
IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 65, NO. 10, OCTOBER 2018 1857

Equivalent-Source Acoustic Holography for
Projecting Measured Ultrasound Fields

Through Complex Media
Bradley Treeby , Member, IEEE, Felix Lucka, Eleanor Martin , and B. T. Cox

Abstract— Holographic projections of experimental ultra-
sound measurements generally use the angular spectrum
method or Rayleigh integral, where the measured data are
imposed as a Dirichlet boundary condition. In contrast, full-wave
models, which can account for more complex wave behavior, often
use interior mass or velocity sources to introduce acoustic energy
into the simulation. Here, a method to generate an equivalent
interior source that reproduces the measurement data is proposed
based on gradient-based optimization. The equivalent-source can
then be used with full-wave models (for example, the open-
source k-Wave toolbox) to compute holographic projections
through complex media including nonlinearity and heterogeneous
material properties. Numerical and experimental results using
both time-domain and continuous-wave sources are used to
demonstrate the accuracy of the approach.

Index Terms— Equivalent source, full-wave modeling,
gradient-based optimization, holography.

I. INTRODUCTION

ACOUSTIC holography is widely used in ultrasonics
for reconstructing the 3-D acoustic field of an ultra-

sound transducer from hydrophone measurements made
in a single plane [1], [2]. Given appropriate measurement
conditions, field projections have been shown to agree
closely with experimental measurements for both time-domain
(i.e., broadband) and continuous-wave (CW) data [3]–[5]. The
projections are typically performed using the angular spec-
trum method (ASM) or the Rayleigh integral [1]. Although
formulated in different ways, both of these approaches project
the measured field through a homogeneous medium based
on the free-space Green’s function for the wave equation
(or Helmholtz equation for CW fields). This is equivalent
to solving the wave equation for a homogeneous medium
in a half-space subject to a planar, time-varying, Dirichlet

Manuscript received May 15, 2018; accepted July 27, 2018. Date of
publication August 1, 2018; date of current version October 3, 2018. This
work was supported in part by the Engineering and Physical Sciences Research
Council, U.K., under Grant EP/L020262/1, Grant EP/M011119/1, and Grant
EP/P008860/1, in part by the European Union’s Horizon 2020 Research and
Innovation Program H2020 ICT 2016-2017 (as an initiative of the Photonics
Public Private Partnership) under Grant 732411, and in part by the Netherlands
Organisation for Scientific Research under Grant NWO 613.009.106/2383.
(Corresponding author: Bradley Treeby.)

B. Treeby, E. Martin, and B. T. Cox are with the Department of Medical
Physics and Biomedical Engineering, University College London, London
WC1E 6BT, U.K. (e-mail: b.treeby.@.ucl.ac.uk).

F. Lucka is with the Computational Imaging Group, Centrum Wiskunde
& Informatica, 1090 GB Amsterdam, The Netherlands, and also with the
Department of Computer Science, University College London, London, U.K.

Digital Object Identifier 10.1109/TUFFC.2018.2861895

boundary condition given by the measured acoustic pressure.
These methods work very effectively for homogeneous media,
but do not allow for projection of the measured data through
complex media, e.g., with acoustic nonlinearity and spatially
varying sound speed or mass density. Such simulations are
of particular interest in medical ultrasonics as the acoustic
properties of biological tissue are spatially varying, the wave
propagation can be nonlinear, and it is often of interest to
study the field of a particular transducer in vivo [6]–[8].

