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Abstract
We present an optimisation framework for photo-acoustic tomography of the 
brain based on a system of coupled equations  that describe the propagation 
of sound waves in linear isotropic inhomogeneous and lossy elastic media 
with absorption and physical dispersion following a frequency power law 
using fractional Laplacian operators. The adjoint of the associated continuous 
forward operator is derived, and a numerical framework for computing 
this adjoint based on a k-space pseudo-spectral method is presented. We 
analytically show that the derived continuous adjoint matches the adjoint of 
an associated discretised forward operator. We include this adjoint in a "rst-
order positivity constrained optimisation algorithm that is regularised by total 
variation minimisation, and show that the iterates monotonically converge to 
a minimiser of an objective function, even in the presence of some error in 
estimating the physical parameters of the medium.

Keywords: photo-acoustic tomography, brain, continuous adjoint, absorption 
and dispersion, frequency power law, fractional Laplacian

(Some "gures may appear in colour only in the online journal)

1. Introduction

Quantitative photo-acoustic tomography (QPAT) is a hybrid imaging modality which simul-
taneously takes advantage of the rich contrast attributed to optical imaging and the high spa-
tial resolution brought up by ultrasound. In this technique, short pulses of near-infrared light 
are used to irradiate tissue. The energy from these pulses is absorbed as a function of the 
optical absorption map of the tissue. This generates local increases in pressure which prop-
agate outwards as photo-acoustic (PA) waves, and are then measured by broadband detectors 
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placed at the surface. The inverse problem of QPAT is to reconstruct the spatially varying 
optical absorption coef"cient from the recorded PA signals. This involves two inverse prob-
lems, namely acoustic and optical [29]. The acoustic inverse problem is to reconstruct the 
initial pressure distribution from the recorded PA signals, and the optical inverse problem is 
to recover optical coef"cients from the computed initial pressure map [29]. These two inverse 
problems can be solved distinctly [2, 16, 17], or alternatively as a direct hybrid problem [9]. In 
this work we consider only the acoustic portion of the inverse problem which we simply call 
photo-acoustic tomography (PAT).

Considering the acoustic inverse problem, time reversal (TR) is a comprehensive inver-
sion approach for PAT since it can be used for media with heterogeneous acoustic properties 
and arbitrary detection geometries [13, 14, 39]. However, this method is based on a continu-
ous domain with idealised conditions such as a closed detection surface or exactly known 
medium’s properties [14], which do not hold in real cases. Problems such as "nite sampling, a 
limited accessible angle for detection surface, errors in estimation of medium’s properties, or 
errors in data measurement make the acoustic inverse problem ill-posed [16]. In these cases, 
model-based iterative methods are often used, e.g. TR-based iterative techniques [28], or 
optim isation algorithms [2, 16, 17]. The optimisation approaches are often based on computa-
tion of the gradient of an objective function in terms of a forward model and a corre sponding 
adjoint model. Using an explicit formulation of the adjoint operator, the convergence of an 
arising iterative algorithm was established in Hilbert spaces using a Landweber algorithm for 
media with inhomogeneous sound speed [4, 32], and was later improved using Nesterov’s fast 
gradient and the CG methods [10].

Because of the dependance of shape, spectrum and amplitude of PA signals on physical prop-
erties of tissue media, it will be advantageous if the image reconstruction in PAT is enriched by 
tissue-realistic models that account for the absorption behaviours evident in tissues [8, 30, 36]. 
Among model-based iterative approaches for absorbing media, the adjoint was computed by a 
discretise-then-adjoint method in [16], or by an adjoint-then-discretise method in [17].

It is well-known that modelling the propagation of sound waves can be considerably expe-
dited compared to "nite difference time-domain (FDTD) methods by using Pseudo-spectral 
time-domain (PSTD) methods. Applying these techniques, the spatial gradients are computed 
in frequency domain, while the temporal gradients are computed using "nite difference meth-
ods, similar to FDTD techniques. The ef"ciency of PSTD methods is because of a fast com-
putation of the spatial gradients using fast Fourier transforms (FFTs), as well as a dramatic 
relaxation in the mesh requirement and time step [5, 6].

PAT has shown its potential for characterization of the vasculature in small animals or 
within a few mm of the skin’s surface in humans [43]. Furthermore, PAT has been utilised 
successfully for transcranial brain imaging in small animals [23, 42]. In these cases, the effect 
of the skull on the propagation of PA waves is neglected because of the low thickness of the 
skull (≈1 mm), and thus the image reconstruction is done based on scalar acoustic wave equa-
tions [23, 42].

To account for aberration of PA signals because of the heterogeneous properties of the 
skull, a subject-speci"c imaging model was proposed, where the inhomogeneity of the skull is 
taken into account using adjunct information about the skull anatomy and composition [15]. 
This information must be obtained from x-ray computed tomography image data, or some 
other imaging modalities.

The application of PAT in transcranial brain imaging of humans is very limited since PA 
signals are aberrated to a high degree by absorption, scattering and compressional-to-shear 
mode conversion effects due to the high thickness of the skull (4 mm–7 mm). Similar to the 
scalar acoustic problem, the iterative methods for transcranial brain imaging can be categorised 
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into time-reversal (convergent Neumann-series) [20, 31], or optimisation algorithms. Recently, 
an optimisation framework for transcranial PAT was proposed, where the forward problem 
describes the wave propagation in a linear isotropic, heterogeneous and lossy elastic medium, 
and a corresponding adjoint model is algebraically derived from the discretised forward opera-
tor, i.e. discretise-then-adjoint method [25]. This forward and adjoint pair was approximated by 
a "nite-difference time domain (FDTD) method using a fourth-order FD method for computing 
the spatial gradient of "elds. In addition, attenuation was described by a diffusive model [27], 
which does not account for the dependency of the wave"eld attenuation on frequency, and 
assumes that the shear-to-compressional wave absorption ratio is proportional to the compres-
sional-to-shear velocity ratio. The authors mentioned that this absorption model is accurate on 
the condition that the induced PA waves are suf"ciently band-limited (see [25], section 2.1).

In PAT, the compartmentalised distribution of light absorbing molecules composing tissues 
induces step-like discontinuities in the generated pressure "eld. As a result, the generated 
PA waves are considerably more broadband than ultrasonic waves [17, 39]. Furthermore, the 
absorption of sound waves in many media such as tissues has been experimentally shown 
to follow a frequency power law with a non-integer power, which can be described by frac-
tional derivatives [36, 37]. Classical attenuation models used the fractional time derivatives, 
which are non-local in time, and thus require storing the time history of "eld variables [24]. 
It has been established that the fractional time derivatives can be replaced by fractional space 
derivatives, which are nonlocal in space rather than time, and are thus more memory ef"cient  
[36, 37]. This is done using the dispersion relation for lossless wave equation. The cost of this 
method is that the spatially non-local operators violate causality [22].

In elastic solids, compressional and shear waves propagate at different speeds. As a result, 
using the dispersion relation for describing fractional space derivatives requires splitting the 
"eld variables into compressional and shear parts [37]. This is done using a dyadic wave num-
ber tensor in the frequency domain [6, 37]. Additionally, by splitting the "elds, the numerical 
dispersion errors accumulated by the time integrations can also be minimised via applying 
the k-space correction to the spatial gradients, which allows larger time steps without loss of 
stability or accuracy in heterogeneous media [6, 34].

1.1. Contribution

We consider a forward map in the PAT problem in which a system of coupled "rst-order 
equations describes the propagation of PA waves in linear isotropic, heterogeneous and lossy 
elastic media, where the absorption and physical dispersion follow a frequency-power law. We 
derive the adjoint of the PAT forward map in this context. This adjoint, referred to here as the 
analytic viscoelastic adjoint, is derived on a continuous domain, and is in the form of a system 
of partial differential equations. We shall analytically show that a numerical computation of 
the derived analytic viscoelastic adjoint using the k-space pseudo-spectral method matches 
the algebraic adjoint of the associated forward model. By setting viscosity coef"cients to zero 
in our derived analytic (continuous) adjoint, the general form of the adjoint model for lossless 
media is derived. This can be used as a basic model, when other existing attenuation models 
are considered, e.g. [21, 22]. We emphasise that in the absence of attenuation the difference 
between our adjoint model and that of [25] arises from the different methods of discretisation 
of the spatial gradient. Our derived analytic adjoint including attenuation effects is numer-
ically validated using an adjoint test, and then the forward and adjoint pair is included in a 
positivity constrained and total-variation regularised solver based on the iterative shrinkage 
thresholding algorithm (ISTA) [3] for image reconstruction in 2D and 3D scenarios.
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2. Acoustic wave propagation for viscoelastic media

Here, we brie#y review the model we use for the propagation of acoustic waves in viscoelastic 
media. For further details, the reader is referred to [37]. To do this, we start with de"ning the 
associated "elds, which are the particle displacement vector ui(x,t), particle velocity vector 
vi(x, t) = dui(x, t)/dt , scalar pressure p(x, t) and stress tensor σij(x, t), where x and t denote 
the position and time, respectively. We also de"ne the medium’s parameters, which are the 
Lamé elastic parameters µ(x) and λ(x), and are related to the shear and compressional wave 
speeds, cs(x) and cp(x) respectively, by the equations

µ = ρc2
s ,λ = ρc2

p − 2µ, (1)

where ρ(x) denotes the medium’s mass density (see [6]). In this section, for brevity the 
depend ence on x and t is neglected, and following [6] and [37], we use the Einstein summa-
tion notation. We also de"ne the strain tensor "eld as [6]

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (2)

Using these, the deformation in an isotropic lossless elastic medium is described by the rela-
tion between σ and ε in the form

σij = λδijεll + 2µεij. (3)

One method of incorporating attenuation is to modify the stress–strain relation (3) as

σij = λδijεll + 2µεij + χδij
∂

∂t
εll + 2η

∂

∂t
εij, (4)

where χ and η denote the compressional and shear viscosity coef"cients. The equation (4) is 
called Kelvin–Voigt model. Plugging (2) into (4) gives [37]

∂σij

∂t
= λδij

∂vl

∂xl
+ µ

(
∂vi

∂xj
+

∂vj

∂xi

)
+ χδij

∂2vl

∂xl∂t
+ η

(
∂2vi

∂xj∂t
+

∂2vj

∂xi∂t

)
. (5)

Let us de"ne the temporal frequency by ω. For low-frequency ranges, the Kelvin–Voigt model 
describes an acoustic absorption proportional to ω2 and a constant sound speed (no disper-
sion), whereas for high frequency ranges, both the absorption and dispersion vary proportional 
to ω1/2 [37].

