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Abstract
Quantitative photo-acoustic tomography (QPAT) seeks to reconstruct a 
distribution of optical attenuation coef!cients inside a sample from a set of 
time series of pressure data that is measured outside the sample. The associated 
inverse problems involve two steps, namely acoustic and optical, which can 
be solved separately or as a direct composite problem. We adopt the latter 
approach for realistic acoustic media that possess heterogeneous and often not 
accurately known distributions for sound speed and ambient density, as well 
as an attenuation following a frequency power law that is evident in tissue 
media. We use a diffusion approximation (DA) model for the optical portion 
of the problem. We solve the corresponding composite inverse problem using 
three total variation (TV) regularised optimisation approaches. Accordingly, 
we develop two Krylov-subspace inexact-Newton algorithms that utilise the 
Jacobian matrix in a matrix-free manner in order to handle the computational 
cost. Additionally, we use a gradient-based algorithm that computes a search 
direction using the L-BFGS method, and applies a TV regularisation based 
on the alternating direction method of multipliers (ADMM) as a benchmark, 
because this method is popular for QPAT and direct QPAT. The results indicate 
the superiority of the developed inexact Newton algorithms over gradient-
based quasi-Newton approaches for a comparable computational complexity.

Keywords: photoacoustic tomography, single-stage, realistic acoustic media, 
heterogeneous sound speed and density, acoustic absorption
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1. Introduction

Quantitative photo-acoustic tomography (QPAT) is a steadily growing hybrid imaging para-
digm that simultaneously takes advantage of the high spatial resolution provided by ultrasound 
imaging and the rich contrast attributed to optical imaging [48]. Typically, nanosecond-dura-
tion pulses of electromagnetic energy, in the visible or near-infrared ranges, are used to irridi-
ate a sample. Depending on the optical properties of the sample, a fraction of the optical 
energy is absorbed, and converted into heat [50]. The generated heat induces a local increase 
in pressure via thermo-elastic expansion effects [50]. Because of the elasticity of soft tissues, 
the locally induced pressures propagate outwards as acoustic waves, and carry information 
about the optical properties of the sample to the surface. These acoustic waves are measured in 
time by ultrasound sensors located outside the surface of the sample [48]. Given a set of time 
series of data at the boundary, the objective in QPAT is to calculate a quantitative image of a 
distribution of optical absorption coef!cients of the sample [48].

QPAT involves two distinct inverse problems, namely acoustic and optical. The acoustic 
inverse problem, often referred to as PAT, seeks to reconstruct a distribution of the spatially 
varying initial pressure from the boundary data. This is a linear inverse problem, for which 
a vast number of reconstruction methods are available [34]. For acoustically homogeneous 
media, there are exact inversion methods, e.g. back-projection [9, 28, 51, 52], or frequency-
domain techniques [53, 55]. Time reversal (TR) is a less restrictive approach since it can be 
adapted to heterogeneous acoustic media and arbitrary detection surfaces [9, 17, 23, 24, 54].  
Model-based iterative inversion approaches, in which the discrepancy between modeled 
data and the measured data is iteratively reduced, are also widely used in ill-posed cases that 
arise from data incompleteness, modelling errors, !nite sampling or noise [25]. The iterative 
methods can be categorised into convergent Neumann-series methods [33, 39] or variational 
(optim isation) approaches [7, 15, 21, 25, 49]. Further, the results of [39] show uniqueness and 
stability of recovery of the initial pressure distribution from data taken on an open subset of 
the boundary over a suf!ciently long time. This result does not include the absorption and dis-
persion that we have included in our model. As far as we are aware, uniqueness for recovery 
of the initial pressure in the situation considered in this paper, including realistic absorption 
and dispersion, variable acoustic parameters, and data on only part of the boundary, is open.

The optical inverse problem is devoted to further reconstruction of an image of distribu-
tions of optical absorption and scattering coef!cients from a recovered initial pressure dis-
tribution. This is a highly nonlinear and ill-posed inverse problem, and is commonly solved 
by iterative model-based approaches [19, 41, 42]. Using model-based approaches for solving 
these two inverse problems, an accurate, yet ef!cient, modelling of the associated physical 
processes is required [43].

A very accurate model for propagation of light is the radiative transfer equation (RTE), 
which has been used for the optical portion of 2D QPAT, e.g. [20, 35, 41]. An analysis of the 
optical inverse problem of QPAT using RTE has been given in [3]. Since RTE is computation-
ally very expensive, the applicability of this method for 3D QPAT is very limited. A diffusion 
approximation (DA) of the RTE is more ef!cient than RTE [43], and is thus more practical 
for 3D QPAT. In this study, we use the DA for modelling the optical portion of the inverse 
problem. The DA model is suf!cienly accurate when the medium is highly scattering and the 
scattering is near-isotropic [43]. The DA has been widely used as a light propagation model 
for QPAT [19, 22, 32, 41, 42].

The DA model is de!ned as a function of optical absorption and scattering coef!cients. It 
turns out that the recovery of both these coef!cients from one optical source and wavelength 
is non-unique [6]. To have uniqueness for the inversion, three approaches are used, i.e. the 
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assumption of the scattering coef!cient as known [12], using more than one optical wave-
length [5, 11, 32], or using more than one optical source [4, 18, 19]. In this study the latter 
approach is used. We note that [4] established uniqueness of recovery, as well as a Hölder 
stability result, for the optical absorption and scattering, assuming the Gruneisen parameter 
(see equation (3) below) is known and some regularity requirements are satis!ed, given two 
well-chosen optical sources. Furthermore, [4] also showed that even using additional sources 
it is not possible to determine all three of the optical absorption, scattering, and Gruneisen 
parameter.

For modelling the acoustic portion of the problem, the dependence of shape, spectrum and 
amplitude of propagating acoustic waves on properties of the medium [13], together with the 
highly nonlinear and ill-conditioned nature of the optical portion of the forward operator, 
motivates enriching the QPAT problem by simulation of tissue-realistic acoustic properties. To 
incorporate these effects, we use an acoustic model based on a linear system of three-coupled 
!rst-order wave equations which can be adapted to spatially varying sound speed and density 
[13, 40], and include two fractional Laplacian operators in order to account separately for 
acoustic absorption and dispersion following a frequency power law, which is evident in tis-
sue media [45, 46]. For a numerical implementation of this acoustic model, we use a k-space 
pseudo-spectral method, which is popular for iterative PAT because of the high ef!ciency 
arising from a requirement of only two grid points per wave-length for de!ning a !eld, and a 
fast computation of the spatial gradient in the frequency domain [13, 40].

For realistic problems of QPAT, for example, when data are available merely on a part of 
the boundary, or when acoustic properties of the medium are not known exactly, the recon-
struction of initial pressure distribution using the acoustic portion of the inverse problem is not 
suf!ciently accurate to further serve as data for the optical inverse problem [18]. It turns out 
that a direct estimation of the optical coef!cients from time series of measured data, referred 
to here as direct QPAT, is more stable than classical variants of QPAT, in which the two inverse 
problems are solved distinctly. The direct QPAT has thus recently received much attention, 
where the forward operator is de!ned using a composite opto-acoustic model [18, 20, 31].  
Using direct QPAT, it will be possible to incorporate prior information about the optical 
parameters into the acoustic inverse problem [18], and mutually the optical inverse problem 
can utilise information about noise included in the boundary acoustic data [31]. Additionally, 
the acoustic portion of the inverse problem can bene!t from multi-source (resp. multi-wave-
length) con!gurations, since the optical coef!cients (resp. chromophore concentrations), as 
opposed to the initial pressure distribution, are independent of the changes in optical illumina-
tion (resp. wavelength) [16].

In [37, 38], a linear Born approximation of the DA model based on a Green’s function 
approach is coupled with an acoustic model that uses a free-space Green’s function method in 
order to directly reconstruct perturbations in the optical absorption and diffusion coef!cients 
from time series of measured acoustic data. A simultaneous reconstruction of perturbations in 
optical absorption coef!cient and sound speed given an optical scattering coef!cient was also 
studied using a Born approximation [16]. To the best of our knowledge, existing studies for the 
direct variant of QPAT have been so far limited to homogeneous and non-attenuating acoustic 
media, and the acoustic portion of the forward operator and its adjoint are computed based on 
exact formulae using Green’s function approaches [18, 20, 31].

The optimisation approaches for QPAT can be categorised into linearised (Jacobian-based) 
or nonlinear (gradient-based) approaches. A majority of Jacobian-based methods for the opti-
cal portion of QPAT can be !t into a class of Gauss–Newton methods [36]. For application 
of these methods to classical (resp. direct) QPAT, see [32, 41, 42] (resp. [31]). These studies 
utilise an explicit form of the Jacobian matrix. For direct QPAT, because of a very large size 
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of time series of measured data, an explicit computation and storage of the Jacobian matrix is 
very expensive [31].

To avoid this problem, nonlinear gradient-based approaches have received much interest 
for the direct problem of QPAT [18, 19]. A majority of these approaches use a search direction 
based on quasi-Newton methods which utilise only gradient information for an approximation 
of the Hessian matrix, and are thus memory-ef!cient [18, 19]. The computation of the gradient 
for direct QPAT is based on an opto-acoustic forward operator and an acousto-optic adjoint of 
the Fréchet derivative of the forward operator [20]. A memory-ef!cient quasi-Newton method 
is limited-memory BFGS (L-BFGS), for which the inverse of Hessian matrix is approximated 
using the gradient information stored in a user-adjusted number of iterations. Using a total 
variation (TV) regularisation approach based on an alternating direction method of multipliers 
(ADMM), L-BFGS has been used for computing an associated search direction for the classi-
cal QPAT [19] and direct QPAT [18].

Contribution. Here, we develop two preconditioned inexact Newton (Newton–Krylov) algo-
rithms for solving the direct problem of QPAT. In our !rst approach, the residual function 
is iteratively linearised, and each linearised subproblem is solved using a subspace Krylov 
method in a matrix-free manner, for which a total variation matrix is used as a precondi-
tioner for accelerating the convergence of the Krylov method. We use the Preconditioned 
Conjugate Gradient (PCG) as the Krylov method, for which a TV-based preconditioning is 
applied using the Lagged Diffusivity (LD) method [47]. Our second approach uses two lin-
earisations, the !rst of which is enforced to the nonlinear residual function, and the second 
is applied in order to handle the nonlinearity of a TV functional using a primal-dual interior 
point method (PD-IPM). Using this approach, for each linearisation of the residual function, 
a sequence of normal equations is derived, and is solved using a subspace Krylov method in 
a matrix-free manner. We solve the arising normal equations using a PCG method, but we 
emphasise that an extension to other Krylov methods, e.g. a preconditioned variant of LSQR 
[2], is straightforward.

We implement our algorithms by assuming tissue realistic but erroneous properties for 
the acoustic medium with a limited-view setting for boundary measurements. We model the 
acoustic portion of the forward operator using a linear system of three-coupled !rst-order 
wave equations that can be adapted to heterogeneous media and account for acoustic absorp-
tion and dispersion following a frequency power law using two fractional Laplacians [45]. 
This acoustic model is very popular for PAT since it simulates an acoustic attenuation that is 
evident in many materials of interest including tissues [45]. To the best of our knowledge, this 
is the !rst study for direct QPAT that uses an acoustic model that accounts for tissue-realistic 
acoustic properties of the medium. For the acoustic portion of the problem, we include the 
action of perfectly matched layers (PMLs) in calculation of the adjoint operator. To the best of 
our knowledge, these effects have not been accounted for in existing studies (see [25]).

