematic for this ray-linking inverse problem is shown in figure 2. Using the
above parameterisation, this inverse problem can be thought of as an iterative adjustment of the
initial direction dē until the unit vector γ (̄e,p) becomes aligned to the required unit vector γ (̄e,̄r)

(see figure 2). In this way, the algorithms described below for solving the ray-linking inverse
problem become independent from the geometry, and can be adapted to any arbitrary convex
detection surface.

Remark 3. A wide variety of standard solvers were applied to this problem but a significant
portion of the rays always failed to link to the reception points. The reason for this is that the
problem can become ill-posed in some cases. Adaptive-smoothing schemes are proposed to
manage the ill-posedness, and are incorporated into three classical methods (Gauss–Newton,
BFGS, and Broyden) in the three subsections below. The three methods are compared for
accuracy as well as computational cost.

4.2. Initial ray direction

As described in section 2.3, the refractive index map n̄q is updated at every iteration q of the
UST reconstruction. The ray-linking problem must be solved for every pair of emitters and
receivers (ē, r̄) for every iteration q, as the updated refractive index will change the ray trajec-
tories. For each iteration q > 0 the initial direction of the ray, d0

(̄e,q), is chosen to be the optimal
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Figure 2. The initial ray (grey line), with initial direction given by the unit vector d0
ē ,

leaves the emission point ē ∈ S1 and arrives at the interception point p ∈ S (which is
in a direction γ (̄e,p) from ē). Following the ray-linking, the ray leaves ē with a different
initial direction and arrives at the desired reception point r̄ ∈ S1 (which is in a direction
γ (̄e,̄r) from ē). The ray-linking method works by iteratively adjusting the initial direction
dē until γ (̄e,p) = γ (̄e,̄r).

ray from the previous iteration d∗
(̄e,q−1). For the first iteration it is chosen to be the unit vector

in the direction of r̄, γ (̄e,̄r):

d0
(̄e,q) =

{
d∗

(̄e,q−1), q > 0,

γ (̄e,̄r), q = 0.
(42)

For q = 0, because n̄0 = 1, the Jacobian matrix J [n̄0] in equation (6) is also formed usingγ (̄e,̄r).
As shown in the numerical results in section 5, this choice provides very good initial guesses
for the ray-linking problems. For the case of multiple linking paths, which will occur if the
solution of the ray-linking problem is non-unique [4], this choice leads to the shortest path.
An alternative way to choose the initial guesses is to shoot many initial rays from the emission
point ē then choose, for each reception point r̄, the closest ray as the initial guess. However, our
experience was that this approach worked less well than the proposed approach above, perhaps
due to the existence of multiple linking paths.

4.3. Ray-linking using functional minimisation: damped Gauss–Newton

In the geophysics literature, a popular approach for ray-linking is solving the minimisation
problem equation (41) based on an iterative linearisation of the functional E using finite dif-
ferences, and solving a sequence of linearised minimization problems using Newton-type
methods [27, 56, 57, 60]. Correspondingly, the kth linearisation of γ (̄e,p) around dk

ē gives an
approximation

γ (̄e,p) [dē] ≈ γ (̄e,p)

[
dk

ē

]
+ J

[
dk

ē

] (
dē − dk

ē

)
. (43)

Here, the superscript k denotes the iteration number (the number of the linearised subproblem),
and it is assumed that dē is sufficiently close to dk

ē. Also, J
[
dk

ē

]
∈ R

2×2 denotes the partial
derivative (Jacobian) matrix at dk

ē, and is calculated using finite differences. (J should not
be confused with its counterpart J that stands for the Jacobian matrix (definition 4) for the
UST inverse problem.) Using equation (43), the minimisation problem equation (41) can be
modified into the form

pk = arg min
p

Ẽ
[
dk

ē

]
= arg min

p
‖J

[
dk

ē

]
p−

(
γ (̄e,̄r) − γ (̄e,p)

[
dk

ē

])
‖2

2, (44)
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where Ẽ
[
dk

ē

]
is the k-linearised functional, and pk denotes the search direction. (The factor

of a half has been dropped as it does not affect the minimiser.) The problem equation (44) is
solved for pk by setting the gradient of the linearised functional to zero by forming the normal
equations

∇Ẽ
[
dk

ē

]
= Hk pk −

(
J k

)T (
γ (̄e,̄r) − γ (̄e,p)

[
dk

ē

])
= 0, (45)

where J k :=J
[
dk

ē

]
, and Hk =

(
J k

)TJ k is an approximation of the Hessian matrix in which
the term of second order derivatives is neglected.

4.3.1. Partial derivative (Jacobian) matrix. The Jacobian matrix is in the form

J
[
dk

ē

]
=

[
∂γ (̄e,p)

∂θē

[
θk

ē ,ϕk
ē

]
,

∂γ (̄e,p)

∂ϕē

[
θk

ē ,ϕk
ē

]]
. (46)

Here, the partial derivatives are calculated using finite differences

∂γ (̄e,p)

∂θē

[
θk

ē ,ϕk
ē

]
=

γ (̄e,p)

[
θk

ē +Δθk
ē ,ϕk

ē

]
− γ (̄e,p)

[
θk

ē ,ϕk
ē

]
Δθk

ē

∂γ (̄e,p)

∂ϕē

[
θk

ē ,ϕk
ē

]
=

γ (̄e,p)

[
θk

ē ,ϕk
ē +Δϕk

ē

]
− γ (̄e,p)

[
θk

ē ,ϕk
ē

]
Δϕk

ē
,

(47)

where Δθk
ē and Δϕk

ē are perturbations enforced on the two elements of dk
ē. How these pertur-

bations are chosen is important. It has been shown that the inverse problem of ray-linking is
subject to instability or divergence because of its highly nonlinear nature, especially for 3D
cases [57]. One important factor that affects the convergence is the accuracy of the Jacobian
matrix [57], which is affected by the perturbations to the finite differences. A small pertur-
bation gives a more accurate Jacobian matrix when γ (̄e,p) is differentiable with respect to the
initial direction dē, but the Jacobian matrix can become singular or close to singular when
γ (̄e,p) is nondifferentiable with respect to dē or very sensitive to changes in dē. This may occur,
for example, in the presence of singularities, such as when the trajectory of a ray is tangent
to inter-medium boundaries, or when a ray is perpendicular to ∇n, and thus a small change
in dē will lead to a large change in the position of the interception point of the ray with the
detection surface S. This issue, together with the low-dimensional nature of the ray-linking
inverse problem, motivates using an adaptive approach for calculation of the Jacobian matrix.
To facilitate this, each iteration of the ray-linking algorithm starts with a scaled perturbation in
the form

Δθk
ē = τ sign

(
θk

ē

)
max

(
abs(θk

ē),
1
2
‖dk

ē‖1

)
,

Δϕk
ē = τ sign

(
ϕk

ē

)
max

(
abs(ϕk

ē),
1
2
‖dk

ē‖1

)
,

(48)

where τ is a small scalar. The perturbation is then increased recursively by controlling τ until
the singular values of Hk, Λk ∈ R

2, satisfy the two conditions

max(Λk)/min(Λk) < ϑ and min(Λk) > min(|∇Ẽ
[
dk

ē

]
|, ς). (49)

Here, ϑ and ς are large and small scalar values, respectively. The former condition enforces a
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Algorithm 3. Adaptive smoothing calculation of well-conditioned Hessian and Jacobian matrices, J k

and Hk , for the damped Gauss–Newton approach to the ray-linking problem.