As discussed in section 1, experimental studies have shown that attenuation in many mat-
erials of interests, including tissue media such as bone, is proportional to ωy with y a non-
integer between 0 and 2 [33]. Because of the broadband nature of PA signals, as well as the 
high level of the attenuation in the skull, this behaviour cannot be neglected. To account for 
the non-integer power law dependence, the integer temporal derivatives in equations (4) and 
(5) can be replaced by fractional time derivatives [12]. For an isotropic medium, this gives the 
fractional Kelvin–Voigt model in the form [37]

σij = λδijεll + 2µεij + χδij
∂y−1

∂ty−1 εll + 2η
∂y−1

∂ty−1 εij, (6)

where

η = − 2ρc3
s

cos (πy/2)
α0,s,χ = −

2ρc3
p

cos (πy/2)
α0,p − 2η, (7)

A Javaherian and S Holman Inverse Problems 34 (2018) 085003



5

with α0,s and α0,p, respectively the attenuation coef"cients pertaining to shear and compres-
sional waves in Np(rad s−1)−y m−1 [37].

The temporal fractional derivatives in equation  (6) are non-local in time, and thus their 
numerical computation requires the storage of the time history of "elds, which is very com-
putationally expensive. To overcome this problem, the dispersion formula for lossless media, 
i.e. the relation between ω and spatial frequency k (ω ≈ ck) with c the sound speed, is used to 
replace the fractional time derivatives by fractional space derivatives, which are non-local in 
space, rather than time [37]. Using this method, the fractional time derivative is written as two 
fractional Laplacian operators [36, 37].

This method provides a signi"cant computational memory bene"t, since at each time step 
the wave"eld at all spatial positions is readily accessible. The system of viscoelastic wave 
equations enriched by fractional Laplacian operators can be used to describe absorption and 
physical dispersion behaviours over a wide range of frequencies and absorption values [37]. 
However, in elastic media since the compressional and shear waves travel at different speeds, 
separate dispersion relations must be considered for the compressional and shear parts of the 
wave"eld. This requires that the particle velocity "eld is split into the compressional and shear 
components [37]. Throughout this work, superscripts p and s denote the compressional and 
shear parts of the "elds, respectively. v p

i  and vs
i are calculated in the form

v p
i = q p(vi) = F−1

{
k̂ik̂jF

{
vj
}}

vs
i = qs(vi) = F−1

{
(δij − k̂ik̂j)F

{
vj
}}

,
 (8)

where F represents the Fourier transform operator, and k̂ik̂j is the unit dyadic wavenumber 
tensor with k̂i = ki/k the normalised wavenumber in direction i and k =

(∑
i k2

i
)

1/2 the mag-
nitude of wavenumber. By splitting the particle velocity vector, the stress tensor is updated 
distinctly for compressional and shear parts in the form

∂σ p,s
ij

∂t
= λ

(
δij

∂

∂xl
v p,s

l

)
+ µ

(
∂

∂xj
v p,s

i +
∂

∂xi
v p,s

j

)
+ χ

(
δij

∂

∂xl

∂y−1
p,s

∂ty−1 v p,s
l

)

+ η

(
∂

∂xj

∂y−1
p,s

∂ty−1 v p,s
i +

∂

∂xi

∂y−1
p,s

∂ty−1 v p,s
j

)
.

 

(9)

Now, the fractional temporal derivatives in (9) can be replaced by fractional Laplacian opera-
tors with different sound speed for the compressional and shear waves. To make this replace-
ment, we introduce the operator

Ly
cp,s

= cy
p,s(−∇2)y/2. (10)

Using this notation and the comments above, we will be using the following de"nition 
throughout the rest of this work including in (9) [37]

∂y−1
p,s

∂ty−1 v p,s
i = sin(πy/2)Ly−1

cp,s
v p,s

i − cos(πy/2)Ly−2
cp,s

1
ρ

∂

∂xj
σ p,s

ij . (11)

We will make this replacement in our forward model. The continuous forward model for 
the wave propagation is completed with the conservation of momentum

∂vi

∂t
=

1
ρ

∑

p,s

∂

∂xj
σ p,s

ij . (12)
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Note that in the second term of (11), following [37] ∂v p,s
i /∂t has been replaced by the split 

terms of (12). This is done to avoid having to compute time differences in the discretised 
model (see [37], section III).

Equations (9) and (12), together give a system of coupled partial differential equa-
tions which describe the propagation of acoustic waves in linear isotropic, heterogeneous and 
lossy elastic media with an attenuation following the frequency power law.

3. Continuous forward and adjoint operators

Let Ω ⊂ Rd  be a d-dimensional open, bounded set containing the initial pressure. For describ-
ing the measurement done by detectors, we de"ne the operator G , which maps the compres-
sional part of the stress tensor "eld to the pressure "eld in the form

Gσ p(x, t) = −1
d
δijσ

p
ij (x, t) = p(x, t). (13)

We also introduce the measurement operator M : L2(Rd)→ RNsNt  which maps the pressure 
"eld p to the measurements detected at each of Nt instants in time and Ns detectors. Each 
detector has a limited access to the pressure "eld, i.e. it measures the pressure "eld over a 
small, "nite volume of space, and the measurement takes a "nite time T. In the next de"nition 
we give the forward map for our inverse problem.

De"nition 1. We de"ne the PAT forward operator using the viscoelastic model in the form

Λ : C∞
0 (Ω)→ RNsNt

Λ[ p0](x, t) = MGσ p(x, t),
 (14)

where σ p,s
ij  and vi satisfy (9) and (12) with initial conditions

σ p
ij (x, 0) = −δijp0(x), σs

ij(x, 0) = 0, vi(x, 0) = 0. (15)

The inverse problem is to reconstruct an approximation of p0 given Λ[ p0]. The forward operator 
Λ is well-de"ned under fairly basic conditions such as cp  >  0, cs  >  0, ρ > 0, y ∈ (0, 2) \ {1}, 
α0,s > 0, α0,p > 0, and all of the "elds cp, cs, ρ, α0,s, and α0,p in"nitely differentiable (it is 
likely that weaker hypotheses such as cs ! 0, or some of the "elds non-smooth can be used as 
well). Intuitively the forward map is well-de"ned as it models a physical process, and for more 
detail on this modelling we refer to [37]. Mathematically the given model for the forward map 
can be proven to be well-de"ned by considering the system of equations formed by (9) and 
(12) as a linear evolution equation for v, σ p, and σs in the form

∂

∂t




v
σ p

σs



 = A




v
σ p

σs





for a linear operator A initially de"ned on C∞
0 (Rn) functions. Considering A as an unbounded 

linear operator on the appropriate L2 space with domain that depends on y, we can apply the 
Hille–Phillips theorem [11] to show that A generates a quasi-contractive semi-group, which 
is what describes the evolution of the "elds v, σ p, and σs. The main step in the application of 
this theorem is to prove that for γ > 0 suf"ciently large

γ −A
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maps from the domain of A onto the L2 space. It is in this step that the requirements on the 
positivity of the parameters arise, as certain bilinear forms must be shown to be coercive. 
Finally, the measurement operator M must be chosen to be an appropriate linear functional 
on L2(Ω), although this may also be relaxed to allow sampling individual point values if p0 is 
assumed to be smooth.

In the next lemma, we will calculate the adjoint of Λ with respect to the L2 inner product, 
i.e.

Λ∗ : RNsNt → L2(Ω). (16)

For this, we need the adjoint of Ly
cp,s

, i.e.

Ly∗
cp,s

= (−∇2)y/2cy
p,s, (17)

which is formal adjoint since −∇2 is self-adjoint. We assume that y is constant over the entire 
medium in the same way as [37]. We also need the time reversal operator R de"ned by

R[ p](x, t) = p(x, T − t).

Lemma 1. The adjoint map Λ∗ can be calculated from Λ∗[P̂](x, t) = p∗0(r), where 
p∗

0 = −δijσ
p∗
ij (x, T), and σ p,s∗

ij  and vp,s∗
i  satisfy the coupled equations

ρ
∂vi

∗

∂t
=
∑

p,s

q p,s

[(
∂

∂xi

(
λσ p,s

ll
∗
)
+ 2

∂

∂xj

(
µσ p,s

ij
∗
))

+ sin(πy/2)L(y−1)∗
cp,s

(
∂

∂xi

(
χσ p,s

ll
∗
)
+ 2

∂

∂xj

(
ησ p,s

ij
∗
))] (18)

v p,s
i

∗
= v∗i −

1
ρ
cos(πy/2)L(y−2)∗

cp,s

(
∂

∂xi

(
χσ p,s

ll
∗
)
+ 2

∂

∂xj

(
ησ p,s

ij
∗
))

∂σ p
ij
∗

∂t
=

1
2

(
∂v p

i
∗

∂xj
+

∂v p
j
∗

∂xi

)
+ (RG∗M∗P̂)

∂σs
ij
∗

∂t
=

1
2

(
∂vs

i
∗

∂xj
+

∂vs
j
∗

∂xi

)

 (19)

with initial conditions

σ p,s
ij

∗
(x, 0) = 0, v∗i (x, 0) = 0. (20)

Remark 1. Solutions for the set of equations (18) and (19) can be shown to exist by a simi-
lar strategy as for the equations describing the evolution of the forward "elds.