It is worth mentioning that a singular value decomposition (SVD) analysis on the acoustic 
forward operator we use has shown that as time steps increase some of the singular values 
of the forward operator become very small [46], and make the acoustic forward operator ill-
conditioned. However, the use of an acoustically realistic forward operator may be necessary 
for direct QPAT, since the optical portion of the forward operator is highly nonlinear and ill-
conditioned, and thus errors in acoustic modelling may quickly grow in the inversion process, 
and dominate signal data.

Our numerical results show that the developed preconditioned Newton–Krylov optim-
isation algorithms perform much better than nonlinear quasi-Newton methods that have been 
used in existing studies for direct QPAT. The algorithm we use as a benchmark utilises a TV 
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regularisation based on an ADMM method, together with a search direction using an L-BFGS 
method. (See [18, 19] for application on classical QPAT and direct QPAT, respectively.)

2. Direct QPAT on a continuous domain

In this section, we de!ne our forward operator as a composite map on a continuous domain.

2.1. Modelling the optical portion of the problem

The time scale for propagation of acoustic waves is on the order of a micro-second, which is 
three orders of magnitude larger than the time-scale for illumination, propagation and absorp-
tion of light. Therefore, the generated pressure distribution is regarded as instantaneous for 
the acoustic problem, and is referred to as initial pressure distribution p 0. One way to de!ne a 
forward operator for our QPAT problem is to combine the physics of the optical and acoustic 
portions of the problem using a simple composition of two maps, one modelling propagation 
and absorption of optical photons and the other modelling propagation of acoustic waves [20].

Accordingly, let Ω ⊂ Rd  be a bounded domain with Lipschitz boundary ∂Ω and d ∈ {2, 3} 
the spatial dimension. Additionally, let φ ∈ H1(Ω) denote the photon density. For modelling 
the propagation of light, we use a time-independent variant of DA equations with the well-
known Robin boundary condition [41]. This is written as

−∇ · κ(r)∇φ(r) + µ(r)φ(r) = 0, r ∈ Ω

φ(r) +
1

2γd
κ(r)

∂φ(r)
∂n̂

= I/γd, r ∈ ∂Ω,
 (1)

where µ(r),κ(r) ∈ L∞
+ (Ω) denote the positive-valued optical absorption and diffusion coef-

!cients, respectively. Here, r denotes the spatial position. Additionally, γd is a dimension-
dependent factor (γ2 = 1/π  and γ3 = 1/4), n̂ is an outward unit normal, and I is an inward 
directed diffuse boundary current [29, 43]. Following the absorption of photons, a spatially 
varying heating !eld h(r) is generated in the form

h[κ,µ, I](r) = µ(r)φ[κ,µ, I](r). (2)

Because of thermo-elastic expansion effects, the induced spatially varying heating !eld causes 
an instant local increase in pressure that follows

p0(r) =
{
Γ(r)h(r), r ∈ Ω

0, r ∈ Rd\Ω, (3)

where Γ is the Gruneisen parameter, and describes the ef!ciency of conversion of heat into 
pressure [20]. Here, we assume Γ(r) constant and rescaled to 1, and thus p 0(r)  =  h(r) [20].

2.2. Modelling the acoustic portion of the problem

We use a linear system of three-coupled !rst-order equations for describing the propagation of 
acoustic wave!elds in an acoustically heterogeneous and lossy medium [45, 46]. To explain 
this, we de!ne our !elds, which are the acoustic pressure !eld p(r, t), particle velocity vector 
v(r, t) and acoustic density ρ(r, t), where r ∈ Rd  and t ∈ [0,∞) denote the spatial position 
and time. Additionally, we de!ne the medium’s acoustic parameters as sound speed c0(r), 
 ambient density ρ0(r), attenuation coef!cient α0(r), and frequency power law exponent y . 
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The acoustic wave!eld propagation is now modeled by three equations, i.e. linearised equa-
tion of motion (conservation of momentum)

∂v
∂t

(r, t) = − 1
ρ0(r)

∇p(r, t),
 (4)

linearised equation of continuity (conservation of mass)

∂ρ

∂t
(r, t) = −ρ0(r)∇ · v(r, t), (5)

and equation of state

p(r, t) = c0(r)2
{

1 − τ(r)
∂

∂t
(−∇2)

y
2 −1 − η(r)(−∇2)

y−1
2

}
ρ(r, t)

 
(6)

with initial conditions

p(r, 0) = p0(r), v(r, 0) = 0. (7)

Here, τ(r) and η(r) are, respectively the absorption and dispersion proportionality coef!-
cients, and are given by

τ(r) = −2α0(r)c0(r)y−1, η(r) = 2α0(r)c0(r)y tan(πy/2). (8)

2.3. Opto-acoustic forward operator

Having given the models for describing the optical and acoustic portions of the forward opera-
tor, we now de!ne our opto-acoustic forward operator. To do this, we also require the mea-
surement operator M, which at each time step maps the pressure p(r, t) to the measured data 
at sensors. The time series of acoustic data are denoted by P̂ ∈ RNsNt with Ns, Nt ∈ N the 
number of detectors and the number of measurement time instants, respectively.

De"nition 1. For a !xed illumination I, the optical portion of the forward operator is a 
nonlinear map in the form

Λo : L∞
+ (Ω)× L∞

+ (Ω) → L2(Ω)

Λo[κ,µ](r) = h(r),
 (9)

where h(r) is given by (2). Also, the acoustic portion of the forward operator is a linear map 
in the form [1]

Λa : L2(Ω) → RNsNt ,
Λa[ p0](r, t) = Mp(r, t).
 (10)

Using (9) and (10), the coupled opto-acoustic forward operator is de!ned by the composite 
map Λ, i.e.

Λ : L∞
+ (Ω)× L∞

+ (Ω) → RNsNt ,

Λ[κ,µ] = Λa
[
Λo[κ,µ]

]
.

 (11)
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We note that, as already mentioned in the introduction, by the results of [39] and [4] if we 
consider a non-discretised version of the measurements, eliminate the absorption and disper-
sion from our acoustic model, and add some regularity requirements on the parameters, then 
the forward map becomes injective. Injectivity in our situation, either with discretised meas-
urements or discretised κ and µ is, to our knowledge, an open problem. However we will not 
consider this in the current paper, but rather focus on numerical methods.

2.4. Model-based approach for inverse problem

The inverse problem of direct QPAT is a simultaneous reconstruction of µ,κ from P̂ = Λ[κ,µ]. 
Applying a model-based approach for solving this problem, the objective is to minimise an 
error functional, the sum of squared differences between modeled data and the measured data 
via an iterative adjustment of the unknown optical coef!cients µ,κ. Using Nq optical illumina-
tions, the error functional is de!ned by [18]

ε(κ,µ) =
1
2

Nq∑

q=1

∥∥∥Λq[κ,µ]− P̂q

∥∥∥
2

2
, (12)

where q indexes a set of Nq illuminations Iq with corresponding acoustic data P̂q [18]. We 
combine the unknown parameters as x = [κ,µ] ∈ L∞

+ (Ω)× L∞
+ (Ω).

Let DxΛ denote the Fréchet derivative of the forward operator at x. The Fréchet derivative 
of ε at x is given by

Dxε =

Nq∑

q=1

D∗
xΛq

(
Λq[x]− P̂q

)
. (13)

Here, D∗
xΛ denotes the adjoint of the Fréchet derivative of the forward operator, and is given 

by

D∗
xΛ[P̂] = D∗

xΛo[Λ
∗
a [P̂]], (14)

where Λ∗
a denotes the adjoint of the linear acoustic forward operator Λa (10) and D∗

xΛo repre-
sents the adjoint of the Fréchet derivative of the optical forward operator (9) both with respect 
to the L2(Ω) inner product. Formulae for Λ∗

a can be found in [26], while for D∗
xΛo we have 

the next lemma.

Lemma 1. Let us denote the solution of (1) for the !xed illumination I, diffusion κ0 and ab-
sorption µ0 by φ0. Then the Fréchet derivative of the optical portion of the forward operator 
DxΛo  at x0 = [κ0,µ0] applied to the perturbations δκ and δµ is given by

D[κ0,µ0]Λo

(
δκ

δµ

)
= δµ(r)φ0(r) + µ0(r)δφ(r), (15)

where δφ(r) satis!es

−∇ · κ0(r)∇δφ(r) + µ0(r)δφ(r) = ∇ · δκ(r)∇φ0(r)− δµ(r)φ0(r), r ∈ Ω

δφ(r) +
1

2γd
κ0(r)

∂δφ(r)
∂n̂

= − 1
2γd

δκ(r)
∂φ0(r)
∂n̂

, r ∈ ∂Ω.

 

(16)
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The adjoint map D∗
xΛo can then be calculated from

D[κ0,µ0]
∗Λoh(r) =

(
∇φ0(r) ·∇h̃(r)

φ0(r)h̃(r) + φ0(r)h(r)

)
, (17)

where the adjoint !eld h̃(r) satis!es

−∇ · κ0(r)∇h̃(r) + µ0(r)h̃(r) = −µ0(r)h(r), r ∈ Ω

h̃(r) +
1

2γd
κ0(r)

∂h̃(r)
∂n̂

= 0, r ∈ ∂Ω.
 

(18)

Lemma 1 can be proven using integration by parts.

3. Numerical computation

3.1. Numerical computation of the optical operators (Λo, DxΛo and D∗
xΛo)

3.1.1. Variational formulae. We use a !rst-order Galerkin !nite element method (FEM) for 
approximation of the optical portion of our QPAT problem. For an approximation of Λo, a 
variational form of (1) is derived, i.e.

∫

Ω
µ0φ0ν dr +

∫

Ω
κ0∇φ0 ·∇ν dr + 2γd

∫

∂Ω
φ0ν ds =

∫

∂Ω
2Isν ds, (19)

where ν ∈ H1(Ω) is a test function. Additionally, for an approximation of the Fréchet deriva-
tive operator DxΛo  using FEM, a variational form of (16) is derived, i.e.
∫

Ω
µ0δφνdr +

∫

Ω
κ0∇δφ ·∇νdr + 2γd

∫

∂Ω
δφνds = −

∫

Ω
δκ∇φ0 ·∇νdr −

∫

Ω
δµφ0νdr. (20)

In the same way, for an approximation of D∗
xΛo, a variational form of (18) is obtained, i.e.

∫

Ω
µ0h̃νdr +

∫

Ω
κ0∇h̃ ·∇νdr + 2γd

∫

∂Ω
h̃νds = −

∫

Ω
µ0hνdr. (21)

3.1.2. Discretisation of optical coefficients and !elds. Let T denote a triangulation of Ω with 
Ne elements, i.e. T =

{
tj | j = 1, ..., Ne

}
. Applying an approximation using FEM, we discretise 

the optical coef!cients in a piecewise-constant basis {χj = 1tj | j = 1, ..., Ne}. Using this, the 
optical !elds are approximated as [41]

κ0(r) ≈ κe(r) =
Ne∑

j=1

κ̂jχj(r)

µ0(r) ≈ µe(r) =
Ne∑

j=1

µ̂jχj(r),

 
(22)

where κ̂j and µ̂j denote the discretised absorption and diffusion coef!cients at element tj . 
Additionally, φ0(r) is approximated in a piecewise-linear basis {ϕk | k = 1, ..., Nn} in the form
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φ0(r) ≈ φh
0(r) =

Nn∑

k=1

Φ0,kϕk(r), (23)

where Φ0,k denotes the discretised photon density at node k, and Nn is the total number of 
nodes. We also approximate the adjoint !eld h̃(r) in a piecewise-linear basis as

h̃(r) ≈ h̃h(r) =
Nn∑

k=1

H̃kϕk(r). (24)

In the sequel, a !eld that is discretised at nodes as in (23) and (24) (resp. elements as in (22)) 
is called a nodal (resp. elemental) vector. In the same way as the continuous formulae, we use 
δ for signifying a perturbation in a discretised coef!cient or !eld.

