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Abstract—The k-Wave MATLAB toolbox is widely used to
conduct medical ultrasound simulations. It uses a Fourier colloca-
tion method to numerically solve the governing model equations,
and introduces sources by adding acoustic pressure at points
on an orthogonal grid. This approach introduces two errors
when sources don’t exactly align with the grid. These are phase
errors arising from shifting source points to nearby grid nodes,
and amplitude errors arising from an angular dependence in
the density of source points. These two errors are collectively
referred to as ‘staircasing’. Staircasing errors can be overcome
by considering the band-limited representation of sources that
arises from the use of a Fourier collocation method. To do so,
sources are discretised by convolving a band-limited point source
with the desired source geometry. To validate this approach, a
comparison is made with current k-Wave source algorithms and
with the FOCUS ultrasound simulation code. The new sources
are shown to eliminate staircasing errors.

Index Terms—acoustic waves, numerical simulation, Fourier
series, function approximation

I. INTRODUCTION

Medical ultrasound simulations are used in a range of
applications, including photoacoustics [1], focussed ultrasound
therapies [2], [3], and ultrasound computed tomography [4]. In
a research setting, the k-Wave MATLAB toolbox [5] is widely
used to perform these simulations. A key algorithm that the
toolbox uses is the Fourier collocation method for computing
spatial derivatives. This requires the simulated domain to be
discretised onto an orthogonal grid of nodes. Many factors
influence the necessary spacing of nodes in this grid. The
Nyquist limit states that there should be at least two grid points
for the shortest acoustic wavelength of interest. However,
in practice, other factors give more stringent requirements.
One such factor is staircasing. This refers to the fact that
continuously defined acoustic sources and media need to be
sampled on the computational grid, thus producing a pixelated,
or voxelised representation of the desired simulation. The
effect of this in practice was recently examined for transcranial
focussed ultrasound simulations [3]. Here, it was found that at
least 20 points per wavelength were required for less than 10%
error in peak focal intensity. In the present work, staircasing of
acoustic sources is considered, and an algorithm is presented
that eliminates source staircasing effects.
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II. STAIRCASING ERRORS

A. The band-limited interpolant

Fourier collocation methods represent a function using a
weighted sum of complex exponentials. For a d-dimensional
function f , this sum is given by

f(x) =
∑
k

a(k)eik·x,

where x ∈ Rd is the spatial coordinate vector, k ∈ Zd

are the corresponding wavenumbers, and a are the basis
function weights. In practice, finite computational resources
require these sums to be truncated, or band-limited, such that
|kj | ≤ kmax = π/∆xj for each dimension j. Here, ∆xj is
the grid node spacing.

Conventionally, source terms are introduced into Fourier
spectral methods as a sum of point sources located on the grid
nodes. However, introducing an exact point source, or delta
function, is problematic due to band-limiting. Considering
one-dimensional simulations, a delta function centred on the
origin of the coordinate system has a Fourier transform which
is constant for all frequencies. Band-limiting thus produces a
function whose Fourier transform is a rectangle with a width
that corresponds to the maximum supported frequency. This
is known as a periodic sinc function [6]

b(x) =
1

N
cot
( πx

N∆x

)
sin
( πx

∆x

)
,

where N is the number of grid nodes (the formula above
is for even N , but a similar function exists for odd N ).
An illustration is given in Fig. 1. When sampled on the
grid, this function is one at the origin (assuming a node at
x = 0), and zero everywhere else. A similar argument holds
in multiple dimensions, with band-limited multi-dimensional
point sources being a product of periodic sinc functions in
each dimension. This introduces the concept of a band-limited
interpolant: given a discretised, periodic function that has been
sampled on an orthogonal grid, the band-limited interpolant is
the sum of periodic sinc functions shifted and scaled to each
of the grid values.

Due to the convention of placing point sources on grid nodes
only, staircasing errors arise. These have two causes. The
first is undersampling. By only placing point sources on grid
nodes, sources which are not parallel to the coordinate axes
have a different spacing relative to those which are parallel.
This causes a reduction in the amplitude of the source wave.
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Fig. 1. Band-limited representations of point-sources. A vertical stem indi-
cates the desired point source location, and black discs indicate source values
on the grid. If the source aligns with the grid, its band-limited interpolant will
be equal to one at that grid node, and zero at all other grid nodes. If it is
unaligned, the band-limited interpolant becomes evident in its samples.

Undersampling errors can be reduced by scaling the source
points based on the average neighbour distance [7], but this is
computationally costly and does nothing to address the second
cause of staircasing error, which is misalignment. This occurs
because a continuously defined source might not pass through
grid nodes precisely, and so the convention is to place point
sources at nearby grid nodes. This creates unwanted phase
offsets in the resulting waveforms.