Proof. We will show that when σ p,s
ij  and vi satisfy equations (9), (12) and (15), and also σp,s∗

ij  
and v∗i  satisfy (18)–(20), then the forward map Λ and adjoint Λ∗ must satisfy

〈Λ[ p0], P̂〉RNsNt = 〈 p0,Λ∗[P̂]〉L2(Rd) (21)
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for any p0 ∈ C∞
0 (Ω) and P̂ ∈ RNsNt. Because it will make calculations easier, we "rst deal 

with the adjoint "elds in a time reversed order (i.e. we make the change of variable t !→ T − t) 
and with v∗i  replaced by −v∗i  so that the initial conditions (20) are actually "nal conditions 
σ∗

ij(x, T) = 0 and v∗i (x, T) = 0. Accordingly, we have the following relation between vi and 
the adjoint "eld v∗i

∫ T

0

∫

Rd
ρ

(
∂vi

∂t
v∗i + vi

∂v∗i
∂t

)
dx dt = 0. (22)

Plugging (12) into the "rst integrand in the above equation gives
∫ T

0

∫

Rd

∑

p,s

∂σ p,s
ij

∂xj
v∗i + ρvi

∂v∗i
∂t

dx dt = 0. (23)

Integrating-by-parts, and using that σ p,s
ij → 0 at in"nity, we end up with

∫ T

0

∫

Rd

∑

p,s

−σ p,s
ij

1
2

(
∂v∗i
∂xj

+
∂v∗j
∂xi

)
+ ρvi

∂v∗i
∂t

dx dt = 0. (24)

In the above equation, we also used the symmetry of the stress tensor σ p,s
ij = σ p,s

ji . Now we 
apply the same procedure to the stress tensor. Using the "nal conditions σ p,s∗

ij (x, T) = 0 yields
∫ T

0

∫

Rd

∂σ p
ij

∂t
σ p

ij
∗
+ σ p

ij
∂σ p

ij
∗

∂t
dx dt =

∫

R3
p0 σ

p
ii
∗
(x, 0) dx = −〈 p0,Λ∗[P̂]〉L2(Rd)

 
(25)

and
∫ T

0

∫

Rd

∂σs
ij

∂t
σs

ij
∗ + σs

ij
∂σs

ij
∗

∂t
dx dt = 0. (26)

Now, plugging (9) into the "rst integrands in the left-hand sides of (25) and (26) and then add-
ing these two equations results in
∫ T

0

∫

Rd

∑

p,s

[(
λδij

∂v p,s
l

∂xl
+ µ

(∂v p,s
i

∂xj
+

∂v p,s
j

∂xi

)
+ χ

(
δij

∂

∂xl

∂y−1
p,s

∂ty−1 v p,s
l

)

+ η
( ∂

∂xj

∂y−1
p,s

∂ty−1 v p,s
i +

∂

∂xi

∂y−1
p,s

∂ty−1 v p,s
j

))
σ p,s

ij
∗
+ σ p,s

ij
∂σ p,s

ij
∗

∂t

]
dx dt = −〈 p0,Λ∗[P̂]〉L2(Rd).

 (27)

Taking integration-by-parts to the "rst term in the bracket in the above equation, together with 
the fact that σij

∗ is symmetric, gives
∫ T

0

∫

Rd

∑

p,s

[
−
(

∂

∂xi

(
λσ p,s

ll
∗
)
+ 2

∂

∂xj

(
µσ p,s

ij
∗
)
+

∂

∂xi

(
χσ p,s

ll
∗
) ∂y−1

p,s

∂ty−1

+ 2
∂

∂xj

(
ησ p,s

ij
∗
) ∂y−1

p,s

∂ty−1

)
v p,s

i + σ p,s
ij

∂σ p,s
ij

∗

∂t

]
dx dt = −〈 p0,Λ∗[P̂]〉L2(Rd).

 (28)
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Now, adding equations (24) and (28) yields
∫ T

0

∫

Rd
ρvi

∂v∗i
∂t
−
∑

p,s

[ ∂

∂xi

(
λσ p,s

ll
∗
)
+ 2

∂

∂xj

(
µσ p,s

ij
∗
)

+

(
∂

∂xi

(
χσ p,s

ll
∗
)
+ 2

∂

∂xj

(
ησ p,s

ij
∗
)) ∂y−1

p,s

∂ty−1

]
v p,s

i

+
∑

p,s

[
∂σ p,s

ij
∗

∂t
− 1

2

(
∂v∗i
∂xj

+
∂v∗j
∂xi

)]
σ p,s

ij dx dt = −〈 p0,Λ∗[P̂]〉L2(Rd).

 (29)

Now, plugging the fractional Laplacian operators de"ned in equation (11) into the second line 
in equation (29), together with (8), yields

∫ T

0

∫

Rd

(
ρ
∂v∗i
∂t
−
∑

p,s

[
∂

∂xi

(
λσ p,s

ll
∗
)
+ 2

∂

∂xj

(
µσ p,s

ij
∗
)

+

(
∂

∂xi

(
χσ p,s

ll
∗
)
+ 2

∂

∂xj

(
ησ p,s

ij
∗
))

sin(πy/2)Ly−1
cp,s

]
q p,s

)
vi

+
∑

p,s

(
∂

∂xi

(
χσ p,s

ll
∗
)
+ 2

∂

∂xj

(
ησ p,s

ij
∗
))

cos(πy/2)Ly−2
cp,s

1
ρ

∂

∂xj
σ p,s

ij

+
∑

p,s

[
∂σ p,s

ij
∗

∂t
− 1

2

(
∂v∗i
∂xj

+
∂v∗j
∂xi

)]
σ p,s

ij dx dt = −〈 p0,Λ∗[P̂]〉L2(Rd).

 

(30)

In the above equation, we also used the linearity of operator qp,s with respect to vi. By taking 
integration-by-parts to the third line and using the symmetry of σ p,s

ij  in the same way as the 
"rst integrand in (23), we can see from (19) that if the integral in the "rst two lines of (30) is 
equal to zero, then (21) holds and the proof is complete (recall again that relative to (18), we 
have reversed the time, and changed v∗i  to −v∗i ). So we now focus on the "rst two lines of (30) 
which we will denote I . Considering that qp,s is self-adjoint yields

I =

∫ T

0

∫

Rd

[
ρ
∂v∗i
∂t
−
∑

p,s

q p,s

[(
∂

∂xi

(
λσ p,s

ll
∗
)
+ 2

∂

∂xj

(
µσ p,s

ij
∗
))

+sin(πy/2)L(y−1)∗
cp,s

(
∂

∂xi

(
χσ p,s

ll
∗
)
+ 2

∂p,s

∂xj

(
ησ p,s

ij
∗
))]]

vi dx dt.

 (31)

Since v∗i  and σ p,s∗
ij  satisfy (18) we can now see that in fact I = 0, and so the proof is complete.

 □ 

Setting χ, η = 0 and ignoring the splitting operator results in the general form of the 
adjoint for lossless media, which can be adapted to other attenuation models (see for 
example [21, 22]).
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4. Numerical computation

Having found an analytically exact method of computing the adjoint operator Λ∗ in the pre-
vious section, we now consider in more detail the discretisation and computation of the for-
ward operator Λ and adjoint operator Λ∗. We denote the position of a given grid point in 
Cartesian coordinates by xζ  where ζ = (ζ1, ..., ζd) ∈ {1, ..., N1}× ... × {1, ..., Nd} with 
N =

∏d
i=1 Ni the total number of grid points along d dimensions. The grid spacing along 

the ith direction will be denoted by ∆xi. Also let n denote the iteration corresponding to time 
tn = n∆t  with n ∈ {−1, ..., Nt − 1}.

We discretise the spatial derivatives by a pseudo-spectral method. The k-space correction is 
also applied to the spatial derivatives in order to minimise the numerical dispersion errors due to 
the time integration. We approximate the "elds on a uniform rectilinear grid staggered in space 
and time. It turns out that these staggered con"gurations increase accuracy and stability for 
approximation of odd-order spatial and temporal derivatives [6, 34]. Applying a k-space pseudo-
spectral method on a staggered grid, the spatial gradient in direction i will be in the form

∂p,s {·}
∂x±i

= F−1
{

iki sinc(C p,s
0 k∆t/2)e±iki∆xi/2F {·}

}
, (32)

where, as opposed to (8), F and F−1 denote the discrete Fourier transform and its inverse. 
Additionally, sinc(C p,s

0 k∆t/2) is the k-space operator which enforces a k-space correction 
to the gradient, where C p,s

0  is the reference sound speed associated with the compressional 
and shear parts of the "elds. The reader is referred to [6, 34] for further details on the k-space 
pseudo-spectral method.