3.1.3. Matrix form of variational formulae. For a discretisation of the problem, a matrix form 
of the variational formulae in section 3.1.1 is derived [41, 43]. To do this, we de!ne a system 
matrix Ao in the form

Ao[κ
e,µe] = K[κe] + C[µe] + R (25)

with

Kkp[κ
e] =

∫

Ω
κe∇ϕk ·∇ϕp dr

Ckp[µ
e] =

∫

Ω
µeϕkϕp dr

Rkp = 2γd

∫

∂Ω
ϕkϕp ds

Gp =

∫

∂Ω
2Isϕp ds,

 

(26)

where p , k  =  1,...,Nn denote nodal indices. We also de!ne matrix Aδ,o in the form

Aδ,o[δκ
e, δµe] = K[δκe] + C[δµe]. (27)

Using the above, we now de!ne the discretised optical forward operators. We stress that this 
de!nition is setting the notation for the discretised operators, which will be described in detail 
below.

De"nition 2. A discretisation of the optical forward operator Λo gives a map from a vector 
space of discretised (elemental) optical coef!cients to a vector space of discretised (elemental) 
heating !eld coef!cients in the form

Ho : RNe × RNe → RNe

H = Ho[κ̂, µ̂].
 (28)

Additionally, a discretisation of the Fréchet derivative operator DxΛo  at X = [κ̂, µ̂] applied on 
perturbation δX = [δκ̂, δµ̂] gives

Jo : RNe × RNe → RNe

δH = Jo[κ̂, µ̂]
(
δκ̂

δµ̂

)
.

 (29)
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Now, we give further details on these operators.

3.1.4. Discretised forward operator Ho[κ0,µ0]. Plugging (23) into (19), together with taking 
ν(r) to be a basis function ϕp(r), gives a linear system

Ao[κ
e,µe]Φ0 = G. (30)

Using this, the heating !eld is approximated in a piecewise constant basis as [18, 19, 41]

H = µ̂ ◦ IΦ. (31)

Here, ! denotes an element-wise product and I is a node-to-element map. For I we use the L2 
orthogonal projection from the space of nodal representations to elemental representations. 
The action of I on a nodal vector θ restricted at element j  is in the form

(Iθ)j =
1

d + 1

∑

p∈!( j)

θp (32)

where p  denotes the nodal index, and !( j) is a set of d  +  1 nodes that correspond to element 
j . We also de!ne I+ as a map from the space of elemental vectors to nodal vectors. The action 
of I+ on an elemental vector Θ restricted at node p  is given by

(
I+Θ

)
p =

Ne∑

j=1

Θj

∫

tj
ϕp(r)dr =

1
d + 1

∑

j∈l( p)

SjΘj, (33)

where S is the vector of volume of elements, and l( p) is the set of elements that are connected 
to node p . Also note that from (32) and (33), I+Θ = IT (S ◦Θ), where T denotes the trans-
pose. In the sequel, we will use the notation X = [κ̂, µ̂] and δX = [δκ̂, δµ̂].

3.1.5. The matrix-free action of Jo[X ] on perturbation δX . Here, we explain how the action of 
Jo[X] on a perturbation δX  is approximated in a matrix-free manner. To do this, we approxi-
mate the perturbation !eld δφ(r) in a piecewise-linear basis in the same way as (23). Plugging 
the nodal vector δΦ into (20) gives a linear system for calculation of δΦ in the form

Ao[κ
e,µe]δΦ = −Aδ,o[δκ

e, δµe]Φ0, (34)

where Φ0 has been computed using (30). Finally, the perturbation in the heating !eld δH  is 
computed as

δH = δµ̂ ◦ IΦ0 + µ̂ ◦ IδΦ. (35)

3.1.6. The matrix-free action of J∗o[X ] on H. Here we explain how the action of the adjoint of 
Fréchet derivative J∗o on an elemental vector H can be approximated using an adjoint-then-
discretise method. Plugging H̃  from (24) into the variational form of the adjoint formula (21) 
gives a linear system in the form

A0[κ
e,µe]H̃ = −G, (36)

where

G = I+(µ̂0 ◦ H). (37)

Finally, given the nodal vectors H̃  and Φ0, we will approximate the action of the adjoint using 
(17). For this we must choose how to calculate the products that appear in (17), and then how 
to project onto the space of elemental vectors. To do this, we will also use the matrices
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∂Ao

∂κ̂j
=

∫

tj
∇ϕk ·∇ϕp dr (38)

and

∂Ao

∂µ̂j
=

∫

tj
ϕkϕp dr. (39)

If the products in (17) are calculated by !rst multiplying the nodal functions, and then 
using an L2-orthogonal projection on the space of elemental functions, then for the discretisa-
tion of the adjoint we have

J∗o(H)j =

(
1
Sj

H̃T ∂Ao
∂κ̂j

Φ0
1
Sj

H̃T ∂Ao
∂µ̂j

Φ0 + HT(IΦ0)

)
. (40)

Remark 1. Using a discretise-then-adjoint method, the adjoint of Fréchet derivative of the 
optical forward operator will be in the form (see [18], equation (27))

J∗o,dis(H)j =




[
(IA−1

o )T(µ̂0 ◦ H)
]T
(
−∂Ao

∂κ̂j

)
Φ0

[
(IA−1

o )T(µ̂0 ◦ H)
]T
(
−∂Ao

∂µ̂j

)
Φ0 + HT(IΦ0)



 . (41)

From (36), (37) and the fact that I+Θ = IT (S ◦Θ) using (33), it can be shown that (41) 
matches (40).

Remark 2. From a theoretical point of view, it is perhaps more natural to make the pro-
jections from nodal to elemental representations in the L∞ norm since κ,µ ∈ L∞

+ . The κ 
component of the adjoint, i.e. ∇φ0(r) ·∇h̃(r), is constant at each element, and thus the L∞ 
projection is the same as the L2 orthogonal projection. However, the two terms included in 
the µ component of the adjoint, i.e. φ0(r)h(r) + φ0(r)h̃(r), will be different if L∞ projection 
is used. Our simulation experiment showed us that an L∞ projection gives almost the same 
reconstruction as the L2-orthogonal projection, but dramatically increases the computational 
cost. Therefore, we used the L2-orthogonal projection for approximation of the unknown opti-
cal coef!cients.

3.2. Numerical computation of the acoustic operators (Λa and its adjoint)

Here, for a numerical computation of the acoustic portion of the problem, we used a k-space 
pseudo-spectral time-domain (PSTD) method [13, 40]. Applying this method, the spatial gra-
dients are approximated in a frequency domain using a fast Fourier transform (FFT), and the 
temporal gradients are approximated using !nite difference schemes [13, 40].

3.2.1. Discretisation of acoustic !elds. We approximate the acoustic forward and 
adjoint operators on a uniform rectilinear grid staggered in space and time [40]. 
We denote the position of a given grid point in Cartesian coordinates by rζ, where 
ζ = (ζ1, ..., ζd) ∈ {1, ..., N1}× ... × {1, ..., Nd} with N =

∏d
i=1 Ni the total number of grid 

points. We denote the grid separation along direction i by ∆ri . The time accessible to detectors, 
i.e. t ∈ (0, T), is sampled with a temporal separation of ∆t  so that the time step n corresponds 
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to the time instant tn = n∆t . To accommodate a staggered spatial grid, we introduce operator 
Ti, which shifts the point r by ∆ri/2 in coordinate i, and acts on a !eld as

Tif (r) = f (Tir). (42)

To accommodate a staggered temporal grid, we shift the !eld at time tn by −∆t/2, i.e. 
tn−1/2 = n∆t −∆t/2. Based on the above, the discretised particle velocity vector at time step 
n is denoted by v(i;ζ;n−1/2) ∈ Rd

i × RN
ζ × RNt+1

n . This approximates the actual velocity on the 
staggered spatial grid as

v(i;ζ;n−1/2) ≈ Tivi(rζ , tn−1/2). (43)

We also approximate the acoustic density as ρ(i;ζ;n) ≈ ρi(rζ , tn) ∈ Rd
i × RN

ζ × RNt+1
n  and the 

scalar pressure as p(ζ;n) ≈ p(rζ , tn) ∈ RN
ζ × RNt+1

n . (Note that acoustic density is not a physi-
cal vector, but it is changed to a vector to accommodate the numerical method.)

3.2.2. Discretisation of medium’s acoustic properties. We de!ne a discretised variant of 
acoustic parameters as diagonal matrices of size N × N  acting on the spatial index ζ of acous-
tic !elds. We denote a discretised variant of c0(r) by c̄. Also, an approximation of the ambient 
density ρ0(r) is denoted by ρ̄ . We also de!ne ρ0(r) on a spatial grid staggered in coordinate 
i by ρ̄i .

Additionally, we de!ne a discretised variant of the absorption and dispersion proportion-
ality coef!cients as τ̄  and η̄ , respectively. Also, a discretisation of the associated fractional 
Laplacian operators N × N  is given by

Yabs = F−1 {ky−2F{·}
}

, Ydis = F−1 {ky−1F{·}
}

, (44)

where F and F−1 denote the FFT and its inverse, respectively. Applying the k-space pseudo-
spectral method on a staggered spatial grid, the spatial gradient in coordinate i is in the form

∂{·}
∂r±i

= F−1
{

ikie±iki∆ri/2sinc (c̄refk∆t/2)F{·}
}

, (45)

where sinc(c̄refk∆t)/2 enforces a k-space correction to the spatial gradient using a refer-
ence sound speed c̄ref  in order to minimise the numerical dispersion errors accumulated by  
the temporal integrations [40]. For further details on the k-space pseudo-spectral method, see 
[13, 40].

Because of the computation of the spatial derivatives via an FFT, wave wrapping may 
occur, i.e. the acoustic waves leaving one side of the grid reenter the opposite side. To avoid 
wave wrapping, an absorbing boundary condition, referred to as perfectly matched layer 
(PML), is added to each side of the grid. Here, the action of a PML on a !eld in coordinate i 
is denoted by Ai ∈ RN×N . This is de!ned as [40]

Ai = diag
(

e−αa,i∆t/2
)

, (46)

where αa,i is the attenuation enforced by the PML in coordinate i.
Having de!ned a discretisation of the optical forward operator, as well as acoustic !elds 

and medium, we now complete the de!nition of our discretised composite operator.

De"nition 3. A discretisation of the composite opto-acoustic forward operator Λ gives a 
map from optical coef!cients to a set of time series of measured data in the form
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H : RNe × RNe → RNsNt

P̂ = HaHo[X],
 (47)

where Ho and Ha represent the discretised optical and acoustic forward operators, respec-
tively. Also, an operator representing a discretisation of the Fréchet derivative of the forward 
operator DXΛ is de!ned by

J : RNe × RNe → RNsNt

δP̂ = HaJo[X]δX.
 (48)

Using (48), we will use as a discretisation of the adjoint of Frećhet derivative operator the map

J∗ : RNsNt → RNe × RNe

∂X = J∗o [X]H∗
a

(
∂P̂
)

.
 (49)

3.2.3. Numerical computation of the acoustic forward operator Ha. We now explain a dis-
cretisation of the acoustic forward operator (Ha). We will use this later for calculation of 
the acoustic adjoint operator. For a numerical implementation of the acoustic forward opera-
tor given by (4)–(7) using a k-space pseudo-spectral method, we used an open-source code, 
which is freely available on the k-Wave website [44].