Numerical models that account for wave behavior in
complex nonlinear media by directly solving the hetero-
geneous wave equation or the corresponding first-order
conservation equations are available [9]–[11]. Due to the large
size of the domain of interest compared to the acoustic
wavelength [12], these models are generally based on compu-
tationally efficient collocation methods, e.g., finite-difference
time domain or pseudospectral time-domain methods. The
straightforward way to use these models for holography would
be to define a time-varying Dirichlet boundary condition
using the measured data. However, formulating arbitrary,
time-varying boundary conditions that are accurate, stable, and
retain the efficiency of these methods is far from trivial [13].
Instead, absorbing boundary conditions are usually imposed,
and acoustic energy is introduced through interior sources.
Therefore, to use these models for holography, it is necessary
to find a mapping from the required time-varying Dirichlet
boundary condition (the measured data) to interior sources
that can be implemented in the model. One approach is to
use the measured data to directly replace the local pressure
values at each time step in the numerical simulation [14]. Both
forward and back projections are possible by time-reversing
the measured data [15]. However, this approach leads to errors
in the imposed spatial gradient, which manifests as errors in
the projected field (an example is given in Section III-B).

Here, an alternative method to generate an equivalent source
that reproduces time-domain or CW data measured over a
plane is demonstrated using gradient-based optimization. The
equivalent source can then be used with full-wave mod-
els (for example, the open-source k-Wave toolbox [16]) to
accurately compute holographic projections through complex
media including nonlinearity and heterogeneous material prop-
erties.

The problem of calculating an equivalent source has been
widely studied in near-field acoustic holography (NAH) [17].
In NAH, an array of microphones is used to measure the
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output of an acoustic source, typically at audio frequencies.
The measurements are made in the near field and conse-
quently capture evanescent waves that decay rapidly with
distance from the source. The inversion is formed as a matrix
problem, and the operator mapping from the source to the
measurement plane is inverted using either singular value
decomposition [18], [19] or iterative approaches [20]–[22].

While the framework of NAH is similar to the current
problem, an important difference between NAH and acoustic
holography in ultrasonics is the ratio of the acoustic wave-
length to the separation between the source and the mea-
surement surface. In ultrasonics, the measurement surface will
typically be at least 30 mm from the radiating surface, which is
20 wavelengths at 1 MHz in water (and considerably more for
higher frequencies and longer measurement distances). This
means that the evanescent wave components are not measured.
In other words, this paper is concerned with far-field acoustic
holography and not with reproducing the evanescent field of
a source. Moreover, to capture the width of the ultrasound
beam while sampling within the Nyquist limit, the number
of measurement points is often on the order of 10 000 or
more [5]. The problem sizes thus preclude the use of matrix
methods for the calculation of the equivalent source. Here,
a similar formulation to that used in NAH is proposed, which is
subsequently solved using gradient-based optimization facili-
tated by numerical forward and adjoint models. Numerical and
experimental results using both time-domain and CW sources
are then used to demonstrate the approach.

II. EQUIVALENT SOURCE CALCULATION USING

GRADIENT-BASED OPTIMIZATION

Consider an acoustic source, such as an ultrasound trans-
ducer, which generates a beam of sound in a homogeneous
and lossless medium. Suppose that the acoustic pressure is
set sufficiently low for nonlinear effects to be negligible, and
that acoustic pressure measurements D are made on a plane
cutting through a sufficiently narrow part of the beam to allow
the whole cross section to be sampled (see [5] for a detailed
discussion on measurement conditions for holography).1

Now consider a 3-D numerical model of wave propagation
in free-space M that takes a source S, defined on a plane,
and generates the modeled data M(S) on a parallel plane
coincident with the measurement positions (see Fig. 1). Note
that the position of the source S does not need to match the
position of the real source in the experiment—it is merely a
device to generate the correct input to the numerical model.
The goal is to find the source Ŝ that generates modeled data
M(Ŝ) which matches the measured data D as closely as
possible. This can be posed as an optimization problem in
which the difference between the modeled data M(S) and the
measured data D is minimized, i.e.,

Ŝ = argmin
S

ε(S) (1)

1This analysis could be generalized to more arbitrary sources, e.g., spher-
ically radiating sources with measurements made on a sphere, but the case
described here is the most common in practice.

Fig. 1. Mapping between the source plane and the measurement plane using
the forward M and adjoint M∗ models.

where the error functional ε is defined here as

ε(S) = 1

2
�M(S) − D�2

2. (2)

This problem is well-posed, given a sufficient-sized measure-
ment plane [5], so a regularization term is not required. This is
in contrast to NAH, in which the projection of the evanescent
wave components back toward the source is ill-posed.