To simulate wave propagation in an in"nite domain using a computational grid with lim-
ited size, it is necessary that the outward travelling waves that reach the edge of the domain 
are absorbed by perfectly matched layers (PMLs) [6, 25]. Using PMLs, the general evolution 
equation ∂R(x,t)

∂t = β(x, t) is transformed into the form [34]

∂R(x, t)
∂t

+ αaR(x, t) = β(x, t), (33)

where αa is the attenuation coef"cient associated with the PML, which is tapered within the 
PML thickness at each side of the grid (see [6], equation (42)). This yields

∂ (eαatR(x, t))
∂t

= eαatβ(x, t). (34)

Using a staggered temporal grid, this is approximated as

eαa(t+∆t)R(xζ , t +∆t)− eαatR(xζ , t)
∆t

= eαa(t+∆t/2)β(xζ , t +∆t/2). (35)

This gives the update

R(xζ , t +∆t) = e−αa∆t/2
[
e−αa∆t/2R(xζ , t) +∆tβ(xζ , t +∆t/2)

]
. (36)

Using direction-dependent PMLs, the "eld variables are split into directions along the Cartesian 
coordinates m ∈ {1, ..., d} [6]. In the sequel, the directions associated with PMLs are written 
to the left of the "elds. We de"ne the diagonal PML attenuation matrices Am ∈ RN×N  by

Am = diag(e−mαa∆t/2). (37)

Note that −mαa depends on the grid point here.
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For the staggered temporal grid we consider also the time points tn+1/2 = n∆t +∆t/2. To 
accommodate the staggered spatial grid we introduce the operators Ti which shift the point x 
by ∆xi/2 in the ith coordinate, i.e. xi changes to xi +∆xi/2. We will also use the same nota-
tion for the corresponding operator acting on functions de"ned by

Tif (x) = f (Tix). (38)

The discretised particle velocity vector "eld is denoted by mv(i;ζ;n) ∈ Rd
m × Rd

i × RN
ζ × RNt+1

n  
and is approximated on a staggered spatial grid as

mv(i;ζ;n) ≈ Ti mvi (xζ , tn) . (39)

The p and s parts of the discretised stress tensor "eld are denoted by 

mσ
p,s
(ij;ζ;n) ∈ Rd

m × Rd
i × Rd

j × RN
ζ × RNt+1

n  and are approximated on a staggered grid as

mσ
p,s
(ij;ζ;n) ≈

{
mσ

p,s
ij (xζ , tn) if i = j

TiTj mσ
p,s
ij (xζ , tn) if i "= j. (40)

Because of using a staggered grid, the unit dyadic tensor in (8) will be in the form [6]

(k̂ik̂j)staggered = (k̂ik̂j)nonstaggered × ξij, (41)

where

ξij = e+i(ki∆xi−kj∆xj)/2 (42)

is the shifting operator with i standing for the imaginary number [6].
We also de"ne

τ p,s
dis = Cy−1

p,s sin (πy/2) (43)

τ p,s
abs = Cy−2

p,s cos (πy/2) (44)

with Cp,s ∈ RN  the discretised form of cp,s. Using a staggered grid, we de"ne the medium’s 
parameters as diagonal matrices of size N × N  in the form

ρ̄i = diag (Tiρ)

λ̄ = diag (λ)

µ̄ij =

{
diag (µ) if i = j
diag (TiTjµ) if i != j.

χ̄ = diag (χ)

η̄ij =

{
diag (η) if i = j
diag (TiTjη) if i != j.

τ̄i,dis = diag (Tiτdis)

τ̄i,abs = diag (Tiτabs)

 (45)

where ρ,λ,µ,χ, and η on the right hand sides in (45) are the medium parameters evaluated 
at the N grid points. In the formulas that follow for the discretised model, these matrices are 
always understood to act on discretised "elds in the index ζ corresponding to the spatial grid.

We also introduce the N × N  matrices discretising the relevant fractional Laplacian opera-
tors as
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Ȳdis = F−1
{

ky−1F{·}
}

Ȳabs = F−1
{

ky−2F{·}
}

.
 (46)

Finally, we de"ne the following function which we will use to simplify some of the formulas

h(i, j) =
{
+1 if i = j
−1 if i "= j. (47)

4.1. Forward model

In the sequel, the approximation of the system of viscoelastic wave equations  de"ned by 
equations  (9), (12) and (15) based on the details given above will be outlined. It is worth 
mentioning that a code is available in the open-source k-Wave toolbox for describing wave 
propagation in heterogeneous lossy elastic media based on equations (5), (12) and (15) using 
the k-space pseudo-spectral method [35, 38]. As discussed in section 2, the results of this code 
give an attenuation that is not evident in tissue media [37]. Therefore, we modi"ed the pre-
existing k-Wave toolbox code so that it includes two fractional Laplacian operators in order to 
account for absorption and physical dispersion following the frequency power law. This code 
is outlined as follows.

While in the continuous model we assume the initial pressure is instantaneous, in the dis-
cretised model we introduce the initial pressure at t  =  0 to the forward model as an additive 
source split over the time interval t ∈

[
−∆t/2,+∆t/2

]
. For this, p(t = 0) = 1 is approxi-

mated as P(n =
[
− 1/2 + 1/2

]
) = 1

∆t

[
0.5 0.5

]
 (see [2], appendix B). Considering this, 

together with (15) and dividing the source by PML directions, gives a source in the form

ms(ij;ζ;n+1/2) =

{
− δij

2d∆tSP0 n = −1, 0
0 otherwise,

 (48)

where P0 denotes the discretised form of p0, and S is a symmetric smoothing operator that is 
used for mitigating unexpected oscillations in propagation of the initial pressure P0 (for fur-
ther details, the reader is referred to [2], appendix B).
Start at iterate n  =  −1 with initial conditions mσ

p,s
(ij;ζ;n=−1) = 0 and mv(i;ζ,n=−3/2) = 0, and 

terminate at iterate n  =  Nt  −  2.

 1.  Update the particle velocity !eld:

mv(i;ζ;n+ 1
2 )

= Am

[
Am mv(i;ζ;n− 1

2 )
+

∆t
ρ̄i

∑

p,s

∂p,s

∂xh(i,m)
m

σ p,s
(im;ζ;n)

]

v(i;ζ;n+ 1
2 )

=
d∑

m=1
mv(i;ζ;n+ 1

2 )
.

 (49)

 2.  Split the particle velocity !eld into compressional and shear parts:

v p,s
(i;ζ;n+ 1

2 )
= Q p,sv(i;ζ;n+ 1

2 )
. (50)

  Here, Qp,s denotes the discretised form of functions qp,s de"ned in (8).
 3.  Update the stress tensor !eld:
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mσ
p,s
(ij;ζ;n+1) = Am

[
Am mσ

p,s
(ij;ζ;n) +∆t

[
λ̄δij

∂p,s

∂x−m
v p,s
(m;ζ;n+ 1

2 )

+ µ̄ij

(
δmj

∂p,s

∂x−h(i,j)
j

v p,s
(i;ζ;n+ 1

2 )
+ δmi

∂p,s

∂x−h(i,j)
i

v p,s
( j;ζ;n+ 1

2 )

)

+ χ̄δij
∂p,s

∂x−m

(
τ̄ p,s

m,dis Ȳdis v p,s
(m;ζ;n+ 1

2 )
− τ̄ p,s

m,abs Ȳabs ∂tv
p,s
(m;ζ;n+1/2)

)

+ η̄ijδmj
∂p,s

∂x−h(i,j)
j

(
τ̄ p,s

i,dis Ȳdis v p,s
(i;ζ;n+ 1

2 )
− τ̄ p,s

i,abs Ȳabs ∂tv
p,s
(i;ζ;n+1/2)

)

+ η̄ijδmi
∂p,s

∂x−h(i,j)
i

(
τ̄ p,s

j,dis Ȳdis v p,s
( j;ζ;n+ 1

2 )
− τ̄ p,s

j,abs Ȳabs ∂tv
p,s
( j;ζ;n+1/2)

)]]

 

(51)

  where

∂tv
p,s
(i;ζ;n+1/2) =

d∑

m=1

Am
1
ρ̄i

∂p,s

∂xh(i,m)
m

σ p,s
(im;ζ;n). (52)

 4.  Add source:

mσ
p
(ij;ζ;n+1) ← mσ

p
(ij;ζ;n+1) +∆t ms(ij;ζ;n+1/2)

σ p,s
(ij;ζ;n+1) =

d∑

m=1
mσ

p,s
(ij;ζ;n+1).

 (53)

 5.  Compute the pressure !eld and map it to detected data at ultrasound detectors:

  We use G and M for denoting the discretised variants of G  and M. Correspondingly, at 
each iterate the pressure "eld is computed by

p(ζ;n+1) = Gσ p
(ij;ζ;n+1) = −

1
d

d∑

l,m=1
mσ

p
(ll;ζ;n+1), (54)

  and is then interpolated to ultrasound detectors using trilinear interpolation [2, 25], i.e.

P̂n+1 = Mp(ζ;n+1), (55)

  where M ∈ RNs×N  is a map from the pressure at grid points to the pressure measured 
by the detectors, and P̂n ∈ RNs is the vector of measured pressure data at iteration 
n  =  0,...,Nt  −  1.

4.2. Analytic adjoint model

The continuous adjoint model de"ned by equations (18)–(20) are solved numerically as fol-
lows. For brevity, we ignore the superscript ∗ for denoting the adjoint "elds in the discretised 
case. Before de"ning the time stepping procedure for the adjoint, we "rst de"ne the additive 
source. To account for splitting of P0 over the "rst two temporal iterations in the forward 
model (see equation (48)), we de"ne the order reversed adjoint measured data in the form [2]
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P̂adj
n+1/2 =

1
2∆t






P̂Nt−1, n = −1
P̂Nt−n−1 + P̂Nt−n−2, n = 0, ..., Nt − 2
P̂0, n = Nt − 1

. (56)

The adjoint measured data is mapped from ultrasound detector positions to an additive source 
that is de"ned at grid points using

ms(ij;ζ;n+1/2) = GTMTP̂adj
n+1/2, (57)

where

GT = −1m ⊗
δij

d
. (58)

Start at iterate n  =  −1 with initial conditions mσ(ij;ζ;n=−1) = 0 and mv(i;ζ,n=−3/2) = 0, and 
terminate at iterate n  =  Nt  −  2.