Using this code, the discretised initial pressure distribution at t  =  0, denoted by P0 is 
applied as an injection of mass, referred to as additive source. To do this, P0 must be split over 
two time steps n = {−1/2,+1/2}. (See [1], appendix B, or the k-Wave manual [44]). This 
gives a source in coordinate i as [1]

s(i;ζ;n+1/2) =

{ 1
2d∆t c̄2 SP0 n = −1, 0
0 otherwise,

 (50)

where S is a symmetric smoothing operator that is applied in order to mitigate unexpected 
oscillations of P0. (See the k-Wave manual in [44]). Additionally, since si is added to the mass 
equation, a factor 1

∆t c̄2  has been applied in order to account for the conversion of units from 
pressure to the time rate of density (see [1], appendix B, or the k-Wave manual in [44]). Using 
the de!nitions given above, the calculation of Ha proceeds as follows.

Start at iterate n  =  −1 with initial conditions p(ζ;n=−1) = 0, v(i;ζ;n=−3/2) = 0 and 
ρ(i;ζ;n=−1) = 0, and terminate at iterate n  =  Nt  −  2.

 1.  Update the particle velocity vector !eld (conservation of momentum (4)):

v(i;ζ;n+ 1
2 )

= Ai

[
Ai v(i;ζ;n− 1

2 )
− ∆t

ρ̄i

∂

∂r+i
p(ζ;n)

]
. (51)

 2.  Update the acoustic density !eld (conservation of mass (5)) also adding source:

ρ(i;ζ;n+1) = Ai

[
Ai ρ(i;ζ;n) −∆tρ̄

∂

∂r−i
v(i;ζ;n+ 1

2 )

]
+ ∆t s(i;ζ;n+1/2). (52)

 3.  Update the scalar pressure !eld (equation of state (6)):

p(ζ;n+1) = c̄2
[
(IN − η̄Ydis)

d∑

i=1

ρ(i;ζ;n+1) + τ̄Yabs

d∑

i=1

Aiρ̄
∂

∂r−i
v(i;ζ;n+ 1

2 )

]
, (53)
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  where IN denotes an identity matrix of size N × N , and the last term is actually the action 
of τ̄Yabs on 

∑d
i=1

∂
∂tρ(i;ζ;n+1), and is derived from (52).

 4.  Compute the measured pressure at detectors: This is de!ned using

P̂n+1 = Mp(ζ;n+1), (54)

  where M denotes a discretised variant of M (see section 2.3), and includes an interpo-
lation operator for mapping the acoustic pressure !eld from grid points to position of 
ultrasound detectors. It is worth mentioning that M also depends on the size and prop-
erties of detectors. These effects are neglected in our study by assuming the detectors 
sample the pressure pointwise.

3.2.4. A discretise-then-adjoint method for derivation of the acoustic adjoint operator. Hav-
ing de!ned a discretisation of the acoustic forward operator (Ha), we now explain how to 
calculate the acoustic adjoint operator (H∗

a) using a discretise-then-adjoint method. The deri-
vation of H∗

a in this section is a modi!cation to the study of [25] in the sense that the effects of 
the PMLs and an additive source are incorporated in calculation of the adjoint. Additionally, 
in contrast to [25], we will represent H∗

a as a discretised linear system of PDEs, the same as 
our representation for Ha [25].

To derive this adjoint, a matrix form of Ha must be derived using the details given in 
section 3.2.3. To do this, we start with de!nition of diagonal matrices C = c̄2 ∈ RN×N  and 
Q ∈ RdN×dN with diagonal a d-times stack of diagonals of ρ̄ ∈ RN×N. Also, we de!ne a diago-
nal matrix Qs ∈ RdN×dN  with diagonal a stack of diagonals of ρ̄i, (i ∈ {1, ..., d}). We will also 
use A ∈ RdN×dN as a diagonal matrix with diagonal a stack of diagonals of Ai (i ∈ {1, ..., d}).

We now de!ne a stack of coordinate-dependent particle velocity and acous-
tic density !elds v(i;ζ,n) ∈ RN , ρ(i;ζ,n) ∈ RN (i ∈ {1, ..., d}) as v̄n−1/2 ∈ RdN  and 
ρ̄n ∈ RdN , respectively. We also de!ne p̄n = p(ζ,n) ∈ RN. A stack of all these vector !elds 
yields z̄n = {v̄T

n−1/2 ρ̄T
n p̄T

n}T ∈ R(2d+1)N  at time step n.

Also, let S ∈ R(2d+1)NNt×N be the map from the discretised sought after initial pressure P0 
to an additive source S. In particular, at time step n, Sn+1/2 = SnP0, where

SnP0 = ∆t Iz
s s(i;ζ;n+1/2) = Iz

s 1i ⊗
(

1
2dC

)
SP0 for n = −1, 0, (55)

and SnP0 = 0 for n != −1, 0. Here, s(i;ζ;n+1/2) has been derived from (50), and 1i⊗ ∈ RdN×N  
is the adjoint of 

∑d
i=1 ∈ RN×dN, which is the operator which sums over index i. Also, from 

(52) and (53), Iz
s ∈ R(2d+1)N×dN  is the map from s(i;ζ;n+1/2) to z̄n in the form

Iz
s =





0dN×dN

IdN×dN

C
(
(IN − η̄Ydis)

∑d
i=1

)

N×dN



 . (56)

We now introduce an operator T ∈ R(2d+1)N×(2d+1)N  for de!ning a discretised formula for 
the time sequence of !elds as

z̄n+1 = Tz̄n + Sn+1/2. (57)

Additionally, we introduce a measurement matrix M = MI p
z  with I p

z ∈ RN×(2d+1)N  the pro-
jection from the space of z̄n to the space of p̄n. Based on this, we now de!ne our discretised 
acoustic forward operator.
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De"nition 4. The discretised acoustic forward operator is de!ned by

Ha : RN → RNsNt (58)

Ha = HTS , (59)

where HT : R(2d+1)NNt → RNsNt satis!es

P̂ = HTS, P̂n = Mz̄n (n ∈ {0, ..., Nt − 1}), P̂ =
[
P̂n+1

]Nt−2

n=−1
. (60)

Here, z̄n is determined by (57) with initial condition z̄−1 = 0, and P̂ ∈ RNsNt is a time-series 
stack of measured data at iterates n ∈ {0, ..., Nt − 1}.

Lemma 2. The action of the adjoint operator

H∗
a : RNsNt → RN , (61)

H∗
a = S∗H∗

T , (62)

on P̂ , where P0 = H∗
a P̂, is given by

P0 =
Nt−2∑

n=−1

S∗
n z̄∗Nt−2−n, (63)

where z̄∗n is determined by

z̄∗−1 = 0, z̄∗n+1 = T∗z̄∗n + M∗P̂Nt−2−n (n ∈ {−1, ..., Nt − 2}). (64)

Proof. We have given the proof in [27], lemma 2 and corollary 1. □ 

Note that in the case we are considering the sum in (63) is actually just two terms. By com-
muting n = −1, 0 in (55) with M  using the fact that the forward operator is linear, we de!ne 
a source for our acoustic adjoint operator as

sadj
n+1/2 = M∗






P̂Nt−1, n = −1
P̂Nt−n−1 + P̂Nt−n−2, n = 0, ..., Nt − 2
P̂0, n = Nt − 1.

 (65)

From (65), equation (64) in lemma 2 can be modi!ed as

z̄∗−1 = 0, z̄∗n+1 = T∗z̄∗n + Sadj
n+1/2 (n ∈ {−1, ..., Nt − 2}), (66)

where

Sadj
n+1/2 = (I p

z )
∗ sadj

n+1/2. (67)

Now, we derive a matrix form of T and T∗ using the forward model presented in sec-
tion 3.2.3 to show how multiplication by each of them may be computed. We also denote a 
matrix form of the k-space spatial gradient in (45) as
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∇±
i =

∂

∂r±i
∈ RN×N .

 
(68)

Using this, we will use Φ ∈ RdN×dN and Ψ ∈ RdN×dN  composed of submatrices

(Φ)ij = −∆t δij∇+
j (69)

and

(Ψ)ij = −∆t δij∇−
j . (70)

To make the notation more compact we also introduce matrices D, E ∈ RN×dN and G ∈ RN×N 
whose actions are given by

Dv̄ = C
(

IN − η̄Ydis − τ̄
Yabs

∆t

) d∑

i=1

(AQΨA2v̄)i (71)

Eρ̄ = C (IN − η̄Ydis)
d∑

i=1

(A2ρ̄)i (72)

Gp̄ = C
(

IN − η̄Ydis − τ̄
Yabs

∆t

) d∑

i=1

(AQΨAQ−1
s Φ1i ⊗ p̄)i. (73)

The matrix T is then given, in block form, by

T =




A2 0 AQ−1

s Φ1i⊗
AQΨA2 A2 AQΨAQ−1

s Φ1i⊗
D E G



 . (74)

From (74), the adjoint operator T∗ will be in the form

T∗ =




A2 A2Ψ∗QA D∗

0 A2 E∗
∑d

i=1 Φ
∗Q−1

s A
∑d

i=1 Φ
∗Q−1

s AΨ∗QA G∗



 . (75)

From (75) and using (56), (66) and (67), as well as calculating the adjoints of D, E and G from 
(71)–(73), the time sequence of adjoint !elds is given iteratively by

ρ̄n+1 = A2 [ρ̄n + 1i ⊗ (IN − Ydisη̄)Cp̄n]

v̄n+1/2 = A2
[

v̄n−1/2 +Ψ∗QA−1
(
ρ̄n+1 − A21i ⊗

Yabs

∆t
τ̄Cp̄n

)]

p̄n+1 =

(
d∑

i=1

Φ∗Q−1
s A−1v̄n+1/2

)
+ sadj

n+1/2

p̄sol = ϑ

(
d∑

i=1

1i ⊗ (IN − Ydisη̄)Cp̄n+1 + ρ̄n+1

)
(n = Nt − 2),

 

(76)

where p̄sol := H∗
a(P̂), and ϑ = S

( 1
2dC

)
 using (55). Now, applying the replacements 

ρ̂n+1 = QA−1ρ̄n+1 and v̂n+1 = (AQs)−1v̄n+1/2, together with Φ∗ = −Ψ and Ψ∗ = −Φ, gives
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ρ̂n+1 = A [Aρ̂n + Q1i ⊗ (IN − Ydisη̄)Cp̄n]

v̂n+1/2 = A
[

Av̂n−1/2 − Q−1
s Φ

(
ρ̂n+1 − QA1i ⊗

Yabs

∆t
τ̄Cp̄n

)]

p̄n+1 =

(
d∑

i=1

−Ψv̂n+1/2

)
+ sadj

n+1/2

p̄sol = ϑ

(
d∑

i=1

1i ⊗ (IN − Ydisη̄)Cp̄n+1 + AQ−1ρ̂n+1

)
(n = Nt − 2).

 (77)
Our numerical experiments showed that an operator H∗

a that is calculated using a discretise-
then-adjoint method (77) satis!es an adjoint test with a higher accuracy than using an adjoint-
then-discretise method used in [26]. Therefore, we used (77) for the acoustic adjoint operator.