Here, the minimization problem is solved using gradient
descent

Sn+1 = Sn − ηn∇ε(Sn) (3)

where n is the integer step index, Sn is the source estimate
after the nth iteration, ηn is the step size, and ∇ε(Sn) is the
gradient of the error functional with respect to each degree of
freedom in S [i.e., Sn and ∇ε(Sn) have the same dimensions].

In general, the gradient of the error functional is given as

∇ε(S) = (M �(S))∗(M(S) − D) (4)

where M �(S) is the Fréchet derivative of the wave model
M (which is a linearization of M at S that extends the
notion of the derivative to functions on Banach spaces [23])
and A∗ denotes the adjoint operator of a linear mapping A.
If the model M is restricted to linear wave propagation, then
M �(S) = M and the gradient is given as

∇ε(S) = M∗(M(S) − D). (5)

For a homogeneous and lossless medium, the adjoint M∗
can be calculated using the same numerical wave model M
combined with time reversal (or phase conjugation in the CW
case) before and after the wave propagation [24]. Thus, each
source update is calculated by projecting the current source
estimate to the measurement plane, calculating the difference
between the modeled and measured data, and then projecting
this back to the source plane using time reversal (see Fig. 1).
This approach is sometimes called Landweber iteration [23]
and can be applied to both time-domain and CW data. Note,
while the source optimization is performed assuming a homo-
geneous and lossless medium, the calculated source plane
can subsequently be used to project the field through more
complex media, or at higher pressures to simulate nonlinear
effects.

To ensure the error ε is monotonically decreasing while
maintaining a reasonable convergence rate, a simple step size
adaptation scheme is used to choose ηn for each iteration.
If the error after the nth iteration is increased [i.e., ε(Sn) >
ε(Sn−1)], the update for S is discarded and η is decreased.
This is repeated until the error is reduced. For each update step
where the error is decreased, the step size for the next iteration
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is increased. For the examples presented in Section III, the ini-
tial step size was set to 0.5, the step decrement was set to half
the current value, and the step increment was set to 1.1 times
the current value. While the choice of stopping criterion could
be used as a method of regularization for this scheme, such
an approach was not necessary and the number of iterations
was fixed to between 10 and 30. More sophisticated adaptation
schemes could also be used; however, this simple scheme was
found to converge sufficiently rapidly for practical purposes.

III. VALIDATION

A. Overview

To validate the approach for calculating an equivalent inte-
rior source that can recreate data measured on a plane, several
simulations were conducted using both CW (single frequency)
and time-domain source conditions. The source geometries
were based on two Sonic Concepts single-element bowl
transducers (Sonic Concepts, Bothell, WA, USA), namely,
the H101 and H151. These transducers are widely used
in ultrasonics research, particularly for ultrasound therapy.
The H101 has a nominal aperture diameter and focal length
of 64 mm, while the H151 has a nominal aperture diameter
of 64 mm and a focal length of 100 mm. Both transducers can
be driven at their fundamental frequency of 1.1 MHz or the
third harmonic of 3.3 MHz.

Experimental measurements were conducted using a
calibrated 0.2-mm membrane hydrophone in an automated
scanning tank (Precision Acoustics, Dorchester, U.K.). The
driving signal was generated using a signal generator (33522A,
Agilent Technologies, Santa Clara, CA, USA) connected via
a 75-W power amplifier (A075, E&I, Rochester, NY, USA)
and an impedance matching network. The driving voltage was
adjusted to ensure linear propagation, which was verified by
examining the spectral content of the focal trace.