 1.  Update the particle velocity !eld:

mv p,s
(i;ζ;n+ 1

2 )
= Am

[
Am mv(i;ζ;n− 1

2 )

+
∆t
ρ̄i

[∑

p,s

d∑

j=1

Q p,s
[ ∂p,s

∂x+i

(
λ̄ iσ

p,s
( jj;ζ;n)

)
+ 2

∂p,s

∂xh(i,j)
j

(µ̄ij jσ
p,s
(ij;ζ;n))

+ Ȳdis τ̄
p,s

i,dis

(
∂p,s

∂x+i

(
χ̄ iσ

p,s
( jj;ζ;n)

)
+ 2

∂p,s

∂xh(i,j)
j

(η̄ij jσ
p,s
(ij;ζ;n))

)]]]
.

 

(59)

 2.  Add the absorption term to the particle velocity !eld:

mv p,s
(i;ζ;n+ 1

2 )
=m v(i;ζ;n+ 1

2 )

− Am
1
ρ̄i

d∑

j=1

Ȳabs τ̄
p,s

i,abs

(
∂p,s

∂x+i

(
χ̄ iσ

p,s
( jj;ζ;n)

)
+ 2

∂p,s

∂xh(i,j)
j

(η̄ij jσ
p,s
(ij;ζ;n))

)
.

 

(60)

  Note that we are not using the summation convention in these formulas.
 3.  Update the stress tensor !eld:

mσ(ij;ζ;n+1) = Am

[
Am mσ(ij;ζ;n) +

∆t
2

( ∂p,s

∂x−h(i,j)
j

jv p,s
(i;ζ;n+ 1

2 )
+

∂p,s

∂x−h(i,j)
i

iv p,s
( j;ζ;n+ 1

2 )

)]
.

 

(61)

 4.  Add source:

mσ
p
(ij;ζ;n+1) ← mσ

p
(ij;ζ;n+1) +∆t ms(ij;ζ;n+1/2). (62)

 5.  Compute the pressure !eld at !nal iterate and apply smoothing:

p(ζ;n=Nt−1) = −S
(

1
d

d∑

l,m=1
mσ

p
(ll;ζ;n=Nt−1)

)
. (63)
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5. Adjoint for discretised viscoelastic forward model

In this section, we will calculate the adjoint of the viscoelastic forward model Λ de"ned 
by (9), (12) and initial conditions in (15) based on the discretise-then-adjoint method. 
To do this, we consider the discretised equations  (49) and (51) in a matrix form. 
Accordingly, let the particle velocity vector v̄n−1/2 ∈ RNd2

 at each time step be made 
up of the components mv(i;ζ;n−1/2) ∈ RN (i, m ∈ {1, ..., d}). Let us also de"ne the stress 
tensor as vector σ̄n ∈ R12N(d = 2) or σ̄n ∈ R30N(d = 3) composed of the components 

mσ
p,s
(ij;ζ;n) ∈ RN (i, j, m ∈ {1, ..., d}). Note that for the latter, we used the symmetry of σij, 

together with the fact that mσij = 0 if m /∈ {i, j} [6] to reduce the number of degrees of freedom.
We also de"ne Xn ∈ R39N  (3D case) as a stack of the particle velocity and stress "elds at 

time step n in the form Xn =
[ (

v̄n−1/2
)

T (σ̄n) T
]T

. Let also S ∈ R39NNt×N give a map from 
the discretised initial pressure P0 ∈ RN  to an additive source (see (48)), which we will write as

S = SP0 ∈ R39NNt . (64)

We will also write Sn+1/2 = SnP0 for the source at time step n. In particular Sn = 0 except 
when n  =  −1 or 0. The time sequence of "elds at steps (n ∈ {−1, ..., Nt − 2}) is then given by

Xn+1 = TXn + Sn+1/2, (65)

where T ∈ R39N×39N  implements (49) and (51), and X−1  =  0 (see section 4.1). Here for brev-
ity the operators Sn are given using (48) multiplied by ∆t , and thus multiplication by ∆t  
is neglected in the second term of (65). We will look in more detail at the matrix T later in 
section 5.1. Finally, we introduce a measurement matrix M ∈ RNs×39N that at each time step 
maps the "eld Xn to the measured data at the sensors (i.e. implements formulas (54) and (55)). 
Note that M for the discretised formulae is de"ned not the same as for the continuous form-
ulae. We "rst consider the map from the source S to the measurements.

De"nition 2. The map H : R39NNt → RNsNt is de"ned by

P̂ = HS, P̂n = MXn (n ∈ {0, ..., Nt − 1}), P̂ =
[
P̂n+1

]Nt−2

n=−1
, (66)

where Xn is updated by (65) with initial condition X−1  =  0, and P̂ ∈ RNsNt is the time series 
stack of measured data at iterates n ∈ {0, ..., Nt − 1}.

In the next lemma, we show how to compute the adjoint of H. Note that in fact this lemma 
applies more generally for the adjoint of any discretised problem taking the form described 
here.

Lemma 2. The adjoint H∗ of H de!ned in de!nition 2 is given by
[
X∗

n
]Nt−2

n=−1 = H∗P̂ ∈ R39NNt , X∗
Nt−1 = 0, X∗

n−1 = T∗X∗
n +M∗P̂n (n ∈ {0, ..., Nt − 1}).

 (67)

Proof. Let us assume that Xn satis"es (65) with initial condition X−1  =  0, and X∗
n satis"es 

the last two equations in (67). Then using the conditions X−1  =  0 and X∗
Nt−1 = 0 we have

Nt−2∑

n=−1

(Xn+1 − Xn) · X∗
n =

Nt−1∑

n=0

Xn · (X∗
n−1 − X∗

n ).
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Then applying (65) on the left and (67) on the right we have

Nt−2∑

n=−1

(TXn − Xn + Sn+1/2) · X∗
n =

Nt−1∑

n=0

Xn · (T∗X∗
n − X∗

n +M∗P̂n).

Rearranging this slightly gives
Nt−2∑

n=−1

(TXn − Xn) · X∗
n +

Nt−2∑

n=−1

Sn+1/2 · X∗
n =

Nt−1∑

n=0

(TXn − Xn) · X∗
n +

Nt−1∑

n=0

(MXn) · P̂n.

Applying again the conditions X−1  =  0 and X∗
Nt−1 = 0 we see that

Nt−2∑

n=−1

Sn+1/2 · X∗
n =

Nt−1∑

n=0

(MXn) · P̂n

which is equivalent to 〈S,H∗P̂〉RNNt = 〈HS, P̂〉RNsNt, and so completes the proof. □ 

The forward map actually de"ned in section 4.1 is

H S ,

and so the adjoint is

S∗ H∗.
If we incorporate a time reversal, which amounts to changing X∗

n !→ X∗
Nt−2−n in lemma 2, as 

well as including S∗, we obtain the following corollary which gives the full method of calcu-
lating the adjoint in our case incorporating time reversal. The sum in (68) is actually just two 
terms which can also be used to explain (56) if we commute the summing operation with the 
computation of X∗.

Corollary 1. S∗H∗ can be computed as

S∗H∗P̂ =
Nt−2∑

n=−1

S∗
n X∗

Nt−2−n (68)

where X∗
n is determined by

X∗
−1 = 0, X∗

n+1 = T∗X∗
n +M∗P̂Nt−2−n (n ∈ {−1, ..., Nt − 2}). (69)

5.1. The matrices T and T∗

In this section we write the matrices T and T∗ explicitly using the forward model presented in 
section 4.1 to show how multiplication by each of them may be computed. Considering corol-
lary 1, we de"ne the adjoint measured data for the discretised adjoint as P̄adj

n+1/2 = ∆tP̂adj
n+1/2. 

To start we can write (49) and (51) in the condensed forms

v̄n+ 1
2
= Av

[
Av v̄n− 1

2
+ Φσ̄n

]
, (70)

and

σ̄n+1 = Aσ

[
Aσσ̄n +Ψdisv̄n+ 1

2
−Ψabsσ̄n

]
+ θSn+1/2 (71)
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where θ is a sparse matrix that maps Sn+1/2 to the space of vector σ̄n . Also Av , Aσ, Φ, Ψdis, and 
Ψabs are matrices that will be described in more detail below although for now we note that Av  
and Aσ are both diagonal. Based on this we see that T can be written as the following product 
of matrices in block form

T =

(
Iv 0

AσΨdis Aσ(Aσ −Ψabs)

)(
A2

v AvΦ

0 Iσ

)
 (72)

where Iv and Iσ are the identity matrices. From (72) we have

T∗ =

(
A2

v 0
Φ∗Av Iσ

)(
Iv Ψ∗

disAσ

0 (Aσ −Ψ∗
abs)Aσ

)
. (73)

Using corollary 1, the above equation gives the updates for the adjoint problem as

v̄n+1/2 = A2
v
(
v̄n−1/2 +Ψ∗

disAσσ̄n
)

σ̄n+1 = A2
σσ̄n + Φ∗(Av)

−1v̄n+1/2 −Ψ∗
absAσσ̄n + θ′

∗M∗P̄adj
n+1/2,

 (74)

where θ′ is a sparse matrix mapping the space of vector σ̄n  to the space of vector Xn. De"ning 
σ̃ = Aσσ̄ and ṽ = A−1

v v̄ gives

ṽn+1/2 = Av
(
Avṽn−1/2 +Ψ∗

disσ̃n
)

σ̃n+1 = Aσ

(
Aσσ̃n + Φ∗ṽn+1/2 −Ψ∗

absσ̃n
)
+ θ′

∗M∗P̄adj
n+1/2.

 (75)

Now let us consider the matrices Av , Aσ, Φ, Ψdis, and Ψabs. First we note that Av  and Aσ 
can be found from (37). Though the others can be read off from (49) and (51), we will write 
them down explicitly here in order to show how we can explicitly calculate multiplication by 
their adjoints as required in (73).