4. Iterative model-based approaches for the direct problem of QPAT

Having de!ned a discretisation of opto-acoustic forward operator H, the Fréchet derivative 
operator J, and its adjoint J∗, we now explain the iterative approaches we will use for mini-
misation of (12).

Considering (2), the dependence of heating !eld h on κ,µ is nonlinear. Furthermore, 
because of high scattering of light in tissue media, simultaneous reconstruction of κ,µ from 
h can be highly ill-posed. As a result, a minimisation of (12) is a non-convex, nonlinear and 
ill-posed inverse problem. It has been shown that simultaneous reconstruction of κ and µ 
using a single optical excitation, i.e. Nq  =  1, does not have a unique solution [4]. However, the 
uniqueness and stability, in appropriate norms, of this inverse problem using Nq  >  1 optical 
excitations under some geometric constraints has been established [4]. It is also worth men-
tioning that using our forward acoustic operator, which can be adapted to acoustically hetero-
geneous and lossy media, the direct problem of QPAT is more ill-posed than existing studies, 
for which spherical mean Radon transform or Green’s function techniques have been used for 
solving the acoustic portion of the forward operator using an acoustically homogeneous and 
lossless medium, which does not hold in practice [18, 20, 31].

Remark 3. Since the magnitude of κ̂ is often 1–2 orders of magnitude greater than µ̂, we 
follow [18, 19] and minimise ε (see (12)) with respect to scaled coef!cients

X̄ = [κ̄(κ̂), µ̄(κ̂)]T . (78)

We will use two types of scaling. For the method described in section 5.1 we use a linear scal-
ing (see (99)) while for the methods described in sections 5.2.1 and 5.2.2 we use logarithmic 
scaling (see (100)). In our numerical experiments the method of section 5.1 did not converge 
with logarithmic scaling.

Using these, we now consider a minimisation problem with respect to a scaled vector of 
optical coef!cients X̄  in the form

X̄∗ = argmin
X̄l!X̄!X̄u

ε(X̄) = argmin
X̄l!X̄!X̄u

1
2

Nq∑

q=1

∥∥∥Hq[X[X̄]]− P̂q

∥∥∥
2

2
, (79)
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where ε is a non-convex, nonlinear and smooth function. Also, X̄  has been constrained by a 
lower bound X̄l  and an upper bound X̄u. Here, X̄l  and X̄u are vectors with the same size as X̄ , 
and X̄l ! X̄ ! X̄u  indicates that (X̄)j ! (X̄l)j  and (X̄)j ! (X̄u)j for all components j  of these 
vectors. Note that here, we choose (X̄l)j and (X̄u)j !xed for all components j .

We will take two main approaches for solving (79), the !rst of which is a direct minimisa-
tion of the nonlinear objective function using a quasi-Newton approach, and the second is to 
solve the minimsation problem as a sequence of convex and linearised subproblems using a 
matrix-free Jacobian-based method. We now explain these approaches.

A !xed point iteration arising from the optimality conditions of ε gives a sequence

X̄k+1 = X̄k + αkdk, (80)

where dk is a search direction for iteration k, and αk is a step size along search direction dk. 
(Throughout this manuscript, a subscript (resp. superscript) k indicates an iteration for an 
inner (resp. outer) loop.)

4.1. Newton’s methods

From the second-order optimality condition for minimising ε, the Newton search direction, is 
derived using

dk = −H−1
k ∇εk. (81)

Here, ∇εk is the !rst-order derivative of ε at X̄k , and is computed using

∇εk =

Nq∑

q=1

∂X
∂X̄

[X̄k] J∗q [Xk]
(
Hq[Xk]− P̂q

)
, (82)

and Hk, is the second-order derivative of ε (the Hessian matrix). Using a Gauss–Newton 
method, the Hessian matrix is approximated using

Hk =

Nq∑

q=1

∂X
∂X̄

[X̄k] J∗q [Xk]Jq[Xk]
∂X
∂X̄

[X̄k], (83)

where a term including the second-order derivatives of Hq has been neglected as compared 
to the exact Hessian. A class of approaches that utilise (81) for minimisation of ε are called 
Newton’s method. Although Newton’s methods bene!t from a quadratic (optimal) rate of 
conv ergence, they pose some practical limitations for QPAT, i.e.

 (a)  The computation, storage and inversion of the Hessian matrix is expensive. To address 
this problem, an implicit inversion of Hk using an explicit form of J and J∗ has been used 
in the context of diffuse optical tomography [36].

 (b)  The size of the discretised heating !eld H, which represents the output of the optical 
portion of the discretised forward operator, is on the same order as the size of unknown 
parameters (see (28)). It has been shown that an explicit computation of the matrix Jo 
(resp. J) requires at least Ns + Ne times implementation of Ho (resp. H) (see [19], p 11).

 (c)  Considering the time series of measured data P̂ , which is of size NsNt, the Jacobian 
matrix J is dense, and thus a storage of J is impractical.

  We will later explain how we have addressed these challenges using an inexact Newton 
method.
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4.2. Nonlinear gradient-based methods

An alternative to Newton’s method is using gradient-based quasi-Newton approaches, for 
which Hk is not computed explicitly, but is approximated using solely information included in 
the !rst-order gradients ∇ε possibly at previous steps. Additionally, an inversion of Hk can be 
avoided using a direct approximation of H−1

k , for which the so-called BFGS method is often 
used. Since H−1

k  is a dense matrix, and BFGS method poses challenges regarding memory, a 
limited-memory variant of BFGS (L-BFGS) method is used [18, 19]. Using L-BFGS, H−1

k  is 
updated using the most recent m pairs of (s, y) given by

sk = X̄k − X̄k−1

yk = ∇εk −∇εk−1.
 (84)

(In our study, we empirically use m  =  5.) We will also use ρk = 1/yT
k sk, and an initial guess 

for the Hessian matrix in the form

H−1
k,0 =

sT
k−1yk−1

yT
k−1yk−1

I, (85)

where I is the identity matrix. By applying L-BFGS method to the constrained minimisation 
problem (79), the search direction dk is computed using algorithm 1. (See [19] and [18] for 
applications on QPAT and direct QPAT.)

Algorithm 1. L-BFGS (search direction): inner iteration k.

1: Input: ∇εk,H−1
k,0

2: Initialise: q = ∇εk

3: for i = k − 1, k − 2, ..., k − m do
4:   αi = ρisT

i q
5:   q = q −αiyi
6: end for

7: r = H−1
k,0 q

8: for i = k − m, k − m + 1, ..., k − 1 do
9:  r = r + si

(
αi − ρiyT

i r
)

10: end for
11: dk = −r.

From the !rst-order Karush Kuhn Tucker (KKT) conditions associated with the constraint 
on X̄ , dk is projected onto the feasible region using (see [18], equation (37))

dk =






−X̄l, if X̄k + dk ! X̄l

dk, if X̄l < X̄k + dk < X̄u

−X̄u, if X̄k + dk " X̄u.
 (86)

Table 1. The minimal and maximal values for acoustic properties of the 2D phantom.

c0 (m s−1) ρ0 (kg m−3)

min max min max

Data generation 1.129 × 103 1.902 × 103 0.620 × 103 1.390 × 103

Image reconstruction 1.276 × 103 1.725 × 103 0.750 × 103 1.250 × 103
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Using dk given by (86), the step size in (80) is chosen by a standard backtracking line 
search satisfying the Wolfe conditions as well as the constraints

ε(X̄k + αkdk) ! ε(X̄k) + c1αkdT
k ∇ε(X̄k)

dT
k ∇ε(X̄k + αkdk) " c2dT

k ∇ε(X̄k),
 (87)

together with enforcing the bounds associated with the constraint, i.e.

X̄l ! X̄k + αkdk ! X̄u. (88)

(See [18, 19].) In (87), 0 < c1 < c2 < 1 are user-de!ned parameters. Applying these condi-
tions, αk is chosen using a backtracking line search, as given in algorithm 2. Here, τ < 1 is a 
user-de!ned parameter.

Algorithm 2. Backtracking line search: inner iteration k.

1: Input: c1, c2, τ , X̄l, X̄u
2: Initialise: α0 = 1
3: while (87) or (88) are not satis!ed do
4:   α = τα
5: end while
6: αk = α∗.

5. Total variation (TV) regularisation

To mitigate the ill-posedness of the problem, a regularisation functional must be added to the 
data !delity term in (79) [18, 19]. This results in a minimisation problem in the form

X̄∗ = arg min
X̄l!X̄!X̄u

{F := ε[X̄] + λJ [X̄]} , (89)

where J [X̄] and λ, respectively denote the regularisation functional and the regularisation 
parameter, the latter of which makes a balance between a !delity to the measured data P̂  and 
to a priori knowledge about the true solution. In our study, based on an assumption that the 
optical coef!cients are piecewise constant with sharp edges, we use J [X̄] := R[κ̄] +R[µ̄], 
where R[u] is a discretisation of the total-variation (TV) functional

∫

Ω
|∇u|dr (90)

with u either κ̄ or µ̄. Using (90),

J [X̄] = ‖DX̄‖1 (91)

with

D =

[
Dκ̄ 0Nl×Ne

0Nl×Ne Dµ̄

]
. (92)

Here, Du ∈ RNl×Ne  is a sparse matrix with Ne and Nl the total number of elements and the total 
number of internal edges between elements, respectively. Each row Du

l ∈ R1×Ne (l ∈ {1, ..., Nl}) 
has two nonzero components at indices j1 and j2, which correspond to two elements con-
nected by the internal edge l. These have values al and  −al with al the length (or area) of 
internal edge l [8]. Using this, the gradient of J (X̄) is a nonlinear operator in the form
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∇J : R2Ne → R2Ne

∇J [X̄] = M[X̄]X̄,
 (93)

where M(X̄) is given by

M[X̄] = DTC[X̄]D (94)

with C(X̄) a diagonal matrix

C[X̄] = diag
(
(|DX̄|2 + β)−1/2

)
. (95)

Here, the smoothing parameter β is added in order to make ∇J [X̄] differentiable. Having 
de!ned our regularisation functional, we now explain the minimisation approaches we use for 
solving the direct problem of QPAT.

5.1. TV regularisation using alternating direction method of multipliers (ADMM)

Two major issues for minimisation of F  is the nonlinearity of ∇J [X̄] and a loss of accuracy 
due to the smoothing parameter β. Note that a small value for β may deteriorate the conv-
ergence [47]. One way for addressing these dif!culties is to use a slack variable for shifting 
the gradient of ‖DX̄‖1 out of the non-differentiable region and penalising the applied shift. To 
do this, the augmented Lagrangian is introduced which, following [18, 19], may be further 
rewritten as

FA(W, X̄) = !

(
1
2
‖DX̄ − W + Uw‖2

2 + ν‖W‖1

)
+

Nq∑

q=1

1
2
‖Hq[X(X̄)]− P̂q + Up,q‖2

2, (96)

where ν  and !  are constants and Uw and Up ,q are rescaled Lagrange multipliers. Minimisation 
of F  is then accomplished by alternating minimisation of (96) in W and X̄ , and updating of 
the Lagrange multipliers, using algorithm 3. In algorithm 3, Tolout is a terminating threshold, 
and X∗ denotes an optimal solution. The line 4 in algorithm 3 is a minimisation of the !rst 
term in (96) with respect to W, and can be calculated exactly using a scalar-wise Shrinkage 
formula of the form

Wk+1 = max
{
|DX̄k + Uk

w|− ν, 0
}

sgn(DX̄k + Uk
w). (97)

Additionally, the line 5 in this algorithm is a minimisation of FA at Wk+1 with respect to X̄ , 
and is done using L-BFGS algorithm, as explained in section 4.2. Note that we should replace 
ε by FA, and we hope this is not confusing for the reader. To do this, the !rst-order derivative 
of FA with respect to X̄  at inner iteration k is computed using

∇X̄FA = !DT (DX̄ − W + Uw) +

Nq∑

q=1

∂X
∂X̄

[X̄]J∗q [X]
(
Hq[X]− P̂q + UPq

)
.