1: input: Nh � Maximum number of iterations
2: input: ϑ, ς � Scalars in the conditions in equation (49)
3: input: η � Integer factor > 1 by which τ is recursively increased
4: initialise: τ � Controls the perturbation, equation (48)
5: initialise: kh = 0 � Set the counter
6: calculate J k and Hk using equations (46),

(47), (48) and algorithm 2 � Form Jacobian & Hessian
7: calculate the singular values Λk of Hk

8: while Λk does not satisfy equation (49)
and kh < Nh do � Iterate until Hessian is well-conditioned

9: τ ← η τ � Increase the perturbation size
10: calculate J k and Hk using equations (46),

(47), (48) and algorithm 2 � Form Jacobian & Hessian
11: calculate the singular values Λk of Hk

12: kh ← kh + 1 � Increment the counter
13: end while
14: output: J k and Hk � Return well-conditioned Jacobian and

Hessian matrices

bound on the ill-conditioning of the Hessian matrix, and the latter prevents very large search
directions (see section 4.1 in [47]).

This scheme, here referred to as adaptive smoothing, is outlined in algorithm 3. The parame-
ters η and Nh are user-adjusted parameters, but our numerical experience shows that the optimal
values are independent of the particular object being imaged.

4.3.2. Backtracking line search. Having defined the Jacobian matrix J k and Hessian matrix
Hk, equation (45) can be solved for the search direction pk. Once this is done, a search is
conducted along pk for a point that gives a sufficient descent step for E

[
dk

ē

]
:

dk+1
ē = dk

ē + αk pk, (50)

whereαk is the step length. Choosingαk is the damping process of the Gauss–Newton method,
and is done here using a backtracking line search technique. The step length starts at α = 1 and
is reduced recursively by a factor β ∈ (0, 1) until the following Armijo condition is satisfied:

E
(
dk

ē + αk pk
)
� E(dk

ē) + μαk pk∇E
(
dk

ē

)
, (51)

where μ ∈ (0, 0.1] is a user-adjusted parameter. In addition, a limit was set on the maximum
number of recursions in the backtracking loop. (The full Wolfe conditions also require a recur-
sive calculation of ∇E

(
dk

ē + αk pk
)

for each iteration k, which is costly, so only the Armijo
rule was used here.)

Algorithm 3 can now be used to compute the initial ray direction to ensure ray-linking from
the emission point ē to the reception point r̄. The whole ray-linking procedure using this func-
tional minimisation approach, equation (41), is outlined in algorithm 4. In this algorithm, d0

(̄e,q)

and d∗
(̄e,q) denote the initial guess and an optimal solution respectively for the initial direction

of the ray for linearisation q of the UST inverse problem (section 2.3). The choice of initial
direction d0

(̄e,q) is described above in section 4.2.
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Algorithm 4. Ray-linking from emission point ē to reception point r̄ using a damped Gauss–Newton
method (for linearisation q of the UST inverse problem).

1: input: γ (̄e,̄r) � Unit vector pointing to r̄ from ē
2: input: Nlink � Maximum number of iterations
3: input: εlink � Minimum error threshold
4: initialise: dk

ē = d0
(̄e,q) � Set the initial ray direction

5: initialise: k = 0 � Set the counter
6: calculate E(dk

ē) using equation (41) � Evaluate the error functional
7: while E

(
dk

ē

)
> εlink and k < Nlink do � Iterate initial ray direction until γ (̄e,p) = γ (̄e,̄r)

8: calculate J k and Hk using algorithm 3 � Form Jacobian and Hessian matrices
9: calculate pk using equation (45) � Find descent direction

10: choose αk that satisfies equation (51) � Backtracking line search to find step size
11: dk+1

ē ← dk
ē + αk pk � Update initial ray direction

12: calculate E(dk+1
ē ) using equation (41) � Evaluate the error functional

13: k ← k + 1 � Increment the counter
14: end while
15: output: d∗

(̄e,q) � Return the optimal initial ray direction

4.4. Ray-linking using root-finding: quasi-Newton with box constraints

An analogous approach to solving equation (41) using the Gauss–Newton approach would be
to solve the system of nonlinear equations (40) using the Newton–Raphson method [17]. This
approach gives a sequence of linear equations

J k pk + F
[
dk

ē

]
= 0, (52)

where, compared to equation (40), the subscripts (ē, r̄) for the function F has been neglected
for brevity. The Newton–Raphson method, like the Gauss–Newton approach, requires frequent
calculation of the Jacobian, which is computationally costly. Each iteration of a Newton-type
method (or a trust region method [7]), used for solving either equations (40) or (41), requires
at least two additional function evaluations per iteration to calculate the Jacobian. (Note that
if a higher order finite difference scheme is used to increase the accuracy over formulae
equation (47), the number of function evaluations will increase accordingly.) Fortunately, there
is a class of approaches for solving nonlinear equations such as equation (52)—quasi-Newton
methods—that have the great advantage of not requiring Jacobian calculations. For nonlin-
ear equations, quasi-Newton methods suggest a replacement of the sequence of equations
equation (52) by derivative-free linear equations of the form

Bk pk + F
[
dk

ē

]
= 0, (53)

where Bk is a matrix that approximates J k using the two last updates. There are different
formulas for forming the approximate Jacobian Bk. Here, constrained variants of the BFGS
formula and a Broyden-like scheme will be described, as they have been found to give good
results.

4.4.1. BFGS-like formula. For updating the matrix B, one way is to use a modified variant of
the BFGS formula in the form

Bk+1 = Bk + τ k

(
−BkskskTBk

skTBksk
+

ykykT

ykTsk

)
, (54)
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Algorithm 5. Adaptive smoothing calculation of the approximate Jacobian matrix, Bk , for the BFGS-like
approach to the ray-linking problem.

1: input: Bk � Latest Jacobian approximation
2: input: Nh � Maximum number of iterations
3: input: ϑ, ς � Scalars in the conditions in equation (49)
4: input: η ∈ (0, 1) � Factor by which τ is recursively decreased
5: initialise: τ = 1 � Weights the update to Bk , equation (54)
6: calculate the singular values Λk of Bk

7: while equation (49) is not satisfied and kh < Nh do � Iterate until Jacobian B is well-conditioned
8: τ ← η τ � Reduce the update weight
9: calculate Bk+1 using equation (54) � Update the Jacobian approximation

10: calculate the singular values Λk of Bk+1

11: kh ← kh + 1 � Increment the counter
12: end while
13: output: Bk+1 � Return the updated Jacobian approximation

where sk = dk+1
ē − dk

ē and yk = F(dk+1
ē ) − F(dk

ē). dk+1
ē is calculated using the update formula

equation (50) and then projected onto a set of box constraints, as described in section 4.4.3
below. The two terms in the parentheses are two symmetric rank-one matrices, but their sum-
mation provides a rank-two update for B. Setting the parameter τ k ∈ {0, 1} to 1 for all k gives
the standard BFGS formula [21, 34]. Bk, in equation (53), needs to be invertible, so that we
can solve for pk. For unconstrained optimisation, the Wolfe conditions may be used to ensure
Bk is positive definite, and therefore invertible, but they are not applicable to the root-finding
problem here [34]. Modified BFGS approaches have been proposed that ensure positive defi-
niteness [21, 72] but these approaches require at least one more function evaluation per iteration
than vanilla BFGS, and in any case are applicable only to symmetric nonlinear equations, so
not relevant here. A BFGS trust-region method has also been proposed for nonlinear equations
[71], but it relies on the Jacobian matrix which is what we are trying to avoid.