To calculate the equivalent source for the CW case, the for-
ward and adjoint models were computed using the acoustic
field propagator [25]. This solves the wave equation includ-
ing a CW mass source in a single step using two fast
Fourier transforms (FFTs). For time-domain data, the forward
and adjoint models were computed using the 3-D k-space
pseudospectral model in the open-source k-Wave toolbox
(Version 1.2.1) [11], [12], [16]. The optimization approach
described in Section II was coded in MATLAB as a function
taking the measured data and returning the equivalent source
for a given spatial offset and source plane size. This code will
be made freely available as part of a future release of the
k-Wave toolbox.

Four examples were considered using both numerical and
experimental measured data and both CW and time-domain
driving conditions. For comparison, forward projections were
also computed using the ASM. The implementation was based
on a spectral propagator with angular restriction as described
in [26]. For time-domain projections, the input time signal
was spectrally decomposed using the FFT and each frequency
component was propagated independently. The frequencies
were then recombined using an inverse FFT after each spatial

Fig. 2. Top row: amplitude and phase of the numerically measured CW data
for the H151 transducer. Middle row: error in the amplitude and phase of the
modeled data. Bottom row: calculated source plane and error convergence.
The error values after 30 iterations following the entries in the plot legend
are 0.255%, 0.160%, 0.148%, 0.204%, and 3.27%, respectively.

step. In each case, the spatial and temporal discretizations used
for the ASM matched those used for the k-Wave simulations.

B. Continuous-Wave Sources

In the first example, the measured data were generated
numerically (to provide a ground truth) using the fast near-field
method in the FOCUS toolbox [27], [28]. The source geom-
etry was based on the H151 transducer, with a frequency
of 1.1 MHz, CW driving conditions, and a surface pressure
of 100 kPa. A measurement plane with dimensions 60 ×
60 mm with a point spacing of 0.3 mm was acquired 45 mm
from the rear surface of the bowl. The optimization approach
described in Section II was then used to calculate an equivalent
interior source distributed over an 80×80 mm plane positioned
at the back of the bowl (i.e., 45 mm from the measured plane).

Fig. 2 shows the amplitude and phase of the measured CW
data from FOCUS, the error in the amplitude and phase of the
modeled data after the 30th iteration of the optimization, and
the calculated source plane. In the plane of the measured data,
the amplitude and phase differences between the measured and
modeled data are small, with the largest errors evident at the
edge of the field. Fig. 2 also shows the relative L2 and L∞
error norms between the measured and modeled data after each
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iteration of the optimization, as well as the corresponding error
in the projected field calculated using the source estimate after
each iteration. The error initially reduces very rapidly with all
error norms less than 1% after five iterations. With further
iterations, the model error continues to decrease, but at a
much slower rate, while the error in the projected field remains
constant. The error floor in the projected field is marginally
smaller than the error obtained using the ASM (dotted line
in Fig. 2). For these source conditions, the ASM can be
considered the gold standard for holographic projections.

For comparison, the measured CW data were also pro-
jected using the 3-D k-space pseudospectral model in the
open-source k-Wave toolbox using the source.p_mode =
’dirichlet’ option. At each time step, this replaces the
pressure values over the measurement plane with the measured
data. However, this data replacement at discrete time steps
does not preserve the spatial gradients that existed in the
original field and thus introduces numerical errors. (Note, this
is not unique to k-Wave and also applies to other collocation
methods including those based on finite differences.) For a
Courant–Friedrichs–Lewy (CFL) number of 0.1, the relative
L∞ error is 3.27%, which is more than 20 times larger than
the equivalent source approach. When the CFL is reduced to
0.025, the error is reduced only slightly to 3.02%. Thus, this
error does not converge away with practical numbers of time
steps. This motivates the use of the equivalent source approach
proposed in this paper.

Fig. 3 shows the amplitude of the wave field in a 2-D
slice through the focal point calculated using FOCUS. The
corresponding error in the projected field calculated using
k-Wave with the optimized equivalent-source plane after the
30th iteration and the Dirichlet source option with the mea-
sured data and two different CFLs is also shown. For the
projection using the equivalent source, the absolute errors are
very small, particularly on the beam axis, with the largest
errors at the edge of the field, where the acoustic pressure
is low. In comparison, the errors using the Dirichlet source
option are much larger, particularly in the focal region.