Toward this goal, let us de"ne the k-space discretised gradient operator

∇±
(m,i)

p,s
=

∂p,s

∂x±h(m,i)
i

,
 

(76)

which is de"ned by (32). Note that the superscript p, s accounts for C p,s
0  used in the k-space 

method (see (32)). Here we are considering ∇±
(m,i)

p,s
 to be an N × N  matrix, and based on (32) 

and the unitarity of the discrete Fourier transform we see that
(
∇±

(m,i)
p,s
)∗

= −∇∓
(m,i)

p,s. (77)

Using a pseudo-spectral method without k-space correction, the gradient operator is the same 
for compressional and shear parts of the "elds, and thus this superscript would not be required 
in that case. We will also need the symmetrisation operator S̄ acting in the ij indices de"ned by

S̄[a]ij =
aij + aji

2
. (78)

We apply S̄ to objects having more indices, but specify that it always acts on the pair ij.
In (70), the action of matrix Φ ∈ R9N×30N  on σ̄ can be written as

m(Φσ̄)i =
∑

p,s
m(Φ

′σ̄)
p,s
i , (79)

where from (49) and the second line in (53),
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m(Φ
′σ̄)

p,s
i =

∆t
ρ̄i

(
∇+

(i,m)

p,s
) d∑

m′=1
m′ σ̄ p,s

im . (80)

Here and in what follows we do not include the spatial index ζ explicitly, but understand that 
for every value of the other indices (i and m here) we have a vector of dimension N, and that 
the discretised gradient and multiplication by 1/ρ̄i are implemented as operators acting on this 
spatial index. Thus, from (75) and using (77),

m(Φ
∗
ṽ)

p,s
ij = −∆t S̄

[(
∇−

(i,j)
p,s
) 1
ρ̄i

jṽi

]
. (81)

The symmetrisation S̄ must be added since this should map into the space of symmetric 
tensors.

Next, from (51), together with the second line in (49), the operator Ψdis ∈ R30N×9N  acts 
on v̄ by

m(Ψdisv̄)
p,s
ij = ∆t

[
δij

[
λ̄
(
∇−

(m,m)

p,s
)
+ χ̄

(
∇−

(m,m)

p,s
)
τ̄ p,s

m,disȲdis

]
Q p,s

d∑

m′=1
m′ v̄m

+ 2 S̄
[[

µ̄ij δmj

(
∇−

(i,j)
p,s
)
+ η̄ij δmj

(
∇−

(i,j)
p,s
)
τ̄ p,s

i,dis Ȳdis

]
Q p,s

d∑

m′=1
m′ v̄i

]]
.

 

(82)

From this we can "nd the formula for the action of the adjoint in (75) as

m(Ψ
∗
disσ̃)i = −∆t

∑

p,s

d∑

j=1

Q p,s

[[(
∇+

(i,i)
p,s
)
λ̄+ Ȳdisτ̄

p,s
i,dis

(
∇+

(i,i)
p,s
)
χ̄

]
iσ̃

p,s
jj

+ 2
[(
∇+

(i,j)
p,s
)
µ̄ij + Ȳdisτ̄

p,s
i,dis

(
∇+

(i,j)
p,s
)
η̄ij

]
jσ̃

p,s
ij

]
.

 

(83)

Additionally, from (51), (52) and (80), in (71) the operator Ψabs ∈ R30N×30N  acts on σ̄ by

m(Ψabsσ̄)
p,s
ij = m

(
Ψ′

abs
( 1
∆t
) d∑

m′=1

Am′m′(Φ′σ̄)

) p,s

ij

, (84)

which is actually the action of Ψ′
abs on ∂t v̄ using (51) in the form

m(Ψ
′
abs∂t v̄)

p,s
ij = ∆t

[
δijχ̄

(
∇−

(m,m)

p,s
)
τ̄ p,s

m,absȲabs∂t v̄ p,s
m

+ 2 S̄ η̄ij δmj

(
∇−

(i,j)
p,s
)
τ̄ p,s

i,abs Ȳabs∂t v̄ p,s
i

]
.

 (85)

Using (75), the action of the adjoint is then given by

m(Ψ
∗
absσ̃)

p,s
ij =m (

1
∆t

Φ′∗AmΨ
′∗
absσ̃)

p,s
ij , (86)

where

m(Ψ
′∗
absσ̃)

p,s
i = −∆t

d∑

j=1

Ȳabsτ̄
p,s

i,abs

[(
∇+

(i,i)
p,s
)
χ̄ iσ̃

p,s
jj + 2

(
∇+

(i,j)
p,s
)
η̄ij jσ̃

p,s
ij

]
.

 

(87)
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Finally, plugging (86) into the second line in (75), together with using (79), gives

ṽn+1/2 = Av
(
Avṽn−1/2 +Ψ∗

disσ̃n
)

ṽn+1/2 = 1p,s ⊗ ṽn+1/2 −
1
∆t

Av

(
Ψ′∗

absσ̃n

) p,s

σ̃n+1 = Aσ

(
Aσσ̃n + Φ′∗ ṽn+1/2

)
+ θ′

∗M∗P̄adj
n+1/2,

 (88)

where, 1p,s⊗ represents the adjoint of 
∑

p,s included in Φ, and thus as opposed to ̃vn+1/2 ∈ RNd2
, 

ṽn+1/2 ∈ R2Nd2
 is composed of the compressional and shear components. Equation (88) gives 

the same formulae as in section 4.2. This indicates that using a k-space pseudo-spectral method 
the numerical computation of the continuous forward operator Λ and adjoint Λ∗ matches the 
discretised forward operator H̄ = HS  and the corresponding algebraic adjoint H̄∗ = S∗H∗, 
respectively.

6. First-order optimisation methods for PAT

We incorporate the forward and adjoint pair in an inverse solver based on the iterative shrink-
age thresholding algorithm (ISTA), which is popular in PAT, e.g. [2, 17]. A fast variant of this 
algorithm has also been used in PAT [1, 16, 17]. Let the discretised variant of the sought after 
initial pressure (P0) be denoted by P ∈ RN . The inverse problem of inferring P0 from P̂  can be 
"t into a general class of non-smooth constrained convex minimisation problems of the form

argmin
P

{F(P) := f (P) + g(P)} , (89)

where f (P) = 1
2‖H̄P− P̂‖2 is a continuously differentiable function with Lipschitz continu-

ous gradient having smallest Lipschitz constant Lf = Simax(H̄∗H̄) with Simax(.) the largest 
singular value. The gradient of f is computed by

∇f (P) = H̄∗
(
H̄P− P̂

)
. (90)

Using a total variation (TV) regularised variant of ISTA, we take g(P) = λrJ (P) + δC (P), 
where J (P) represents a TV penalty functional, λr denotes the regularisation parameter, and 
δC  is an indicator function for the set of constraints C = {P ! 0} [3, 7].

Applying the so-called forward-backward splitting method to a "xed point iterative scheme 
arising from the optimality conditions of problem (89) gives two steps at each iteration k of 
the optimisation algorithm. The "rst step uses a steepest descent search direction −∇f (Pk−1) 
and step size Γk in the form

Yk = Pk−1 − Γk ∇f (Pk−1), (91)

and is called the forward gradient descent step [3, 7]. Applying ISTA, the iterates Pk converge 
to a minimiser P∗ of problem (89) if Γk ∈ (0, 2/Lf ) [3]. Here, Lf, the largest singular value of 
H̄∗H̄, is computed iteratively by the power method following [1, 2, 17]. Since Lf is indepen-
dent of the unknown P0, it can be stored and used for all experiments done in a "xed setting 
[1].

The second step is a proximal map in the form

proxΓk(g)(Yk) := argmin
P

{
g(P) +

1
2Γk ‖P− Yk‖2

}
, (92)

A Javaherian and S Holman Inverse Problems 34 (2018) 085003



20

and is called backward gradient step [7]. Following [2, 16], here the proximal map is com-
puted based on Chambolle’s dual approach (See [3]). In our study, we will terminate ISTA if 
the following criterion is satis"ed:

k > 1 ∩ 1− Fk

Fk−1 < ε. (93)

Here, ε is a stopping tolerance, and is chosen close to zero.

7. Numerical results

The numerical implementation of a system of coupled "rst-order equations that describe the 
propagation of PA waves in linear isotropic elastic and lossy media based on an absorption fol-
lowing the classical Kelvin–Voigt model (4) is available on the k-Wave website [35, 38]. This 
code is based on a pseudo-spectral time-domain method [6]. For a numerical implementation 
of the forward problem, we modi"ed this code so that it includes the absorption and physical 
dispersion following the frequency power law, using the splitting technique, as discussed in 
section 4.1 [37]. We also developed a code for implementation of our continuous adjoint, as 
discussed in section 4.2. We then showed that this adjoint matches the algebraic adjoint of 
the associated discretised forward operator. To validate the adjoint model, (21) was "rst used 
to check if the inner-product test is satis"ed for any initial pressure P0 and data P̂ . We then 
performed reconstructions from simulated data in both 2D and 3D settings as described below.

7.1. 2D phantom

7.1.1. Computational grid. We used a computational grid with a size of 14× 14 cm2 to simu-
late the size of the superior surface of the skull.