Here the nonsingularity of the matrix B is ensured using adaptive smoothing, i.e. itera-
tive adjustment of τ as described in algorithm 5 below. For the Broyden-like method below,
section 4.4.2, the parameter τ has been included in previous theoretical work [35, 45, 55]. For
the BFGS-like scheme, to the best of our knowledge, this is not the case but in our experience
the method works well numerically. (This may be because for the optimisation case, for which
BFGS is more commonly used, the positive definiteness of the update of B can be ensured
using the Wolfe conditions.) Indeed, it is shown in the results section below that this BFGS-
like formula, when combined with a box constraint on the sequence of initial directions, is
much more efficient for ray-linking than the Gauss–Newton method above, which relies on
the costly calculation of the Jacobian matrix.

4.4.2. Broyden-like formula. Another way to approximate the Jacobian matrix Bk, which is
popular for solving nonlinear systems, is to use a Broyden-like formula [34, 35, 45, 55]. Ini-
tially, B0 = J 0, where J 0 is calculated using equation (47), with a large enough perturbation
to ensure nonsingularity, then for k � 1 this approximation is updated using the formula

Bk+1 = Bk + τ k (yk − Bksk)sT
k

skTsk
, (55)

where |τ k − 1| � τ̄ with τ̄ ∈ (0, 1) a fixed scalar [34, 35, 45, 55]. When τ k = 1 for all k, (55)
becomes Broyden’s rank one formula [9], and in this case a nonsingularBk does not necessarily
ensure a nonsingularBk+1. For our application, this can occur when a small change in the initial
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Algorithm 6. Adaptive smoothing calculation of the approximate Jacobian matrix, Bk , for the Broyden-
like approach to the ray-linking problem.

1: input: Bk � Latest Jacobian approximation
2: input: Nh � Maximum number of iterations
3: input: ϑ, ς � Scalars in the conditions in equation (49)
4: input: ηc ∈ (0, τ̄ ) � Magnitude of increment to η
5: input: τ̄ � Limits size of weight τ
6: initialise: η = 0 � Sets initial size of weight update
7: initialise: ηs = 1 � Sign of weight update
8: initialise: τ = 1 � Weights the update to Bk , equation (55)
9: calculate the singular values Λk of Bk

10: while Λk does not satisfy equation (49)
and |τ − 1| � τ̄ and kh < Nh do � Iterate until Jacobian B is well-conditioned

11: if ηs > 0 then
12: η ← η + ηc � Increase weight update magnitude
13: end if
14: ηs ←−ηs � Alternate weight update sign
15: τ = 1 + ηsη � calculate the weight
16: calculate Bk+1 using equation (55) � Update the Jacobian approximation
17: calculate the singular values Λk

18: kh ← kh + 1 � Increment the counter
19: end while
20: output: Bk+1 � Return the updated Jacobian approximation

angle leads to a large change in the end point of the ray [57]. To avoid this issue, adaptive
smoothing is used, i.e. the singular values Λ of the matrix B are controlled using a scalar τ
initialised as 1, and gradually moved away up to a neighborhood of radius τ̄ until the conditions
in equation (49) are satisfied. (In the second condition the gradient is replaced by E

[
dk

ē

]
. See

section 4.1 in [47].) This is outlined in algorithm 6. Note that adaptive smoothing via a recursive
adjustment of τ , as used in algorithms 5 and 6, is very cheap compared to the approach used
in algorithm 3, as it does not require any additional function evaluations.

4.4.3. Box constraints. The reason for choosing the Gauss–Newton method to solve the
minimisation problem equation (41) in section 4.3 is the fast convergence rate of Newton-
type methods for unconstrained minimisation problems. Similarly, the convergence of quasi-
Newton methods for solving equation (41) is well-established [34], but for nonlinear equations
such as equation (40), less progress has been made [34, 72], a significant challenge is the lack
of line-search techniques for algorithms that avoid costly derivative calculations [34]. A good
review of derivative-free line search techniques is given in [34] and the reader is also referred
to [12, 20, 36]. However, these algorithms are typically conservative, and the high number
of function evaluations required per iteration risks losing the computational advantage of not
calculating gradients. Here, to achieve higher efficiency, an undamped variant of the update
formula equation (50) was used, with αk = 1 for all k. If the search direction pk obtained from
equation (53) is not a descent direction for E at dk

ē, then the sequence dk
ē, k = 0, 1, . . . is likely

to diverge. If the update direction pk is a descent direction, then, with an undamped scheme, it
is still possible that the update step is large enough for the sequence to diverge. To ameliorate
this, a box constraint of the form Γ =

{
dē ∈ R

2 | l � dē � u
}

, was enforced, where l ∈ R
2

and u ∈ R
2 are specified lower and upper bounds, and the inequalities are component-wise.

The bounds are chosen as angular intervals containing an initial guess. Since pk does not guar-
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Algorithm 7. Ray-linking from emission point ē to reception point r̄ using a quasi-Newton method (for
linearisation q of the UST inverse problem).

1: input: γ (̄e,̄r) � Unit vector pointing to r̄ from ē
2: input: l, u � Lower and upper bounds on the direction vector dk

ē

3: input: Nlink � maximum number of iterations
4: input: εlink � Minimum error threshold
5: initialise: dk

ē = d0
(̄e,q) � Set the initial ray direction

6: initialise: k = 0 � Set the counter
7: calculate B0 = J 0 using equation (47) � Form the approximate Jacobian
8: calculate E(dk

ē) using equation (41) � Evaluate the error functional
9: while E

(
dk

ē

)
> εlink and k < Nlink do � Iterate initial ray direction until γ (̄e,p) = γ (̄e,̄r)

10: calculate pk using equation (53) � Update to direction vector
11: calculate p̄k using l and u � Box constraints

using equations (56) and (57)
12: update dk+1

ē ← dk
ē + p̄k � Apply direction vector update

13: calculate sk = dk+1
ē − dk

ē � Difference used in Jacobian-update formula
14: calculate F(dk+1

ē ) using equation (40) � Difference between γ (̄e,̄r) and γ (̄e,p)

15: calculate yk = F(dk+1
ē ) − F(dk

ē) � Difference used in Jacobian-update formula
16: calculate Bk+1 using � Update approximation Jacobian

algorithms 5 (BFGS) or 6 (Broyden)
17: calculate E(dk+1

ē ) using equation (41) � Evaluate the error functional
18: k ← k + 1 � Increment the counter
19: end while
20: output: d∗

(̄e,q) � Return the optimal initial ray direction

antee that the update dk
ē + pk is a feasible point, dk

ē + pk is projected onto the set Γ. To do this,
a vector ψ is defined as

ψk
i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ζ

(
li − dk

(̄e,i)

pk
i

)
, if dk

(̄e,i) + pk
i < li,

ζ

(
ui − dk

(̄e,i)

pk
i

)
, if dk

(̄e,i) + pk
i > ui,

1, otherwise,

(56)

where ζ ∈ (0, 1) is a scalar, and i ∈ {1, 2} denotes the components. The update direction is
then modified using

p̄k
i = sign(ψk

i )
(
max

(
abs(ψk

i ),κ
))

pk
i , (57)

whereκ is a very small scalar, used to prevent the direction becoming stuck at one or other of the
limits. Note that because this minimisation is low-dimensional (two dimensions), a violation
of the box constraint for even one component means that pk may not be a descent direction, or
may be a descent direction towards a local minimum far from the initial guess. In these cases,
the update is projected to the interior of the feasible set, rather than the active set, using the
parameter ζ, which is heuristically chosen to be 0.5. The whole ray-linking procedure using
the Quasi-Newton approaches for solving the root-finding problem, equation (40), is outlined
in algorithm 7.
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5. Numerical results

Having laid out our approach to the UST inverse problem of estimating the refractive index
in section 2.3, and, above, the details of the ray tracing and ray-linking algorithms that will
be used to achieve this, this section will describe numerical experiments demonstrating the
effectiveness of this approach to 3D UST.