 (98)

Table 2. RE(%) of the !nal reconstructed images for 2D case.

Methods µ κ

ADMM 11.1882 11.5316
LD 9.8799 8.6899
PD-IPM 9.8513 8.6547
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For this method we use a linear scaling:

X̄ =

[
κ̄

µ̄

]
=

[
κ̂

mean(κ̂0)
µ̂

mean(µ̂0)

]
, (99)

where the dominators are the mean value of initial guesses κ̂0 and µ̂0.

Algorithm 3. Gradient-based quasi-Newton method using ADMM.

1: Input: P̂q, (q ∈ {1, ..., Nq})
2: Initialise: X0, W0 = 0
3: while ‖∇X̄FA

(
X̄k, Wk

)
‖ > Tolout do

4:   Wk+1 = arg min
W

FA
(
X̄k, W

)

5:   X̄k+1 = arg min
X̄l!X̄!X̄u

FA
(
X̄, Wk+1

)

6:   Uk+1
w = Uk

w + DX̄k+1 − Wk+1

7:   Uk+1
p,q = Uk

p,q +Hq[Xk+1]− P̂q (∀q)
8:   Output: X∗

9: end while

5.2. Linearised matrix-free Jacobian-based method

In this section, we explain two methods that we use for solving the problem (79) as a sequence 
of linearised subproblems. Here, we will make a balance between reconstruction of κ̂ and µ̂ 
by using the logarithmic rescaling

X̄ = log
X
X0 , (100)

which also implicitly enforces positivity on κ̂ and µ̂. Note that in (100), the division X/X0 
and the logarithm operator are understood elementwise. Additionaly, we set X̄l = −∞ and 
X̄u = +∞. This gives a non-constrained form of the problem. Our numerical results showed 
that enforcing bounds on the solutions is not required because of a good stability provided by 
these approaches. Also, X0 denotes an initial guess.

Accordingly, given an iterate X̄k and a point X̄  in a neighborhood of X̄k, the forward opera-
tor H is linearised using an approximation:

H(X̄) ≈ H(X̄k) + J[Xk]
∂X
∂X̄

[X̄k](X̄ − X̄k). (101)

Applying the approximation (101) on the problem (79) yields the minimisation problem

dk = argmin
d

1
2

Nq∑

q=1

∥∥∥∥Jq[Xk]
∂X
∂X̄

[X̄k]d −
(

P̂q −Hq[Xk]
)∥∥∥∥

2

2
, (102)

Table 3. The minimal and maximal values for acoustic properties of the 3D phantom.

c0 (m s−1) ρ0 (kg m−3)

min max min max

Data generation 1.186 × 103 2.077 × 103 0.853 × 103 1.374 × 103

Image reconstruction 1.390 × 103 1.897 × 103 0.956 × 103 1.252 × 103

A Javaherian and S Holman Inverse Problems 35 (2019) 084004



23

where we have changed from X̄  to d = X̄ − X̄k in the minimisation. Note that we have used k 
as a superscript in order to indicate a linearised subproblem (outer iteration), as opposed to a 
subscript in (81) that indicates an inner iteration. The kth linearised subproblem (102) gives a 
normal equation in the form of

Hkdk = −∇εk, (103)

where ∇εk and Hk are obtained from (82) and (83), respectively. The normal equation (103) 
is a variant of (81), for which Hk is approximated using a Gauss–Newton method. Here, to 
avoid a storage of J, we solve each linearised subproblem (103) using a Krylov subspace 
method in a matrix-free manner, for which implicit forms of operators J and J∗ are used.

As discussed in section  4.1, Newton’s methods converge rapidly, but solving a normal 
equation with a high accuracy for each linearisation is very expensive. From a theoretical 
point of view, using Krylov methods, the total number of iterations for reaching a minimiser 
is on the same order of the number of unknowns. Therefore, we solve (103) roughly using a 
loose stopping tolerance, i.e.

Hkd̃k = −∇εk + vk, ‖vk‖2/‖∇εk‖2 ! ηk, (104)

where d̃k denotes a rough solution. It has been shown that under assumptions that Hk is sym-
metric and positive de!nite, the solutions d̃k are suf!ciently small and ηk < 1, the local conv-
ergence is guaranteed using a step size αk = 1 (see [14], section 2). A class of approaches that 
use (104) for minimisation of (79) are called Inexact Newton’s methods [14]. In the sequel, we 
use dk, rather than d̃k, for indicating a rough solution of (104), and we hope this is not confus-
ing for the readers.

5.2.1. Lagged diffusivity (LD) method with priorconditioning. As discussed above, for our 
direct QPAT problem, the Hessian matrices Hk are ill-conditioned. Therefore, a regularisation 
functional must be added in order to stabilise the problem. Our !rst approach for an inclu-
sion of TV regularisation in (104) is based on solving (89) via an iterative linearisation of an 
associated objective function F . Strictly speaking, we !rst add the regularisation functional 
to an original nonlinear problem, and then the linearisations are applied to a regularised form 
of a nonlinear objective function. The kth linearisation of the data !delity term ε using (102), 
together with ∇J [X̄] de!ned by (93), gives a TV regularised variant of (104) in the form

Hkdk + λM[X̄]X̄ = −∇εk. (105)

Let us denote an initial guess for kth subproblem by X̄k
0, which is calculated using the previous 

linearised subproblem k  −  1. One way for addressing the nonlinearity of M[X̄]X̄  (see (94)) is 
replacing M[X̄] by Mk = M[X̄k

0]. This gives a normal equation in the form
(
Hk + λMk) dk = −∇εk − λMkX̄k

0. (106)

Linearisation of M using the above equation  is called the Lagged Diffusivity (LD) method 
[47]. (See [22] for an application of LD on the purely optical problem of QPAT.) Our method 
now is to follow [2] in order to convert (106) into a similar problem in which the regularisation 
is obtained by early termination of an iterative method rather than tuning of parameter λ. First, 
since Mk may only be positive semi-de!nite we approximate it by Mk

γ = Mk + γI. Replacing 
Mk by Mk

γ in (106) we next multiply by (Mk
γ)

−1 so that (106) becomes
(
(Mk

γ)
−1Hk + λI

)
dk = −(Mk

γ)
−1∇εk − λX̄k

0. (107)
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Applying Krylov methods for solving (106), the iterates lie in a subspace [2]

K(Mk
γ)

−1Hk+λI = K(Mk
γ)

−1Hk
= span

{
−
(
(Mk

γ)
−1Hk)i∈{0,...,ikmax−1} (

(Mk
γ)

−1∇εk + λX̄k
0
)}

, (108)

where ikmax is the maximum number of iterations for the Krylov method. Our numerical experi-
ence shows that using small values for λ, the term λX̄k

0 will have a small effect, and indeed we 
drop this in our method by taking λ = 0.

Using this approach for applying regularisation on a normal equation is called priorcon-
ditioning. Note that in this approach we adjust the regularisation by imax. In contrast to an 
empirical choice for the regularisation parameter λ, which requires a recomputation of the 
problem, imax can be implicitly controlled by a stopping tolerance [2]. Using the above, our 
subproblem is to solve a priorconditioned variant of (106) in the form

(Mk
γ)

−1Hkdk = −(Mk
γ)

−1∇εk. (109)

It turns out that (109) provides a better convergence than (106) since the structure of the prior 
is directly included in the Jacobian matrix [2]. Here, we solve (109) using the Preconditioned 
Conjugate Gradient (PCG) method, as outlined in algorithm 4.

Algorithm 4. PCG algorithm for solving linearised subproblem k.

1: Input: ∇εk,Hk, Mk
γ

2: Initialise: i = 0, X̄0 = 0
3: r0 = −∇εk

4: Solve Mk
γz0 = r0

5: d0 = z0

6: while i < imax ∩
(

i < im ∪ 1 − rT
i zi

rT
i−im

zi−im
> Tolin

)
 do

7:   αi =
rT

i zi

dT
i Hkdi

8:   X̄i+1 = X̄i +αidi

9:  ri+1 = ri −αiHkdi

10:   Solve Mk
γzi+1 = ri+1

11:   βi =
rT

i+1zi+1

rT
i zi

12:   di+1 = zi+1 + βidi
13: end while
14: Output: dk

We will terminate algorithm 4 if i  >  im with im a user-adjusted number of inner iterations, 
and a relative reduction in rT

i zi during im inner iterations becomes less than a user-adjusted 
threshold Tolin. Also, the PCG algorithm is unconditionally stopped whenever i > imax.

Table 4. RE (%) of the !nal reconstructed images for 3D case.

Methods µ κ

ADMM 14.0210 11.3598
LD 11.4718 8.1426
PD-IPM 11.0694 7.9647
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Remark 4. Each inner iteration of the PCG loop involves an implicit inversion of the sparse 
matrix Mk

γ (see [2]). For the direct QPAT, the cost of an inversion of Mk
γ is negligible, com-

pared to an implementation of the Jacobian and its transpose.

Using the LD method, together with a logarithmic scaling, our inexact Newton algorithm 
is outlined in algorithm 5.

Algorithm 5. Inexact Newton method using LD.

1: Input: P̂q (q ∈ {1, ..., Nq})
2: Initialise: k  =  0,X0

3: while k = 0 ∪ 1 − εk

εk−1 > Tolout do
4:   Apply linearisation on (89)
5:   Compute dk from (109) using algorithm 4
6:   Compute X̄k+1 using (80) and αk = 1

7:   Xk+1 = X0eX̄k+1

8: end while
9: Output: X∗

5.2.2. Primal-dual interior-point-method (PD-IPM). A technique for linearisation of M was 
developed using a primal-dual method, and was shown to give better convergence than the 
LD method, especially for small values of β [10]. In [10], the PD-IPM technique was used 
for enforcing TV regularisation when inverting a linear blurring operator. In contrast to our 
!rst approach using the LD method, here we !rst linearise the data !delity function, and then 
add a TV regularisation function to each linearised subproblem using the PD-IPM approach. 
Using this, we iteratively solve a TV regularised variant of the linearised subproblem (102) 
in the form

dk = argmin
d

1
2

Nq∑

q=1

∥∥∥∥Jq[Xk
0]
∂X
∂X̄

[X̄k
0]d −

(
P̂q −Hq[Xk

0]
)∥∥∥∥

2

2
+ λ‖Dd‖1. (110)

The main idea for linearisation of the nonlinear M (see (94) and (95)) using the PD-IPM 
approach is introducing a dual parameter χ = C[d]Dd ∈ R2Nl. This gives a system of coupled 
nonlinear PDEs for subproblem k in the form

λDTχ+Hd −
Nq∑

q=1

∂X
∂X̄

[X̄0]J∗q [X0]
(

P̂q −Hq[X0]
)
= g(χ, d) = 0

C−1[d]χ− Dd = f (χ, d) = 0,

 

(111)

where we have removed the superscripts indicating subproblem k for brevity. A linearisation 
of this system with respect to (χ, d) gives

[
C−1[d] −

(
I − C[d]χ(Dd)T

)
D

λDT H

] [
δχ

δd

]
=

[
−f (χ, d)
−g(χ, d)

]
 (112)

Here, we have used the derivative of the terms in the left-hand-sides of (111) with respect to 
χ and d, and the fact that C−1[d] = diag

(
(|Dd|2 + β)1/2

)
 from (95). If we make the replace-

ment χ = C[d]Dd, then the above linearised system gives decoupled equations
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[
λDTC[dk′ ]

(
I − C[dk′ ]χk′(Ddk′)

T
)

D +H
]
δdk′

=− λM(dk′) +

Nq∑

q=1

∂X
∂X̄

[X̄0]J∗q [X0]

(
P̂q −Hq[X0]− Jq[X0]

∂X
∂X̄

[X̄0]dk′

) 

(113)

and

δχk′ = C[dk′ ]
(

I − C[dk′ ]χk′(Ddk′)
T
)

Dδdk′ − χk′ + C[dk′ ]Ddk′ , (114)

where the subscript k′ indicates an inner sub-subproblem. The same as the LD method, we 
solve a priorconditioned form of (113) with λ = 0, i.e.