In the second example, the measured data were experimen-
tally acquired using the H101 transducer. This was driven at
3.3 MHz using a 40 cycle burst, with a CW signal acquired
in a time window after the field had reached a steady state.
A measurement plane with dimensions 45 × 45 mm with a
point spacing of 0.2 mm was measured 40 mm from the
rear surface of the bowl. The corresponding source plane was
80 ×80 mm. Figs. 4 and 5 show the analogous information to
Figs. 2 and 3. In this case, the ASM was used as the ground
truth for the projected field. Again, the error converges very
rapidly. After six iterations, the difference in the projected field
compared to the ASM was less than 0.2%. Thus, the approach
also works robustly for experimental data, which contains
noise.

C. Broadband Sources

In the third example, time-domain measured data were
generated numerically using k-Wave. The source geometry
was based on the H101 transducer and was modeled using

Fig. 3. Top row: beam pattern calculated using the fast-near-field
method (left) and error in the projected field calculated using the optimized
source plane (right) for the H151 transducer. The transducer is positioned at
the top of the image. Bottom row: error in the projected field when using
k-Wave with the Dirichlet source option for two different CFL numbers.

a grid-based discrete bowl [29]. The transducer was driven by
a four-cycle tone-burst with a center frequency of 1.1 MHz
and a surface pressure of 100 kPa. A measurement plane with
dimensions 45 × 45 mm with a point spacing of 0.3 mm was
numerically acquired 40 mm from the rear surface of the bowl.
The optimization approach described in Section II was then
used to calculate a time-varying interior source distributed over
a 90 × 90 mm plane positioned at the back of the bowl.

Fig. 6 shows a maximum intensity projection (MIP) through
the time-domain measured data from k-Wave, an MIP through
the error in the modeled data after the 20th iteration of the
optimization, and an MIP through the calculated time-domain
source plane. In the plane of the measured data, the absolute
errors are small, although slightly larger than in the CW case.
The increased error at the central point is due to a slight
phase error in the edge waves arriving from the outer edge
of the transducer, which coherently sum at the central point.
This is shown in Fig. 7, which shows time traces from the
central point (largest error approximately 8%), and a point
offset by 3 mm or 10 samples (largest error approximately
1%). Although the traces for the central point are qualitatively
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Fig. 4. Top row: amplitude and phase of the experimentally measured CW
data for the H101 transducer. Middle row: error in the amplitude and phase of
the modeled data. Bottom row: calculated source plane and error convergence
with iteration number. The error values after 20 iterations following the entries
in the plot legend are 4.47%, 1.87%, and 0.190%, respectively.

Fig. 5. Beam pattern calculated using the ASM (left) and error in the
projected field calculated using the optimized source plane (right) for the
H101 transducer. The transducer is positioned at the top of the image.

similar, the small phase offset results in an increase in the error
metric. Fig. 6 also shows the relative L2 and L∞ error norms
between the measured and modeled data after each iteration of
the optimization. Again, the error reduces very rapidly, with
little improvement after five iterations.

Fig. 8 shows an MIP through the time-domain data in the
central 2-D slice calculated using k-Wave with the true source
conditions, and the corresponding error in the projected field
calculated using k-Wave with the optimized equivalent-source
plane after the 20th iteration. The corresponding time traces
from the focal point (position of the highest pressure) are

Fig. 6. Top row: MIPs through the numerically measured time-domain data
for the H151 transducer and the error in the modeled data. Bottom row: MIP
through the source estimate and error convergence with iteration number. The
L∞ and L2 error values after 20 iterations are 7.44% and 1.37%, respectively.

Fig. 7. Time-domain traces from the measured and modeled data shown
in Fig. 6. (a) Central trace. (b) Trace offset from the center by 3 mm or
10 samples. (c) Relative error.

shown in Fig. 9. Again, the absolute errors are very small.
For comparison, the error in the focal trace calculated using
the ASM is also shown and is of a similar order of magnitude.