First, in section 5.1, the accuracy of the ray tracing algorithms, algorithms 1 and 2, will
be demonstrated on both continuous (analytically-known gradient) and discretised refractive
index maps based on the Maxwell fish-eye phantom. In section 5.1 these algorithms are used
in calculations of acoustic length (the integral of the refractive index along a ray), and it is
shown that these calculations are dominated by the grid-to-ray interpolation error and therefore
algorithm 2 is more efficient for solving the UST problem.

Section 5.2 describes the more complex breast phantom that was used in the subsequent
UST study, and how the measured time series were simulated. (The TOF picking method used
to calculate the first-arrival of the signals from the simulated time series is described in an
appendix A.) Finally, in section 5.3, all the previous work is brought together to demonstrate
how to solve the problem of estimating the refractive index (sound speed) in 3D UST of the
breast. Our bent ray approach is compared to an approach using straight-rays, and the different
ray-linking algorithms are compared with respect to accuracy and computational time.

5.1. Numerical validation of ray tracing algorithms

5.1.1. Maxwell’s fish-eye lens phantom. The numerical validation of the ray tracing algo-
rithms was performed using a refractive index field for which ray paths across it are known
analytically. A well-known refractive index function for this purpose is Maxwell’s ‘fish-eye
lens’, which is defined as

n(x) =
no

1 + ( x
a )2

, (58)

where no denotes the refractive index at the origin of the Cartesian coordinates (xo = [0, 0, 0]T).
(Here, we set no = 1 and a = 1.) [4, 26, 50]. This phantom has two interesting and useful
properties which will be used below to test the ray tracing algorithms’ accuracy (figure 3).

A ray starting from a point p1 satisfying |xp1 | = a will travel along a circular path including
the mirror point p2 with respect to o, i.e., xp2 = −xp1 , and will return to the initial point on
completion of the circle. Then it is clear that:

(a) The particular circular path followed is tangent to the initial ray direction, and
(b) The acoustic length along the ray on completion of the corresponding circle will equal

twice the acoustic length along the line segment p1op2.

5.1.2. Ray-path convergence. In this section, the first property of rays propagating through
the fish-eye phantom will be exploited. A family of 100 rays were initialised at position
xp1 = [0, 0, a]T with initial directions tangent to a sphere centred at xo ′ = [a, a, 0]T. The initial
directions of the rays were chosen to lie in a plane normal to a line segment p1o′, and were
spaced evenly to form a complete Rodriguez rotation with respect to the radial line p1o′. (In
other words, 100 rotations with angles between 0 and 2π were applied to a reference initial
direction (−1/

√
3)[1/

√
2, 1/

√
2,
√

2]T, for which the axis of rotation was the line segment
p1o′.) Analytically, all the rays will travel along the surface of the sphere and finally intercept
the point p1. The extent to which the paths calculated using the ray tracing algorithms dif-
fer from these paths can therefore be used as a metric to test the accuracy of the algorithms.
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Figure 3. Maxwell’s fish-eye lens, used as a phantom for the numerical validation of
the ray tracing algorithms. The phantom, which has rotational symmetry, is shown for
slice z = 0.

The rays with the above initialisations were propagated using algorithms 1 and 2 and termi-
nated when they reached a neighborhood of p1 with a radius Δs, where Δs is the step size.
The mean radial deviation of the calculated ray points from the sphere with radius p1o′ is then
computed:

RErd(p1) = mean

⎛
⎝ 1

M(p1,̃p1)

M(p1,̃p1)∑
m=1

abs
(
|x(sm;p1,̃p1) − xo′ | −

√
3a

)
√

3a

⎞
⎠× 100. (59)

Note that |xp1 − xo′ | =
√

3a and the mean operator indicates averaging across the family of
100 rays.

First, the rays were traced using analytical n and∇n (calculated from equation (58)) in order
to remove grid-to-ray interpolation effects associated with discretisation. The rays were traced
for step sizes Δs = 2(−4.5:0.5:3) times the reference length (in Matlab notation). The reference
length was chosen to be 2 × πa/360, which is equivalent to 1 degree arc length along a circle
centred at o.

Figure 5(a) shows the convergence of the error RErd as the step size Δs is decreased. It is
clear that the dual-update ray tracing algorithm, algorithm 1, exhibits a quadratic convergence
rate for RErd, and the traditional mixed-step algorithm, algorithm 2, provides a linear conver-
gence rate, as expected given the accuracy of the respective estimates of the direction vector
updates (section 3.3).

Second, to demonstrate the effect of the grid-to-ray interpolation on the convergence, i.e. the
effects using a discretised n and∇n, the same experiment was repeated on a computational grid
with spacing equal to the reference length. Figure 4 shows the analytical ray paths through the
fish-eye lens phantom, and the color indicates the deviation of the computed ray paths from
these exact solutions. For this illustration, the step length Δs was set equal to the reference
length (grid spacing).
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Figure 4. Testing ray tracing algorithms using Maxwell’s fish-eye lens phan-
tom. The analytical ray paths with the color indicating the deviation from it,
abs

(
|x(sm ;p1,̃p1) − xo′ | −

√
3a
)
/
√

3a × 100 with a = 1, for the two algorithms, (a) dual-
update algorithm (b) mixed-step algorithm. Note the different color scales. Rays for only
half of the ray launch angles are shown for clarity. The step length Δs was set equal to
the reference length (grid spacing) for this illustration.

Figure 5(a) shows the convergence of the error RErd in this case as the step size Δs is
decreased. As expected, for larger step sizes the discretisation effects are negligible and the
algorithms provide the same convergence rate as using a continuous n. However, the discreti-
sation errors become more important as Δs decreases, eventually clearly dominating the error
for algorithm 1 for small step sizes.

5.1.3. Acoustic-length convergence. In this section, the second property of the fish-eye phan-
tom will be exploited. A family of 100 rays were initialised at point p1 with initial directions
set as described above. Therefore, in the ideal case, all these rays would travel along the surface
of the sphere, pass through the mirror point p2, and finally intercept point p1, as in figure 4.
Numerically, when the rays were propagated using algorithms 1 and 2, they passed close to p2

and then back to close to p1. They were terminated when they reached a neighborhood of p1
with a radius Δs, where Δs is the step size. This final point was then discarded (as it may be
beyond p1) and the path was completed by linking the previous ray point to p1 using a straight
line. The mean error in the acoustic length was calculated using

REal(p1) = mean

(
abs

(
L̄p1 − Ltrue

)
Ltrue

)
× 100, (60)

where the acoustic length along the rays L̄p1 was calculated using equation (36), and also Ltrue,
which is twice the acoustic length between p1 and p2 calculated analytically.