Data generation. To simulate the propagation of wave"elds, the computational grid 
was made up of 472× 472 grid points equidistantly spaced with a separation distance of 
2.9661× 10−2 cm along both Cartesian coordinates. This computational grid was enclosed 
by a PML having a thickness of 20 grid points and a maximum attenuation coef"cient of 2 
nepers per grid point so that a good trade-off between mitigating spurious wave wrapping at 
the boundaries and re#ection of waves at the edge of the PML was made [34]. The propagated 
pressure "eld was measured in time by 200 detectors that were evenly placed aligned by the 
top half of periphery of a circle having a radius of r = 6.8 cm so that π radians were covered 
by the detectors. The skull was simulated with semi-circular interfaces with distances of 0.85r 
and 0.95r to the center of the semi-circle so that it has an even thickness of 6.8 mm. This 
has provided an even radial distance of 3.4 mm between the outer edge of the skull and the 
detectors.

Image reconstruction. To avoid an inverse crime for discretisation [18], the image recon-
struction was done on a grid made up of 328× 328 grid points which are placed evenly with a 
separation distance of 4.2683× 10−2 cm along both Cartesian coordinates. The thickness of 
the PML was reduced to 16 grid points.

7.1.2. Physical parameters. The maps corresponding to the medium’s mass density ρ, 
 compressional wave propagation speed cp and shear wave propagation speed cs were shown in 
"gures 1(a)–(c), respectively. The colour scales are shown to the right of each map, where the 
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blue colour represents the physical parameters of soft tissue with cp = 1500 ms−1, cs = 0 ms−1 
and ρ = 1000 kgm−3, and the red colour represents the skull with cp = 3000 ms−1, 
cs = 1500 ms−1 and ρ = 1850 kgm−3. These parameters were chosen following [25]. The 
absorption coef"cients were set to α0,p = 10 dB MHz−y cm−1 and α0,s = 20 dB MHz−y cm−1 
in the skull, and α0,p = 0.75 dB MHz−y cm−1 and α0,s = 0.5 dB MHz−y cm−1 in the soft 
tissue. Note that we assumed absorption coef"cients associated with the skull greater than the 
exper imental values obtained in [41] (see table 1 in [37]). Following [37], the exponent factor 
was assumed constant across the entire medium, and was set to y  =  1.4.

7.1.3. Validation of adjoint. The inner-product test is a useful checking method, which esti-
mates the accuracy of implementation of the adjoint operator. Using the setting described 
above, we numerically measured the accuracy of the computed adjoint model using the inner-
product formula in (21). To do this, we used a randomly selected vector for P̂ , together with 
an initial pressure distribution P0 in the form of a circular disk with a radius of 0.8r, where 
the values at each point of the disk are chosen randomly. The relative difference between the 
left-hand and right-hand sides of (21) was averaged between 10 attempts. This gives values 
7.43× 10−5 and 8.71× 10−6 for the grids used for image reconstruction and data generation, 
respectively. Our observations showed us that with an increase in density of the grid, the inner-
product test is satis"ed with a higher order of accuracy.

7.1.4. Simulation setting. To evaluate the performance of the forward and adjoint pair for 
image reconstruction, we considered two scenarios as follows.

Scenario 1. In general, the inverse problem in PAT is based on the assumption that the 
physical parameters of the medium are known. In our "rst experiment, we used the maps in 
"gures 1(a)–(c) as physical parameters for both data generation and image reconstruction. 
This implies that we have an exact knowledge of the physical parameters. Since this assump-
tion does not hold in practical cases, this is considered as an inverse crime [18]. Using these 
maps, the grid used for data generation supports a maximal frequency up to 2.5286 MHz for 
propagation of compressional waves through the entire medium and shear waves within the 
skull.

Scenario 2. In the second experiment, we avoided an inverse crime in estimating  
medium’s parameters by using different maps for data generation and image reconstruc-
tion. Correspondingly, for generating data we contaminated the maps in "gures 1(a)–(c) with 
a 30dB additive white Gaussian noise (AWGN). The contaminated maps are displayed in 
 "gures 1(d)–(f). For image reconstruction, we assumed the contaminated maps are not read-
ily available, and thus we used the clean maps. Using the noise contaminated maps for data 
generation, the associated grid supports maximal frequency up to 2.2047 MHz for propaga-
tion of shear waves within the skull and 2.1889 MHz for compressional waves through the 
entire medium. In these "gures, the location of ultrasound detectors has been shown by the 
green semi-circle.

The grid used for image reconstruction supports a maximal frequency of 1.7571 MHz for 
compressional waves through the entire medium and shear waves within the skull. We cre-
ated the initial pressure map with a maximal amplitude of 2, as shown in "gure 2(a). For both 
scenarios, a CFL of 0.3 was suf"cient to guarantee the stability of the forward and adjoint 
models. Accordingly, the computed pressure wave"eld was recorded in 4451 time steps, and 
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interpolated to the detectors using linear interpolation [35]. The generated data (for both sce-
narios) were then contaminated with a 30 dB AWGN.

7.1.5. Image reconstruction. We "rst reconstructed an image corresponding to each scenario 
using the time reversal method. This was performed using k-Wave toolbox [35, 38]. According 
to [39], a "ltering of the absorption and dispersion terms in the spatial frequency domain may 
be required to ensure the stability of TR. Here, to make a fair comparison between TR and 
ISTA, we applied TR optimistically on a non-absorbing medium with α0,p,s = 0. The images 
reconstructed by TR for scenarios 1 and 2 are displayed in "gures 2(b) and (d), respectively. 
The computed forward and adjoint operators were then incorporated into the inverse solver 
discussed in section 6. The regularisation parameter was empirically set to λr = 1× 10−2. 
A step size of Γk = 1.8/Lf  was chosen and used for all iterations k. Here, Lf was computed 
by the power iteration method [1, 2, 17]. The iterates of power iteration algorithm converged 
to Lf after around 15 iterations. Using ISTA, the iterates are initialised by zero, and the algo-
rithm was terminated using the stopping tolerance ε = 1× 10−4. Figures 2(c) and (e) show an 
image of the "nal iterate computed by ISTA for scenarios 1 and 2, respectively.

The computed sequence of iterates was measured by two parameters:

 (1)  Relative error (RE):

RE(Pk) =
‖Pk − P̃phantom‖2

‖P̃phantom‖2
× 100,
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Figure 1. 2D phantom. Exact physical maps: (a) ρ (b) cp (b) cs, and noise-contaminated 
physical maps: (d) ρ (e) cp (f) cs.
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  where Pk denotes the update at iteration k, and P̃phantom denotes the initial pressure distri-
bution in the phantom interpolated to the grid used for image reconstruction.

 (2)  Objective function (F(Pk)): (see section 6, (89)).

7.1.6. Observations. Figures 3(a) and (b) show RE and objective function values of iterates 
computed by ISTA versus the iteration number k, respectively. Figure 3(c) shows F from a 
large view around the stopping point. In these "gures, the blue and red plots, respectively 
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Figure 2. 2D phantom. (a) initial pressure map, and reconstructed images using exact 
physical parameters (inverse crime): (b) TR (α0,p,s = 0) (c) ISTA, and erroneous 
physical parameters: (d) TR (α0,p,s = 0) (e) ISTA.
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correspond to scenarios 1 and 2. Our numerical observations for the two mentioned scenarios 
are as follows.

Scenario 1. Both RE and F monotonically decreased, and the stopping criterion was satis-
"ed at iteration 55. The RE and F reached values of 42.19% and 87.24 at the "nal iteration, 
respectively. The "nal iteration pertains to the image shown in "gure 2(c). From "gures 3(b) 
and (c), ISTA has reduced F almost 95%.

Scenario 2. In scenario 2 when we avoided the inverse crime in estimating physical param-
eters, a monotonic reduction in both RE and F was observed, and the stopping criterion was 
satis"ed at iteration 51. As shown in "gures 3(a) and (b), RE and F reached values of 44.29% 
and 93.52 at the "nal iteration, which corresponds to the image shown in "gure 2(e).

These "gures indicate that in presence of an error in estimating physical parameters, the 
inverse solver was suf"ciently tolerant to reconstruct almost the same image as using the exact 
physical maps.

7.2. 3D phantom

7.2.1. Computational grid. This grid was created as a rectangular cuboid with a size of 
14× 14× 3.5 cm3 so that it simulates the size of a superior volume of the skull.

Data generation. The grid was made up of 160× 160× 40 grid points with a spatial sep-
aration of 8.75× 10−2 cm along all Cartesian coordinates. Each surface of this grid was 
enclosed by a PML with 20 grid points, and an attenuation coef"cient with a maximum value 
of 2 nepers per grid point was tapered within the PML [34]. The pressure "eld was measured 
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Figure 3. 2D phantom. (a) Relative error (RE) (b) objective function (F) (c) F around 
the stopping point.
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by 62× 62 point-wise detectors, which were placed equidistantly on the top surface of the 
grid. The skull was simulated so that its top and bottom surfaces are aligned by the third and 
tenth horizontal planes of the grid points from the top surface of the cube. This has provided a 
thickness of 6.1 mm for the skull, as well as a distance of 1.75 mm between the top surface of 
the skull and the detection plane.

Image reconstruction. Here, an inverse crime for discretisation was avoided by using a grid 
with different size, made up of 128× 128× 32 grid points which are positioned with a spatial 
separation of 1.1 mm along all Cartesian coordinates. Proportional to a reduction in size of the 
computational grid, we reduced the thickness of the PML to 16 grid points. Because of using 
a coarser computational grid, the thickness of the skull had to be reduced to 5.5 mm with the 
top and bottom edges aligning the third and eighth horizontal planes of the grid points, respec-
tively from the top surface of the grid.

7.2.2. Physical parameters. Figures 4(a)–(c), respectively show the maps associated with the 
mass density, and the propagation speed of compressional and shear waves. As shown in these 
"gures, the physical parameters of the medium are simulated the same as the 2D phantom.