M̃−1
γ,k′Hδdk′ = −M̃−1

γ,k′∇ε̃k′ , (115)

where

M̃γ,k′ = DTC[dk′ ]
(

I − C[dk′ ]χk′(Ddk′)
T
)

D + γI, (116)

and −∇ε̃k′ is actually the second term in the right-hand-side of (113). Here, the subscript k′ 
indicates the fact that for each linearised subproblem k (superscript), we solve a sequence of 
sub-subproblems (114) and (115) using an update of dk′, Mγ,k′ and ∇ε̃k′. The developed inex-
act Newton method using a TV regularisation based on the PD-IPM approach is outlined in 
algorithm 6. We use step sizes αk′ = 1 and αk = 1 for all k′ and k, respectively. The step size 
sk′ is described below the algorithm (see (117)).

Algorithm 6. Inexact Newton method using PD-IPM.

1: Input: P̂q (q ∈ {1, ..., Nq})
2: Initialise: k  =  0,X0

3: while k = 0 ∪ 1 − εk

εk−1 > Tolout  do
4:   Apply linearisation and derive the objective function in (110)
5:   Initialise: X̄k

0, d0 = 0,χ0 = 0

6:   while k′ < k′max ∩
(

k′ = 0 ∪ 1 − rk′ ,∗
rk′−1,∗

> Tolmed

)
 do

7:     Compute δdk′ from (115) using algorithm 4
8:     dk′+1 = dk′ + αk′δdk′

 9:     Compute δχk′ using (114)
10:     χk′+1 = χk′ + sk′δχk′

11:   end while
12:   Compute X̄k+1 using (80) and αk = 1

13:   Xk+1 = X0eX̄k+1

14: end while
15: Output: X∗

Here, each iteration k′ amounts to solving a PCG loop. The optimal r provided by each 
PCG loop k′ is denoted by rk′,∗. Using this, we terminate each outer subproblem k using 
a stopping criterion given in line 6 in algorithm 6. This stopping criterion uses a stopping 
threshold Tolmed .

Additionally, following [8], we choose sk′ using a step length rule. Using this approach, 
we choose
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sk′ = min (1,ϕ∗) δχk′ . (117)

Here, ϕ∗ is the largest ϕ that satis!es a feasibility condition

(|χk′ + ϕδχk′ |)j ! 1, ∀j = 1, ..., 2Nl, (118)

where j  denotes the index of components of χ.

6. Numerical results

The TV regularised minimisation approaches that have been explained in section  5, i.e. 
ADMM, LD and PD-IPM, were used for a simultaneous reconstruction of images of optical 
absorption coef!cient µ and diffusion coef!cient κ for 2D and 3D phantoms.

6.1. 2D phantom

The 2D simulation was performed on a square domain [−5,+4.92]× [−5,+4.92] mm2.

6.1.1. Optical excitation. Four different optical excitation patterns were used, i.e. Nq  =  4. For 
each optical excitation q, we used a discretisation of an inward directed diffuse boundary cur-
rent Is,q (J mm−1) that obeys

Is,q(r) =
{

1, r ∈ ιq

0, r ∈ ∂Ω\ιq, (119)

where ιq ⊂ ∂Ω denotes the source position for optical excitation q, and was set each side of 
the square for each optical excitation (see the second line in equation (1)).

6.1.2. Discretisation for data generation. For generation of time series of boundary data, the 
square domain was discretised using a grid with 128 × 128 nodes and an even separation 
distance of 7.81 × 10−2 mm along both Cartesian coordiantes. For the optical portion of the 
problem, a triangulation was applied so that each two !nite elements form a pixel, and the 
centre of the pixel matches an associated node on the acoustic grid. For the acoustic portion 
of the problem, to mitigate wave wrapping [40], a perfectly matched layer (PML) having a 
thickness of 20 grid points and a maximum attenuation coef!cient of 2 nepers per grid point 
was added to each side of the grid. The propagated wave!eld was detected in 1017 time steps 
using 158 detectors that are equidistantly placed on the left and top sides of the computational 
grid, as shown in !gure 1. A 30 dB additive white Gaussian noise (AWGN) was then added 
to the simulated data.

6.1.3. Discretisation for image reconstruction. To avoid an inverse crime for discretisation, 
the image reconstruction was done using a computational grid made up of 80 × 80 nodes with 
an even separation distance of 1.25 × 10−1 mm.

6.1.4. Acoustic properties. To the best of our knowledge, our manuscript reports the !rst 
results on the direct QPAT for realistic acoustic media, for which acoustic characteristics of 
tissue media such as heterogeneity and attenuation are taken into account.

In addition, PAT and QPAT use an assumption that the acoustic properties of the medium 
are known. This assumption does not hold in practical cases. For example, it has been shown 
that the acoustic properties of the breast vary up to 15%. These variations are often not exactly 
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known for reconstruction. As a result, using the same acoustic properties for data generation 
and image reconstruction may be an inverse crime. To avoid this, for data generation, we cor-
rupted the acoustic properties of the medium with 30 dB AWGN noise. Figures 1(a) and (b) 
show the contaminated distributions of sound speed (c0) and ambient density (ρ0) for data gen-
eration, respectively. The minimal and maximal values of these maps are given in the top row 
of table 1. Using these values, the computational grid for data generation supports a maximal 
frequency up to 7.223 MHz. (See the k-Wave manual [44].) Also, in !gures 1(a) and (b), the 
position of detectors is shown by the black circles matching the left and top sides of the grid.

For image reconstruction, we used the clean maps that are shown in !gures 1(c) and (d). 
The minimal and maximal values of these maps are given in the bottom row of table 1. Using 
these acoustic maps, the grid for image reconstruction supports a maximal frequency up to 
5.101 MHz. From table 1, the incorporated noise has provided a 10%–15% relative discrep-
ancy between the acoustic properties used for data generation and image reconstruction.

Furthermore, the acoustic medium was assumed attenuating, where acoustic absorption 
and dispersion follow a frequency power law [46]. Accordingly, we used a constant attenu-
ation coef!cient α0 = 0.75 dB MHz−y cm−1 and an exponent factor y   =  1.5 for both data 
generation and image reconstruction (see (8)). These values were chosen so that they approxi-
mately simulate the acoustic attenuation properties of the breast.

6.1.5. Optical phantom. We simulate the distributions of optical coef!cients so that they fol-
low the optical properties of soft tissues in the sense that they often possess a broad range of 
values for the optical coef!cients. Our numerical experience showed that this is a challenge 

Figure 1. Acoustic properties for 2D case. Data generation: (a) c0 (b) ρ0, and image 
reconstruction: (c) c0 (d) ρ0.
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for image reconstruction, although this issue has been neglected in many of studies of QPAT. 
The reader is referred to [31] for a study on the direct QPAT, in which this issue has been 
considered. Accordingly, we simulate a distribution for optical absorption coef!cient with 
20 values within a range µ ∈ [0.025, 0.325] mm−1 with a background 0.075 mm−1. Also, a 
distribution for the diffusion coef!cient is simulated so that it has six values within a range 
κ ∈ [0.2, 0.4] mm−1 with a background 0.3 mm−1. Figures 2(a) and (b) show the map for µ 
and κ, respectively.

6.1.6. Image reconstruction. We initialised all algorithms using values 1.2 times more than 
the mean of optical coef!cients for the associated phantoms.

ADMM. The ADMM approach (see algorithm 3) was applied for a simultaneous reconstruc-
tion of µ and κ. Since ADMM is our benchmark method, the associated parameters were 
chosen very carefully in order to obtain the best possible image. The line 5 in algorithm 3 
is a minimisation of FA (see (96)) with respect to X̄  using the L-BFGS algorithm given in 
algorithm 1. The L-BFGS algorithm uses a backtracking line search given in algorithm 2 with 
c1 = 1 × 10−4, c2  =  0.9 and τ = 0.25. Also, we set ! = 1 (see (96)), and ν = 1 × 10−3 for 
the Shrinkage operator (97). We terminated the ADMM algorithm using Tolout = 1 × 10−2 
(see algorithm 3).

LD. The LD method was applied using algorithm 5. Using this algorithm, each linearised 
subproblem is solved using a PCG loop (see algorithm 4) by setting imax = 30, im  =  5, and 
Tolin = 0. The latter parameter implies that we terminate each PCG loop, if

i > imax ∪
(
i > im ∩ rT

i zi > rT
i−im zi−im

)
. (120)

Note that we observed a nonmonotone convergence for iterates of each PCG loop (inner itera-
tions) in regions close to an optimal solution X∗, but the sequence ε(Xk) always monotoni-
cally converged to ε(X∗) using αk = 1. (We suggest using an Armijo condition for the outer 
iterations, although we observed that a nonmonotonic reduction in iterates of the PCG loop 
associated with outer iteration k is suf!cient for providing a descent search direction, i.e. 
ε(Xk+1) < ε(Xk)). The TV preconditioner was applied using γ = 1 × 10−6 and β = 2 × 10−5. 
Our LD algorithm was stopped using Tolout = 1 × 10−3 (see algorithm 5).

PD-IPM. The PD-IPM technique was applied using algorithm 6. Because of applying two 
layers of linearisation, each of the outer linearised problems are solved using a sequence 
of inner linearised subproblems. For solving a normal equation associated with each inner 
linearised subproblem, we terminated each PCG algorithm using the same parameters as in 
the LD method. The TV preconditioner was applied using γ = 1 × 10−6 and β = 1 × 10−6.

We terminated each outer linearised suproblem using a threshold Tolmed = 1 × 10−3 
and k′max = 20 (see algorithm 6). Our PD-IPM was terminated using a stopping threshold 
Tolout = 1 × 10−3.

6.1.7. Evaluation of image reconstruction. The criterion that we use for measuring the conv-
ergence of sequence Xk to a ground truth image (phantom) is relative error (RE), which is 
calculated as

RE(uk) = 100 × ‖uk − uphantom‖2

‖uphantom‖2
. (121)
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Here, uk is the solution for either κ or µ at outer iteration k that is interpolated back to the grid 
for data generation (phantom). Also, the superscript phantom indicates the distribution of opti-
cal coef!cients for the phantom.

Figure 2. Optical coef!cients for 2D case. Phantom: (a) absorption coef!cient µ (b) 
diffusion coef!cient κ. The images reconstructed by ADMM: (c) µ (d) κ, LD: (e) µ (f) 
κ, and PD-IPM: (g) µ (h) κ.
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We also consider ε(Xk) as the second criterion for convergence (see (79)).