Figure 5(b) shows the error REal as the step size Δs is decreased for analytical and discre-
tised n. Both ray tracing algorithms exhibit a quadratic convergence rate for REal, dominated
by the error in the numerical integration equation (36). Figure 5(b) also shows that for larger
Δs the grid-to-ray interpolation effects due to a discretisation of n is negligible, but the inter-
polation errors dominate for small Δs, and lead to a saturation in the reduction of REal with a
decrease in Δs.

5.2. Ultrasound tomography: data simulation

5.2.1. Imaging system. Ultrasound tomography data was simulated for an imaging system
consists of 1024 emitters and 4048 receivers uniformly distributed over a hemispherical

25



Inverse Problems 36 (2020) 125010 A Javaherian et al

Figure 5. Comparison of ray-tracing algorithms 1 and 2. (a) Mean error in ray-path
(radius) deviation for continuous (analytical) and discretised refractive index. (b) Mean
error in the acoustic length of the ray paths (integral of refractive index). (c) Mean
CPU time per ray using continuous (analytical) n. Algorithm 2 was used in the image
reconstructions in section 5.3 because it is faster for the same error in the acoustic length.

surface (bowl) of radius R = 12.35 cm using a golden section method. The emitters and
receivers were simulated as points as shown in figures 6(a) and (b), respectively. (Some prac-
tical systems use a coarser distribution of transducers in combination with translations and
rotations of the bowl to provide an equivalent amount of data [18], as mentioned in the intro-
duction. Because our proposed image reconstruction approach does not consider the correla-
tion between neighboring transducers, it would still be applicable when the transducers are
more coarsely spaced. Note that, unlike with fixed emitters, in the rotating setting the spacing
between emitters can be varied by changing the rotation angle.

5.2.2. Digital breast phantom. A 3D digital phantom mimicking the anatomical properties
of the breast [40] was used in this study. The sound speed was set to a range between
1470 m s−1 and 1580 m s−1. A frequency-dependent absorption of the formα = α0 fydB cm−1

was included, with the coefficient α0 = 0.75 dB MHz−y cm−1 for the breast tissue and
α0 = 0.6 dB MHz−y cm−1 for other tissue types. Here, the frequency power y was set to 1.4.
f here is the frequency in MHz. The computational grid consisted of 522 × 522 × 272 grid
points (26.1 × 26.1 × 13.6 cm3 and a grid spacing of 5 × 10−2 cm along all the Cartesian
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Figure 6. The hemispherical imager bowl with (a) 1024 emitters (b) 4048 receivers.

coordinates. With this grid spacing and sound speed distribution, the maximum frequency
supported by the grid is 1.47 MHz. Several slices through the phantom are shown in the left
columns in figures 10 and 11.

5.2.3. Simulating time series data and time-of-flight picking. A k-space pseudospectral
method (k-wave) was used for simulation of the acoustic pressure time series data [63]. The
emission and reception points were placed on the computational grid using nearest-neighbor
interpolation. Two sets of simulations were performed, the first with the bowl filled with just
water (sound speed 1500 m s−1), and the second with the breast phantom in the water. To simu-
late the data, each emitter was individually driven by an excitation pulse, and the set of acoustic
pressure time series induced at the receivers were recorded simultaneously. This was repeated
for each emitter. The pressure time series were recorded at 4245 time points with a sampling
rate of 20 MHz, and additive white Gaussian noise was added to give a 40 dB signal-to-noise
ratio. The computational time for a simulation of the two sets of data using k-Wave’s C++
GPU code [63] on eight NVIDIA Tesla P40 Pascal GPUs was about 4.5 d.

The output of practical ultrasound transducers covers a finite (and typically quite limited)
bandwidth, and the field produced becomes more directional at high frequencies. In choosing
transducers for an imager, therefore, a trade-off must be made between the range of frequen-
cies in the excitation pulse and the directionality of the detectors. In practical breast imaging
systems, because acoustic absorption attenuates the higher frequencies preferentially, lower
frequencies tend to be preferred, (typically below 5 MHz). The system modelled here uses rel-
atively low frequencies (0.75 MHz centre frequency) and assumes the emitters and detectors
are omni-directional. The excitation pulse and its spectrum are shown in figures 7(a) and (b).

There are three principal, practical, reasons for choosing this frequency range for the sim-
ulations. First, to match an experimental imager that is currently under construction. Second,
to limit the time taken to simulate the 3D data to about few days given the available hardware.
Third, when TOF images, such as we are producing here, are used as a starting point for full-
wave inversions, they must be able to use the time series recorded for the full-wave inversions.
When performing 3D image reconstruction with full-wave methods it is currently impractical
to use higher frequencies over volumes of this size as the forward and adjoint calculations are
too computationally demanding. Lower frequencies, however, can be modelled.

It is immediately clear that the effect of the chosen frequency range is that the pulse is not
tightly confined in time. When it has propagated through the heterogeneous breast medium
from the emitter to the detector, the long pulsewidth makes it harder to pick the time-of-arrival
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Figure 7. (a) The excitation pulse, and (b) its frequency spectrum. The red dash line
shows the centre frequency, and the green dash line shows the maximum frequency
supported by the computational grid. (Any energy at frequencies above the maximum
supported frequency is lost and does not propagate in the model.)

of the pulse at the detector. This is a non-trivial challenge in practice, and there are many meth-
ods devoted to accurate TOF picking. The method used here, and described in the appendix A,
was found to be robust for this simulated breast imaging time series data.

It is important to note that the performance of ray-based approaches relying on first-arrival
picking depends strongly on the properties of the excitation pulse. The decision to use lower
frequency excitation pulses therefore has the effect of introducing more uncertainty into the
TOF data that is used as the input to the image reconstruction. When it is possible to use
excitation pulses with higher frequencies and wider bandwidths, the TOF picking would be
expected to be more precise, having a knock-on beneficial effect on the reconstructed images.

5.3. Ultrasound tomography: image reconstruction procedure

The grid used for reconstruction consisted of 262 × 262 × 138 grid points with a spatial spac-
ing of 1 mm along all the Cartesian coordinates. (This is different from the grid used to simulate
the data to avoid the inverse crime, although this study does not use the same model for data
generation and image reconstruction anyway.)

Prior to the image reconstructions, a region of interest (ROI) that encompassed the
heterogeneous breast region was found, and the refractive index outside this region was
set to 1. To define the ROI, a rough image was computed using straight rays and a
binary image segmentation scheme based on an edge-based active contour method [10] was
applied on the reconstructed low-contrast image to separate the breast region (ROI) from
non-breast.

The initial guess for the refractive index was set to n̄ = 1, which corresponds to the known
sound speed in water (1500 m s−1). For each emitter, rays are computed only for receivers that
are at least 8 cm from the emitter, based on the idea that a ray linking closer points will not hit
the breast region, and is thus not useful in the image reconstruction. The image reconstructions
were performed in Matlab R2019a (The MathWorks, Inc.) using one 8-core Xeon E5-2620 v4
2.1 GHz CPU.