7.2.3. Validation of adjoint. We used an inner-product test based on (21) in order to numer-
ically evaluate the accuracy of the computed adjoint model. To do this, we used a randomly 
selected vector for P̂ , together with a randomly chosen initial pressure distribution P0 sup-
ported in a cuboid region below the skull. This is the region below the 10th (resp. 12th) hori-
zontal plane from the top surface of the grid for image reconstruction (resp. data generation). 
The mean relative difference between the left-hand and right-hand sides of (21) among 10 
attempts was 2.21× 10−4 and 3.47× 10−5 for the grids used for image reconstruction and 
data generation, respectively.

7.2.4. Simulation setting. For image reconstruction, two scenarios were considered:

Scenario 1. The maps that are displayed in "gures 4(a)–(c) were used for both data gen-
eration and image reconstruction. As discussed above, this is an inverse crime in estimating 
physical parameters, although because of the shift of soft tissue-skull interfaces between the 
"ne and coarse grids, the inverse crime has been avoided to some degree. Using these maps, 
the grid used for data generation supports a maximal frequency of 8.7514× 105 Hz for com-
pressional waves across the entire medium and for shear waves propagated through the skull.
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Figure 4. 3D phantom. Exact physical maps: (a) ρ (b) cp (b) cs.
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Scenario 2. In addition to the shifting error in physical parameters because of the discreti-
sation, these maps have been contaminated with a 30dB AWGN noise for data generation, 
whereas the reconstruction is done using the clean maps. This induces an error in estimating 
physical parameters, as they are not available exactly for image reconstruction. Using the 
noise contaminated maps, the grid used for data generation supports maximal frequencies up 
to 7.2018× 105 Hz and 7.4143× 105 Hz for compressional waves across the entire grid and 
shear waves within the skull, respectively.
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Figure 5. 3D phantom. (a) initial pressure map, and reconstructed images using exact 
physical parameters (inverse crime): (b) TR (α0,p,s = 0) (c) ISTA, and erroneous 
physical parameters: (d) TR (α0,p,s = 0) (e) ISTA.
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The grid used for image reconstruction supports a maximal frequency of 6.8571× 105 Hz 
for compressional waves through the entire medium and shear waves propagated through the 
skull. For simulating the initial pressure map, the phantom used for the 2D scenario was placed 
obliquely inside the grid in a way in which the initial pressure distribution associated with the 
phantom is compactly supported in the soft tissue. Figure 5(a) shows the simulated phantom 
from a top view. Here, all 3D images including phantom are displayed from a top view using 
maximum intensity projection technique. Using a CFL of 0.3, the simulated pressure wave"eld 
was recorded in 1532 time steps, and interpolated to the detectors using trilinear interpola-
tion [25]. Similar to the 2D phantom, the vector of generated data P̂  was contaminated with a 
30dB AWGN for both scenarios.

7.2.5. Image reconstruction. We "rst reconstructed an image for each scenario using TR, 
which is available on the k-Wave website [35, 38]. The images reconstructed by TR for sce-
narios 1 and 2 are shown in "gures 5(b) and (d), respectively. Using ISTA, the reconstruction 
parameters were chosen the same as for the 2D case. We used the power iteration method for 
computing Lf. Figures 5(c) and (e) show an image of the "nal iterate computed by ISTA for 
scenarios 1 and 2, respectively. A comparison between these two images indicates that using 
erroneous physical maps has led to a slight blurriness in the reconstructed image. Note that 
here the inverse crime has been avoided by exaggeration compared to real cases.

7.2.6. Observations. Figure 6(a) shows the RE of the computed iterates versus iteration num-
ber. Additionally, "gure 6(b) shows the objective function values versus the iteration number 
around the terminating point. These plots have been displayed using the same colours as for 
the 2D phantom. From these, our observations for the two discussed scenarios are as follows.

Scenario 1. Both RE and F monotonically decreased until the iteration 54 at which the stop-
ping criterion was satis"ed. The "nal iterate, which is shown in "gure 5(c), has an RE of 
41.13% and an F of 1.19× 103.

Scenario 2. Using the noise contaminated physical maps for data generation, a monotonic 
reduction for RE and F is observed again, and the terminating criterion was satis"ed at itera-
tion 56. The "nal reconstructed image, which is shown in "gure 5(e), has an RE of 48.44% 
and an F of 1.20× 103.
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Figure 6. 3D phantom. (a) Relative error (RE) (b) a large view of objective function F 
around the stopping point.
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8. Discussion and conclusion

In this work, we derived the adjoint of the continuous map de"ned in (14) and (15), which 
describes the propagation of PA waves in linear isotropic viscoelastic media with the absorp-
tion and physical dispersion following a frequency power law. Our derived continuous adjoint 
is a generalised version of the discretised adjoint in [25] in the sense that it can be adapted to 
any discretisation scheme, and has been extended to include an attenuation evident in tissue 
media [37]. We analytically showed that a numerical computation of our continuous adjoint 
using a k-space pseudo-spectral method matches the algebraic adjoint of an associated discre-
tised map de"ned by (64) and (66).

From a numerical point of view, it was shown that this forward and adjoint pair satis"es 
the inner-product formula in (21). This pair was then incorporated in a positivity constrained 
optimisation algorithm based on ISTA that is regularised by the TV denoising approach of 
Chambolle [3]. We preferred to test the derived forward and adjoint operators on a classical 
inverse solver (see [2, 17] for the application of ISTA in PAT), although this poses some limi-
tations such as a low speed of convergence. The convergence can be improved by using a fast 
version of ISTA (FISTA) [1, 16, 17]. In addition, an iterative enhancement of solutions based 
on a Bregman iteration [26] may be useful when the collected data is compressively sampled. 
A Bregman iteration algorithm using FISTA has been successfully applied for this case [1].

In both 2D and 3D cases, the iterates monotonically converged to a minimiser of an objec-
tive function, and the "nal reconstructed image was close to the ground truth image. In the 
presence of an error in estimating physical parameters, the iterates monotonically converge 
again, but the iterate at the stopping point was slightly less accurate than using the exact 
physical parameters. This loss of accuracy cannot be detected by eye in the 2D scenario, as 
shown in "gure 2(e). However, for the 3D scenario, "gure 5(e) shows that an error in estimat-
ing physical parameters has led to a slight blurriness in the reconstructed image, compared to 
using exact physical maps. Note that in the 3D scenario for the grid used for data generation, 
in addition to a 30 dB noise added to the physical maps, the skull’s thickness is 0.6 mm larger 
than the grid for image reconstruction.

In addition, for the 2D scenario, as shown in "gures 2(c) and (e), the reconstructed images 
have some blurriness in regions close to the skull. We believe that this can be attributed to the 
full internal re#ection of wavefronts nearly tangent to the skull, and agrees with theoretical 
predictions of stability for inversion found in [31] using methods of microlocal analysis. In 
essence, the blurred region close to the skull is not fully resolved because the wavefronts ema-
nating from that region do not reach the detectors (Note that the geometry of skull in our study 
is not realistic). To fully understand this a more delicate study on the relation between the 
theoretical analysis of [31] and PAT of the brain using optimisation algorithms may be needed.

The simpli"ed geometries of the skull we used in our simulations look suf"cient to pro-
vide an insight on the performance of the derived adjoint, but the geometry and composition 
of the skull in real cases are much more complicated than our simulations [15]. In addition, 
in practical cases, to extract all information available from the measured data, the maximal 
frequency supported by the computational grid must match the maximal frequency that is 
detectable by detectors [39]. This dramatically increases the computational demands regard-
ing storage space and speed, but it can be handled using GPU accelerated computing [19], or 
Field-programmable gate array (FPGA) [40]. The 3D detection setting in our study simulated 
a planar Fabry-Pérot (FP) photoacoustic scanner, which requires several minutes to collect 
time series of data from PA wave"elds [1]. Further studies can be done to apply our adjoint 
assisted optimisation algorithm on ultra-fast PAT acquisition systems that utilise spatio-tem-
poral sub-sampled data [1].
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Using our derived adjoint, an extension of the PAT problem of brain to direct quantitative 
PAT (QPAT), a direct estimation of the optical parameters inside the skull from the acoustic 
data collected outside the skull, would be a very interesting topic. The arising opto-elastic 
inverse problem is more challenging than the opto-acoustic problem [9] because of the high 
optical absorption and scattering of the skull and low degrees of freedom for optical illumina-
tion. This limits the applicability of multi-source QPAT, which is necessary for uniqueness of 
the problem when we use a single-frequency optical excitation .
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Appendix

In this appendix, we will show that the adjoint operator can be put into the form of a system of 
coupled partial differential equations, in the same way as the forward operator, and the update 
of particle velocity "eld is actually a sum of the adjoint of absorption and dispersion terms 
enforced to the stress tensor "eld.

A.1. Continuous adjoint

This is derived by plugging the "rst formula in (19) into (18)

ρ
∂vi

p,s∗

∂t
=
∑

p,s

q p,s

(
∂

∂xi

(
λσ p,s

ll
∗
)
+ 2
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∂xj

(
µσ p,s

ij
∗
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)( ∂
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(
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ll
∗
)
+ 2

∂

∂xj

(
ησ p,s

ij
∗
))

.
 

(A.1)

A.2. Discretised adjoint

In (88), plugging the second line into the "rst line yields

ṽn+1/2 = Av

(
Avṽn−1/2 +Ψ∗

disσ̃n −
1
∆t

((
Ψ′∗

absσ̃n
) p,s − A2

v
(
Ψ′∗

absσ̃n−1
) p,s
))

.
 

(A.2)

The numerical computation of (A.1) is the same as (A.2), except how the PML acts on the 
temporal gradient of the stress tensor "eld. These formulae require an explicit computation 
of the temporal gradient of the stress tensor using "nite difference schemes. To avoid this, 
we used the formulae (18) and (19) (resp. (88)) for the continuous (resp. discretised) adjoint, 
which are computed the same, as discussed in sections 4 and 5, respectively.
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