6.1.8. Observations.

ADMM.  Using the parameters given in section 6.1.6, the ADMM algorithm was stopped 
after outer iteration 6. The !nal reconstructed images for the optical absorption coef!cient µ 
and diffusion coef!cient κ are shown in !gures 2(c) and (d), respectively. Figure 3(a) shows 
the RE of sequence computed by the ADMM algorithm at outer iterations.

LD. For the LD algorithm, the associated stopping criterion was satis!ed after outer itera-
tion 30. Figures 2(e) and (f) show the !nal reconstructed images for µ and κ, respectively. 
Figure 3(b) shows the RE of the iterates provided by LD for outer iterations k. The computed 
values for ε(Xk) are shown in !gure 4(a). This !gure is shown from an enlarged view around 
the optimal solution in !gure 4(b). As shown in these !gures, ε monotonically converges to a 
minimiser for all outer iterations using our choice for the step size αk = 1 (∀k).

PD-IPM. The stopping criterion for the PD-IPM algorithm was satis!ed after four outer itera-
tions. The !nal reconstructed images for µ and κ are shown in !gures 2(g) and (h), respec-
tively. Figure 3(c) shows the RE of solutions (optical coef!cients) computed by the PD-IPM 
algorithm for outer iterations k. Figure 4(c) shows the obtained values for ε(Xk). This !gure is 
shown from an enlarged view around the optimal solution in !gure 4(d). As shown in these 
!gures, our choices for the step sizes associated with outer (resp. inner) subproblems, which 
are αk = 1 (resp. αk′ = 1), provided a monotonic reduction for values of εk  (resp. εk′) for all 
iterations.

Remark 5. Using PD-IPM, for both outer and inner linearised subproblems, the !rst step is 
a compuation of associated ε and the gradient ∇ε (see algorithm 6). As a result, using a line 
search for compuation of αk and αk′, e.g. a backtracking line search using Wolfe conditions, 
is straightforward, and does not impose additional computational cost. However, our numer-
ical experience showed that a reduction in rT

i zi provided by the PCG loops (see algorithm 4) 
is suf!cient for a monotonic reduction of the objective function without using a line search.

Table 2 shows the RE values for the !nal reconstructed images shown in !gure 2.

6.2. 3D phantom

We performed our 3D simulation on a cubic domain [−5, 5]× [−5, 5]× [−5, 5] mm3.

6.2.1. Optical excitation. We used three optical excitation patterns, i.e. Nq  =  3. For each 
optical excitation q, we used a discretisation of an inward directed diffuse boundary current 
Is,q (J mm−2) that obeys (119) with ιq ⊂ ∂Ω two confronting faces of the grid, i.e. the left–
right, posterior–anterior, and bottom–top faces.

6.2.2. Discretisation for data generation. For data generation, the cubic domain was 
discretised using a grid with 37 × 37 × 37 nodes and an even separation distance of  
2.78 × 10−1 mm along all Cartesian coordinates. For the optical portion of the problem, an FE 
mesh was simulated so that each set of six tetrahedral voxels forms a cubic pixel with a centre 
matching an associated node on the acoustic grid. For the acoustic portion of the problem, 
we added a perfectly matched layer (PML) with a thickness of 8 grid points and a maximum 
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Figure 3. RE versus outer iteration k for 2D case: (a) ADMM, (b) LD, (c) PD-IPM.

Figure 4. ε versus outer iteration k for 2D case. (a) LD, (b) LD from an enlarged view 
around the optimal point, (c) PD-IPM, (d) PD-IPM from an enlarged view around the 
optimal point.
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attenuation coef!cient of 2 nepers per grid point. The acoustic wave!eld was detected in 292 
time instants using 2145 detectors that are equidistantly placed on two (the left and posterior) 
faces of the grid. A 30 dB AWGN was then added to the simulated data.

6.2.3. Discretisation for image reconstruction. For image reconstruction, we avoided an 
inverse crime for discretisation by using a grid made up of 33 × 33 × 33 nodes with a homo-
geneous separation distance of 3.125 × 10−1 mm along all Cartesian coordinates.

6.2.4. Acoustic properties. As discussed in section 6.1.4, to avoid an inverse crime for acous-
tic properties of the medium, we corrupted the sound speed and ambient density with 30 dB 
AWGN noise for simulation of data, whereas we used the clean acoustic maps for image 
reconstruction. Table 3 shows the minimial and maximal values for these maps. Using this 
table, the grid for data generation (resp. image reconstruction) supports a maximal frequency 
of 2.0766 MHz (resp. 2.156 MHz). The distributions of the sound speed and ambient density 
for the 3D phantom for data generation (resp. image reconstruction) are shown from a top 
view in !gures 5(a) and (b) (resp. !gures 5(c) and (d)), respectively. Additionally, the acoustic 
attenuation coef!cient and the associated exponent factor (see equation (8)) was simulated the 
same as the 2D phantom.

6.2.5. Optical phantom. The left columns in !gures 6(a) and (b) show the distributions of µ 
and κ for the 3D phantom, respectively. The images are obtained in horizontal planes (slices) 
z = {3, 2, 1, 0,−1,−2,−3} mm, and the colorbars are shown to the right of images.

6.2.6. Image reconstruction. All algorithms were initialised using values 1.2 times more 
than the mean of optical coef!cients for the 3D phantoms.

ADMM. The parameters for an implementation of the ADMM algorithm were chosen care-
fully in order to obtain almost the best possible image. All these parameres match our choices 
for the 2D phantom.

LD. For an implementation of the LD algorithm, the arising linearised subproblems were 
solved using a PCG algorithm with the same parameters as the 2D phantom, except that 
for stopping each PCG loop, we used im  =  3. The TV preconditioner M was applied using 
γ = 1 × 10−8 and β = 1 × 10−6. We stopped our LD algorithm using Tolout = 1 × 10−3.

PD-IPM. For an implementation of the PD-IPM algorithm, each outer linearised problem 
was solved using a sequence of inner linearised subproblems. The TV preconditioner was 
applied using γ = 1 × 10−8 and β = 1 × 10−8. For termination of each PCG loop associated 
with each inner linearised problem, we used im  =  2 and imax = 30 (see algorithm 4). We also 
terminated each outer linearised subproblem using k′max = 25 and Tolmed = 1 × 10−3. Also, 
our PD-IPM algorithm was terminated using a stopping threshold Tolout = 1 × 10−3.

6.2.7. Observations.

ADMM. The stopping criterion for the ADMM algorithm was satis!ed after outer iteration 
7. In !gures 6(a) and (b), the second columns (from the left side) show the !nal reconstructed 
images for µ and κ, respectively. These images are shown using horizonal slices the same as 
the !rst columns for the phantom. Figure 7(a) shows the RE of solutions computed by the 
ADMM algorithm for µ and κ at outer iterations.
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LD. The LD algorithm was terminated after ten iterations. The !nal reconstructed images 
for µ and κ are shown in the 3rd columns of !gures 6(a) and (b), respectively. The images are 
shown in the same way as the ADMM method. Figure 7(b) shows the RE of the solutions com-
puted by LD for outer iterations k. The computed values for ε(Xk) are shown in !gures 8(a), 
and (b) from an enlarged view around the optimal point. As shown in these !gures, ε mono-
tonically converges to a minimiser for all outer iterations.

PD-IPM. The stopping criterion for the PD-IPM algorithm was satis!ed after six outer itera-
tions. The !nal reconstructed images for µ and κ are shown in the 4th columns of !gures 6(a) 
and (b), respectively. Figure 7(c) shows the RE of solutions (optical coef!cients) computed 
by the PD-IPM algorithm for outer iterations k. Figures 8(c) and (d) show the obtained val-
ues for ε(Xk). As shown in these !gures, our choices for the step sizes associated with outer  
(resp. inner) subproblems, i.e. αk = 1 (resp. αk′ = 1), provided a monotonic reduction for εk  
(resp. εk′).

Table 4 shows the RE values for the !nal reconstructed images shown in !gure 6.

7. Discussion

In the previous section, we numerically evaluated the performance of the used iterative algo-
rithms for a direct problem of QPAT for realistic acoustic media. In this section, we give 
further details on our numerical results.

Figure 5. Acoustic properties for 3D case from a top view. Data generation: (a) c0, (b) 
ρ0; and image reconstruction: (c) c0, (d) ρ0.
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Figure 6. Optical coef!cients for 3D case. (a) µ, from the left to right: phantom, 
ADMM, LD and PD-IPM. (b) κ, from the left to right: phantom, ADMM, LD and 
PD-IPM.
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The quality of images reconstructed by the ADMM algorithm was sensitive to choices for 
!  and Tolout, and thus these parameters were chosen very carefully. This leads to several rep-
etition of the entire reconstruction. For example, by using a smaller Tolout (further proceeding 

Figure 7. RE versus outer iteration k for 3D case. (a) ADMM, (b) LD, (c) PD-IPM.

Figure 8. ε versus outer iteration k for 3D case. (a) LD, (b) LD from an enlarged view 
around the optimal point, (c) PD-IPM, (d) PD-IPM from an enlarged view around the 
optimal point.
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of the iterations), the RE values started to increase. One way for avoiding this may be increas-
ing the amount of regularisation via an increase in ! , but our numerical experience shows that 
choosing greater values for !  negatively affects the convergence of the algorithm. As shown in 
the second columns in !gure 6, the reconstructed image for µ includes a high level of artifact, 
and also the ADMM algorithm failed to produce an accurate image for κ. (Note that better 
images were reconstructed using ADMM for 2D case.) The poor performance of the ADMM 
algorithm, especially in 3D case, may be because of assuming a high level of errors in the 
acoustic properties, as shown in !gures 1 and 5.

The LD algorithm was not sensitive to γ , Tolin and Tolout. Both ε and RE will proceed with 
a monotonic reduction, if we choose smaller values for Tolout. This is indicated by !gures 4(b) 
and 8(b). However, the convergence of the LD algorithm will be deteriorated, if we use very 
small values for β, for example the values that we used for the PD-IPM algorithm.

Our numerical experience showed that the PD-IPM algorithm was also not sensitive to 
choices for γ , Tolin, Tolmed  and Tolout. (For example, by choosing Tolmed = 0, the performance 
of the algorithm is almost the same.) Additionally, this algorithm converged well using very 
small values for β.

Regarding the computational cost, the ADMM algorithm reconstructed !nal images using 
100–150 gradient-based iterations for both 2D and 3D cases. (Note that each iteration involves 
at least an implementation of the forward operator and the adjoint of the Jacobian matrix.) 
Note also that for ADMM, as discussed in the !rst paragraph of this section, using a smaller 
stopping threshold deteriorates the quality of reconstructed images. The LD and PD-IPM 
approaches produced the !nal images in 150-200 inner iterations. Note that the major cost 
of each inner iteration for the PCG loop involves an implicit implementation of the Jacobian 
matrix and its transpose, and has almost the same computational cost as the gradient.

For a direct problem of QPAT for realistic acoustic media with an error in estimation of 
acoustic properties, our numerical results show that the developed matrix-free Jacobian-based 
inexact-Newton methods outperform gradient-based approaches that utilise a search direction 
using quasi-Newton approaches like the L-BFGS method [18, 19], at the same time does not 
impose a large computational cost due to an explicit construction of the Jacobian matrix [31].

Our next goal is an extension of multi-source QPAT to multi-spectral QPAT [5], which is 
more practical for biomedical cases, especially when a limited view is accessible for optical 
excitations. A simultaneous reconstruction of the optical coef!cients and the sound speed 
using adjunct information obtained from ultrasound computed tomography may be promising 
for improving the quality of reconstructed images [30].
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