5.3.1. Straight-ray approach. For comparison with the bent-ray approach, the breast phantom
was reconstructed using straight rays, i.e. assuming that the medium is non-refracting and so
the rays travel along straight lines between the emission and reception points. To implement
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this, the initial direction dē in algorithm 2 was set to the unit vector pointing from the emission
point to the reception point, and the ray’s path was calculated using ∇n = 0 and Δs = 1 mm,
the grid spacing for image reconstruction. Because for this case, the forward operator A is
linear, the refractive index was found by minimising the least squares problem equation (4)
using a steepest descent algorithm, as explained in section 2.3. The sequence of reconstructed
images were calculated using a constraint for n̄ outside the ROI, and the difference from the
true refractive index was recorded after every 40 steepest descent iterations for comparison
with the bent-ray approaches. The straight-ray inversion algorithm was terminated when the
stopping condition in equation (7) was satisfied.

5.3.2. Bent-ray approaches. In the bent-ray approaches, the UST inversion for the refractive
index was solved as a sequence of linearised minimisation problems, equation (6), as described
in section 2.3. For each linearised subproblem q, the Jacobian matrix J was formed as described
in section 3.4.3 using the ray paths between all sufficiently separated emitter–receiver pairs.
Each linear subproblem was terminated after 400 steepest descent iterations.

Algorithm 2 was used with Δs = 1 mm to trace rays between each pair of emitters and
receivers. This was implemented with ∇n zero outside the ROI, assuming the medium outside
the ROI is homogeneous, to reduce the computational cost. For the first iteration in the UST
problem, iteration q = 0, the refractive index was set to be homogeneous (n̄ = 1) and thus the
first traced ray reaches the corresponding reception point directly (as in the straight-ray case).
For subsequent iterations, the discretised refractive index was smoothed by convolving with a
cube with sidelength equaling five grid points in all Cartesian directions.

For each ray, a ray-linking algorithm was then used to match the end point of the rays
to the corresponding reception points. Images were reconstructed for all three ray-linking
approaches. The ray-linking performances of the three ray-linking approaches are compared
in section 5.4 below, and the final reconstructed images using the fastest approach are given in
section 5.5.

5.4. Comparison of ray-linking algorithms

The image reconstructions described above were performed for all three ray-linking algo-
rithms, and the accuracy and convergence rates with which the algorithms honed in on the
target reception points were compared. All the rays were traced as described in section 5.3.2
above, and, for each ray, one of the ray-linking algorithms was used to match the end point
of the ray to its corresponding reception point. All the ray-linking algorithms were terminated
when the residual function E

[
dk

ē

]
reached a tolerance εlink = 1 × 10−6, or if the number of

ray-linking iterations k exceeded Nlink = 100.

5.4.1. Gauss–Newton. Ray-linking with the Gauss–Newton approach was performed using
algorithm 4. For each iteration k, algorithm 3 was used to adjust the perturbations enforced
on the initial angles for calculation of the finite differences, equation (47), in the Jacobian
matrix J via controlling the parameter τ . The algorithm was initialised by τ = 1 × 10−15 for
all k, and was recursively increased by a factor η = 10 until the conditions in equation (49)
were satisfied, with ϑ = 1 × 104 and ς = 1 × 10−4. This loop was unconditionally terminated
when the associated iteration number kh became greater than Nh = 5, i.e., when an increase of
τ up to 10−10 still does not sufficiently reduce the ill-conditioning ofHk. In these rare cases, the
ray-linking problem was restarted using an initial τ for all k 10 times greater than the previous
attempt. (For evaluation purposes, the iteration number k was not reset.) After calculation of
a well-conditioned Hessian matrix Hk, the initial direction was updated using equation (50)
with a step length αk satisfying equation (51) with μ = 1 × 10−4.
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Figure 8. Accuracy of the reconstructed images against the computation time (hours)
for the various reconstruction approaches, the relative error at each iteration REq.

5.4.2. Quasi-Newton. The quasi-Newton ray-linking approaches were performed using
algorithm 7. The matrix B0 was calculated using equation (47) with a fixed perturbation
of 1 × 10−6 for both components. The update directions were bounded using upper and
lower bounds l = d0

(0,q) − 0.2 radians and u = d0
(0,q) + 0.2 radians for all q, and ζ = 0.5,

κ = 1 × 10−6. For the BFGS-like approach, the approximate derivative matrix Bk was updated
using algorithm 5 with the parameter τ initialised by 1 and recursively reduced by a factor
η = 0.5 untilBk satisfied the conditions in equation (49). (The conditions used the same param-
eters as for the Gauss–Newton method except that the objective function value E

[
dk

ē

]
was

replaced by its gradient.) The smoothing loop was unconditionally terminated if the iteration
number kh exceeded Nh = 20.

For the Broyden-like approach, the derivative matrix Bk was updated using algorithm 6.
The parameter τ k was initialised as 1 and changed within a neighborhood τ̄ = 0.1 with an
increment parameter ηc = ±0.01 until the conditions in equation (49) were satisfied with the
same parameters as used for the BFGS-like approach. Figure (8) shows the accuracy of the
UST reconstruction algorithms for the iterations q = −1 used for defining the ROI, q = 0
which applies straight rays on initial guess n̄0 = 1, and q = 1, 2, 3 using different ray-linking
approaches.

5.4.3. Numerical results. Figure 9(a) shows the fraction of the refracted rays for which the end
point failed to reach sufficiently close to the reception point within the maximum permissible
number of iterations. The failures were calculated as a percentage of the number of rays that
hit the breast phantom and were therefore refracted, not as a percentage of all emitted rays. (If
the non-refracted rays passing through the water only were included, this percentage would be
much lower.) The results are shown for iterations q = 1, 2, 3. Subproblem q = 0, in which all
the rays are straight rays, does not appear in figure 9(a), and the stopping criterion of our UST
inverse problem, equation (7), was satisfied at iteration q = 3.

At the start of each iteration q, the rays need to be initialised. Rays previously successfully
linked (on iteration q − 1) used the same initial direction for iteration q. For rays that failed to
link previously, a decision was made between using the last initial direction reached on iteration
q − 1, dNlink

(̄e,q−1), and the first one, d0
(̄e,q−1), the ray giving the smaller value of the functional E ,
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Figure 9. Ray-linking comparisons: (a) failure rate (% of refracted rays that failed to
reach to within the required tolerance of the reception point within the maximum number
of iterations), (b) mean number of traced rays for each emission–reception pair.

equation (41), being used. The reason for not discarding outright the ray that failed to link is
that, typically, the algorithm has not diverged (because the singular values are controlled) but
is stuck in a local minimum often, but not always, close to the reception point. As shown in
figure 9(a) for all ray-linking algorithms, the fraction of rays that failed to reach the termination
tolerance was very low at less than 0.5%. Among these algorithms, the Broyden-like approach
performed best with fraction of failures on the order of 10−4 for all UST iterations. Note that it
would be possible to re-attempt the failed ray-linking problems after changing the size of the
smoothing window enforced on the refractive index distribution (just for those specific rays).
Because the portion of failures is very low, the increase in the computational cost of the whole
image reconstruction algorithm would be negligible. Nevertheless, this approach was not taken
in this work.