In the fourth example, the measured data were experimen-
tally acquired using the H151 transducer driven at 1.1 MHz
by a four-cycle burst. A measurement plane with dimensions
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Fig. 8. Time-domain MIP through the beam pattern calculated using k-Wave
(left) and error in the projected field calculated using the optimized source
plane (right) for the H101 transducer. The transducer is positioned at the top
of the image.

Fig. 9. Time-domain traces at the focal position calculated from the reference
field and the projected field using the optimized equivalent source for the
source shown in Fig. 6. The relative error between the two profiles and the
relative error in the focal trace calculated using the ASM are also shown.

60 × 60 mm with a point spacing of 0.3 mm was measured
45 mm from the rear surface of the bowl. The corresponding
source plane was 80 × 80 mm. Figs. 10 and 11 show the
analogous information to Figs. 6 and 7. In this case, the ASM
was used as the ground truth for the projected field. Again,
the error converges very rapidly, with little improvement
after four iterations. Although the absolute errors are larger
(see Fig. 11), the optimized equivalent source successfully
reproduces most of the features in the measured data. A plot of
the axial peak pressure through the projected field using the
optimized equivalent source and ASM is shown in Fig. 12,
with the differences less than 1%. Note, the six small circles
visible on the source estimate in Figs. 4 and 10 are part of the
bonding from the piezoelectric element [29].

D. Projection Through Complex Media

To demonstrate the utility of calculating an equiva-
lent source more generally, i.e., mapping from a Dirich-
let boundary condition to an interior source, the calculated

Fig. 10. Top row: MIPs through the experimentally measured time-domain
data for the H101 transducer and the error in the modeled data. Bottom
row: MIP through the source estimate and error convergence with iteration
number. The L∞ and L2 error values after 10 iterations are 6.97% and 10.1%,
respectively.

Fig. 11. Time-domain trace at the center of the measured plane from the
measured and modeled data shown in Fig. 10. The relative error between the
two profiles is also shown.

equivalent-source plane for the experimental measurement of
the H101 transducer shown in the bottom panel of Fig. 4
was used to project the ultrasound field through a hetero-
geneous nonlinear medium. The simulation was conducted
using the k-space pseudospectral method in the k-Wave
toolbox [11], [12]. The spatially varying maps of sound speed,
density, nonlinearity, and absorption coefficient were derived
from the AustinWoman voxel model [30] using book values
for the segmented regions. The focal position of the transducer
was placed in the liver using a window between the ribs.
A map of the peak positive pressure in the central plane
overlaid on the sound speed map is shown in Fig. 13. In this
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Fig. 12. Temporal peak positive pressure along the beam axis of the
transducer calculated using the ASM (reference field) and k-Wave along with
the optimized equivalent source (projected field). The relative error between
the two profiles is also shown.

Fig. 13. Central plane through the ultrasound field calculated using the
optimized source plane shown in Fig. 4 in a heterogeneous medium. The
peak positive pressure is shown overlaid on the sound speed map.

case, the beam pattern has undergone significant aberration
due to the overlying tissue and the muscle layers surrounding
the rib cage.

IV. CONCLUSION

A general method for calculating an interior source that
accurately reproduces a measured plane is proposed based
on numerical optimization. This is particularly useful for
computing holographic projections using full-wave models
that include the effects of nonlinearity and heterogeneous
media. The formulation is similar to that used for NAH, but
is solved using alternate numerical approaches due to the
large-scale nature of the inverse problem. The update steps
are calculated using gradient descent, where the gradients
of the error functional are calculated using a numerical for-
ward model and its adjoint. The approach is demonstrated to
work robustly for both time-domain and CW data using both

numerical and experimental measurements. For the examples
shown here, the optimization converges within six update
steps (i.e., 12 runs of the forward model). In the future,
the approach could be generalized to nonplanar or sparse
measurement data, or a forward model that includes the
effects of nonlinearity and absorption in the calculation of the
equivalent source.
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