Figure 9(b) shows the mean number of traced rays to reach sufficiently close to the reception
point for each emission–reception pair. This includes the rays that failed to reach the stop-
ping threshold after Nlink iterations, but not the unrefracted rays that reach the reception points
directly, as these rays do not require ray-linking. Note that for the Gauss–Newton method,
the number of traced rays is larger because each ray-linking iteration required at least three
rays to be traced, two for the Jacobian and one for the residual, and maybe more in cases
when smoothing loop and the backtracking loop require additional function evaluations. For
the quasi-Newton methods, in contrast, each iteration was equivalent to tracing only one single
ray. The mean number of iterations for ray-linking using the Broyden-like approach was about
six, plus an additional single ray for initialisation of the derivative matrix. If the unrefracted
rays were also included the mean number of traced rays would be significantly lower.

5.5. Ultrasound tomography: results

5.5.1. Reconstructed sound speed (refractive index) images. Figures 10 and 11 show slices
through the 3D image volumes of the reconstructed breast phantom. The left column in
figure 10 shows slices through the phantom at depths of z = −7,−6,−5,−4 cm; the left
column in figure 11 shows slices through the phantom at x = 0 and y = −1 cm. The cen-
tre columns show the images reconstructed using straight rays (the images for which REq was
minimum are shown), and the right columns show the images reconstructed using the bent-ray
code. (Only the images reconstructed using the fastest ray-linking approach, Broyden-like, are
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Figure 10. Left: true sound speed distribution, centre: reconstructed using straight-ray
approach, RE∗ = 80.27%, right: reconstructed using bent-ray approach (algorithms 2,
6 and 7), RE∗ = 54.00%. ∗ denotes the optimal iteration. Slices through the 3D images
at (a)–(c): z = −7 cm, (d)–(f): z = −6 cm, (g)–(i) z = −5 cm, (j)–(l) z = −4 cm.

shown as all three approaches gave very similar images). All the figures are shown on the same
colour scale. A metric was used to quantifying the accuracy of the reconstructed images, the
squared relative error,

REq =
‖c̄q − c̄breast‖2

2

‖c̄w − c̄breast‖2
2

× 100%, (61)

32



Inverse Problems 36 (2020) 125010 A Javaherian et al

Figure 11. Left: true sound speed distribution, centre: reconstructed using straight-ray
approach, RE∗ = 80.27%, right: reconstructed using bent-ray approach (algorithms 2,
6 and 7), RE∗ = 54.00%. Slices through the 3D images at (a)–(c): x = 0 cm, (d)–(f):
y = −1 cm.

where c̄q is the reconstructed images of the sound speed after the subproblem q and c̄breast is
the sound speed of the breast phantom interpolated to the image reconstruction grid. Figure 8
shows REq against the elapsed computation time for the whole image for each approach tested:
straight rays and the three bent-ray methods (Gauss–Newton and the two quasi-Newton meth-
ods). The Broyden-like quasi-Newton method was also used using data evenly subsampled by
a factor of 2 for both emitters and receivers (a four-fold reduction in emitter–receiver pairs).
The computation time in this plot includes the calculation of the ROI at iteration q = −1, the
construction of the Jacobian matrices, and the steepest descent iterations for all subproblems
q, but not the TOF picking. Because an accelerated data processing approach was used (see
appendix A) the time for calculation of the times-of-flight was just a few minutes using two
CPUs. The results in figures 10 and 11 show the clear improvement that the bent-ray approach
has over the straight ray approach, both in terms of image resolution and quantitative accuracy.
Furthermore, as figure 8 shows, the sub-sampled bent-ray approach has reduced the squared
error, compared to the straight ray case, by about 25% for about the same computation time
and with four times fewer transducers.

5.5.2. Effect of signal-to-noise ratio on the image reconstruction. In this section, the ray-
linking method based on the Broyden-like approach, which was the fastest approach, was
used for image reconstruction from data with different signal-to-noise ratios (SNR). Figure 12
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Figure 12. Accuracy of the reconstructed images for different SNR in the data, the rel-
ative error at the optimal iteration RE∗. The Broyden-like approach was used for ray
linking.

shows the relative error (RE) of the optimal reconstructed images, showing—by comparing to
figure 8—that the images reconstructed using the bent-ray approach from the data sets with
SNR > 25 dB are more accurate than the image reconstructed using the straight approach from
the data sets with 40 dB SNR.

6. Discussion and conclusions

6.1. Contributions of this work

This paper presents a comprehensive derivation and study of a robust framework for large-
scale bent-ray UST in 3D for a hemispherical detector array. While ray-based methods have
been studied for decades, in geophysics in particular [57], most previous work for bio-
logical tissue has been restricted to 2D geometries or to obtaining reflection images. In
particular,

• Ray-tracing. It was shown that a dual-update approach (algorithm 1) to ray-tracing pro-
vided more accurate ray-paths than the traditional mixed-step approach (algorithm 2),
but for calculation of the acoustic length, which is dominated by the step size along
the ray, the algorithms performed similarly. Algorithm 2 was more computationally
efficient.

• Ray-linking. The ray-linking problem in 3D is challenging due to the high number of
degrees of freedom for the trajectory of rays [57]. An approach to ray-linking was pro-
posed that is novel in the way the problem is parameterised and solved for a hemi-spherical
detection surface, which could be straightforwardly generalised to any convex detection
surface. This problem was then analysed both as a minimisation, equation (41), and as a
root-finding problem, equation (40). A Gauss–Newton approach was proposed to solve
the former, and two derivative-free quasi-Newton approaches (Broyden-like and BFGS-
like) were proposed to solve the latter. A limitation for these quasi-Newton approaches
is the lack of efficient line search techniques. Here, a simple box constraint for mitigat-
ing nonmonotone behaviour and avoiding divergence was proposed and found to work
well.
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• Adaptive smoothing. To overcome ill-posedness in the ray-linking problem, novel adap-
tive smoothing schemes were proposed. These controlled the conditioning of the Hessian
in the Gauss–Newton scheme, and the approximate derivative matrix in the quasi-Newton
methods to ensure successful ray-linking. The fraction of ray-linking failures using the
Broyden-like approach is about 0.05% (figure 9). (This neglects the pairs for which the
first traced ray hits the reception point directly.) The mean number of rays needed for
ray-linking between an emitter–receiver pair was only about 7.

• Realistic simulation design. The approach and algorithms presented here are intended
to be practically useful, hence the emphasis is on robustness and efficiency at each stage
of the algorithm design. In order to ascertain their likely performance with real measured
data from a breast imager, a highly realistic scenario was simulated. First, the bowl array
and number of transducers were chosen to be of comparable size and number to those
used in practical breast imaging systems. Second, the phantom used was realistic of breast
tissue [40]. Third, the frequency spectrum of the excitation pulse was bandlimited, mim-
icking the frequency range of detected signals in practice, with a relatively low centre
frequency. (This was partly for data generation reasons—see below—and partly so that
the same data could later be used for 3D full-wave inversion, which is also restricted in
the usable frequency range for computational reasons.) Fourth, the data was simulated
using a broadband full-wave model [63] and a realistic level of noise was added to the
time series. Fifth, a commonly-used TOF-picking algorithm (with a minor modification
for speed-up and reduction of mispicks) was used, so the TOF values contained a realistic
level of variance—see appendix A.

• Image reconstruction. The nonlinear UST problem of estimating the sound speed was
solved as a series of linearised subproblems, each solved using a steepest descent scheme.
(Other methods, e.g. based on conjugate gradients or LSQR, could also be used but in our
experience the images produced by these approaches are similar, and, for practical cases,
they are more sensitive to the stopping criterion used for termination of each linearised
subproblem.) Figure 8 shows that in about the same computational time as the straight ray
case, a sub-sampled Broyden-like bent-ray approach reduced the squared error by about
25% with just 25% of the transducers. A comparison of the images in figures 10 and 11
shows that the bent-ray approach offers a significant improvement over the straight-ray
approach.

6.2. Limitations

As explained in section 3, the theory of ray tracing is based on a high-frequency approxima-
tion. UST systems designed for use with ray-based image reconstructions therefore often use
excitation pulses with a central frequency of about 2.5 MHz [15, 18, 58]. (The limit is the
preferential high frequency attenuation of tissue.) Here, an excitation pulse with a much lower
central frequency of 0.75 MHz was used in order to manage the computational cost of run-
ning full-wave acoustic simulations for 1024 emitters. Even so, these 1024 3D simulations
took about 4.5 d on an 8-GPU cluster (see section 5.2) with a fast C++ full-wave simulation
code [63]. The TOF-picking, and therefore the accuracy of the reconstructed images, would
be significantly improved were a more broadband excitation pulse with a higher central fre-
quency used (as may be the case with experimentally measured data). Unusually, therefore, for
a simulation study, the images shown here are unlikely to represent the best performance of the
algorithms, but are limited by the 3D data simulation. The TOF-picking will also be affected
by the signal-to-noise ratio of the data. Our numerical experience shows that gradual increases
in the noise level lead to a gradual degradation in image quality.
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The number of emitters was also limited by the computational demands, and so it was not
practical to study a scenario with a greater number of emitters, which are the case for example
in a translational-rotational setting geometry [18], to see how it would affect image accuracy.
By studying what happens when the number of emitters is reduced, it seems likely that there
would be some improvement with more emitters but not a dramatic change.

There are several steps in the algorithms where approximations are made. Any of these
could, under various circumstances, become the limiting factor in the image accuracy,
although for the simulations shown here the variance in the TOF estimates dominates the
error. These include the window used to smooth n̄, grid spacing and grid-to-ray interpo-
lation effects (the shape function used for trilinear interpolation is non-differentiable, but
represents a trade-off between accuracy and speed), spacing along the ray, and the stopping
criteria.

6.3. Summary

A set of robust and efficient algorithms have been designed for 3D bent-ray UST of the breast
(ray tracing, ray-linking, and solving for the sound speed). These have been validated and
tested with realistic simulated data. Because of the computational demands in generating the
data for the simulation, the algorithms could not be tested to the limit of their performance.
Nevertheless, the results demonstrate the usefulness of these algorithms for breast tomography
and the technique could be used either as an adjunct to a full-wave inversion or another modality
such as photoacoustic tomography, or as an efficient image reconstruction approach in its own
right.
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Appendix A. Time-of-flight picking algorithm

This appendix describes the method used for picking, from the measured time series, the time
of the first arrival of the ultrasound pulse after it has travelled through just water, T̄w, and
after it has travelled through the object in water, T̄object (see section 2.3). In this approach,
based on [33], the time at which the Akaike information criterion (AIC) is minimum is calcu-
lated in a time window that is expected to include the first arrival of the signal. This method
is called modified AIC. This paper is primarily concerned with the inverse problem of recon-
structing the sound speed when given TOF data, and not with the TOF picking itself. Many
picking algorithms have been proposed, and we do not present here an analysis of which pick-
ing algorithm is optimal. Nevertheless, our experience with signals simulated from the breast
phantom, section 5.2.2, and real signals measured in a 2D UST experiment, is that this approach
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Figure 13. Large (green) and small (black) time windows. The small window has a size
3 μs, which is almost equal to the temporal duration of the main lobe of the excitation
pulse. (a) Measured signal (b) the envelope of the measured signal. The SNR of the
signal is 40 dB.

outperforms many other first arrival picking approaches found in the geophysical literature, for
example those reviewed in [1]. We also found that the accuracy of the modified AIC approach
depends on the chosen time window.

Here, we propose an approach for selecting an appropriate time window by including infor-
mation about the amplitude of the envelope of the measured signal. We confirmed the effective-
ness of our approach on measured 2D UST data (not shown). Each measured signal is defined
using y with indices i ∈ {1, . . . , Nt}, and ti denoting the measurement time instant associated
with the index i.

Step 1: envelope. Normalise the amplitude of the signal, and then calculate the envelope
(absolute Hilbert transform).

Step 2: large window. For each measured signal, based on the distance between the relevant
emitter and receiver pair together with an assumption for the minimum and maximum sound
speed, choose a large time window. Here, 1400 and 1600 m s−1 were used for the minimum
and maximum values for the sound speed. (In practical cases it might be possible to reduce the
difference between these values; here the extremes are used, i.e. the minimum and maximum
values across the whole domain.)

Figure 13(a) shows a measured signal that is normalised in amplitude. The chosen large
window is shown by the green dash lines. ywl

is used to indicate the portion of the signal that
inside this large window.

Step 3: small window. Another window, the small time window, that is expected to include
the first-arrival of the signal is then chosen. The last point of the small window is chosen as
the first time index in the large window for which the amplitude of the envelope of ywl

is
greater than a threshold ath ∈ (0, 1). Here, ath is a user-adjusted parameter, and is set to 0.5.
For choosing the first time index for the small window, we move backward for a time equal
to the duration of the main lobe of the excitation pulse. Using the excitation pulse shown in
figure 7(a), the size of the small window was chosen to be 3 μs, and is shown by the black lines
in figures 13(a) and (b). The measured signal inside the small window is denoted yws

, and il
and ir denote the indices representing the left and right edges, respectively. Also, the number
of time indices in this window is represented by Nws .
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Figure 14. The chosen first arrival time tf from view of (a) the large window and (b) the
small window.

Step 4: modified Akaike information criterion (AIC). The modified AIC approach is then
applied to the portion of the signal that is confined to our small window, ysw , in order to calculate
the first arrival of the signal. Using AIC approach, Maeda’s formula is used to calculate the
AIC of the signal at time index i ∈ {il, . . . , ir} [41]

AIC(i′) = i log
(
σ2

(
y(1 : i′)

))
+ (Nt − i − 1) log

(
σ2

(
y(i′ + 1 : Nt)

))
, (62)

where σ2 denotes the variance. Following an approach proposed in [33], we calculate the min-
imum of AIC in our chosen small time window, and then choose another smaller window con-
taining the minimum, here referred to as the AIC window, with time indices i′, i′ ∈

{
i′l, . . . , i′r

}
with 1 <= i′l < i′r <= Nsw . Here, we choose NAIC as the closest integer to 0.25Nws . We then
calculate the weights

Υ(i′) =
e−�(i′)/2∑NAIC

i′=1 e−�(i′)/2
, (63)

where �(i′) = AIC(i′) − AICmin. The first-arrival time tf is then calculated using

tf =
NAIC∑
i′=1

Υ(i′)ti′ , (64)

where ti′ denotes the time corresponding to the index i′. Figures 14(a) and 14(b) show the
calculated first arrival times within the large and small windows respectively. The approach
explained above is applied separately to the two sets of data, collected from water alone and
with the object present, and the discrepancy between the first arrivals ΔT̄ is calculated and
used as data for solving the UST inverse problem (see section 2.3).
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