B. A rotating line source

To illustrate staircasing errors, a rotating line source is
considered. A Gaussian pulse is produced and propagated past
a sensor at the coordinate system’s origin. The source is placed
so that it lies exactly on the computational grid when it is
parallel to the coordinate axes. The source is introduced on
the grid nodes that are nearest to the desired line, and is
simply connected (meaning no grid node has more than two
neighbours). Figure 2 depicts the resulting acoustic field at
two times for a 45◦ orientation angle, along with the sensor
data gathered from these simulations. Relative to the aligned
case (θ = 0◦), the amplitude of the sensor data can be seen
to reduce by approximately 30% at 45◦, corresponding to
undersampling by a factor of 1/

√
2, as expected. The sensor

data also shows a phase offset that varies with the source angle,
but no obvious pattern is evident.

III. THE HUYGENS–FRESNEL PRINCIPLE AND
BAND-LIMITING

In §II-A, the band-limited interpolant was considered to
have arisen from a discretised source function whose samples
lay on the computational grid. To address staircasing, a band-
limited interpolant needs to be defined for a continuous source
function. Such a source can be viewed from the perspective of
the Huygens–Fresnel principle, which states that a continuous

Fig. 2. A rotating on-grid line source emitting a Gaussian pulse. (Top)
Snapshots of the acoustic field for θ = 45◦. The acoustic sensor is indicated
by a black disc. (Bottom) Magnitude of the acoustic field at the sensor over
time as a function of the source’s orientation angle θ. Staircasing errors are
evident in the amplitude variations and time-offsets in the sensor data.

wave front is equivalent to an infinite number of point sources.
Hence, a source function f that is equal to one over the
source, and zero everywhere else is equivalent to an infinite
sum of shifted delta functions. To band-limit this, each point
source is replaced with a periodic sinc function, achieved by
a convolution

fBL(x) =

∫
Ω

b(x− x′)f(x′)dx′, (1)

where Ω is the periodic computational domain. The band-
limited source fBL can then be discretised by sampling it on
the computational grid nodes xn

fn = fBL(x)|x=xn .

The effect of placing point sources off-grid can be seen in
Fig. 1, with the periodic sinc function b evident in the on-grid
samples.

The convolution in (1) can be achieved in a computationally
efficient manner by noting that introducing an infinite number
of point sources is not numerically necessary. Band-limiting



spreads the introduced acoustic pressure such that only a
small degree of upsampling is needed relative to the compu-
tational grid. Figure 4 depicts four band-limited interpolants
that illustrate the effect of band-limiting in different source
discretisations. The left-most two plots show a conventional
line source that has been discretised using point sources that
align with grid nodes near the true continuous line. It can be
seen that the resulting BLI oscillates around this line, and does
not produce a smooth, continuous distribution of pressure.
The remaining plots depict off-grid sources that result from
discretising the convolution in (1) at half, twice, and ten-times
the sampling rate of the computational grid. The constituent
sinc functions can all be seen to lie exactly on the continuous
source line. For the undersampled case, they are too far
separated to approximate a constant distribution of pressure.
However, convergence is rapid as the sampling rate increases,
with no visual distinction evident between sources generated
at upsampling rates of twice and ten-times the grid resolution.
This indicates that only a small degree of upsampling is
necessary for numerical accuracy.

IV. NUMERICAL EXAMPLES

A. A rotating line source

To validate the convolution approach described above, the
line-source experiment from §II-B was repeated with an off-
grid source that was band-limited using periodic sinc functions
sampled at a rate which is twice that of the computational
grid. Figure 3 depicts these results. As the angle of the source
changes, the amplitude and phase of the sensor data are nearly
unaffected, unlike in Fig. 2. When compared with the aligned
case (θ = 0◦), the maximum variation in the sensor data
is approximately 1.3% of the peak pressure at the sensor.
These errors are likely the result of an orientation-dependence
in the Gibbs phenomenon, since different numbers of spatial
wavenumbers are supported in different angular directions.

B. Comparison with FOCUS for a bowl source

To illustrate the potential of off-grid sources in a more
complex scenario, the acoustic field from a three-dimensional
bowl source was simulated using k-Wave. A reference solution
was provided by the FOCUS simulation toolbox [8], [9], which
uses the fast near-field method to compute the acoustic field
from a continuously defined bowl. It can be seen in Fig. 5
that the near-field contains significant errors when an on-
grid source is used with k-Wave, whereas an off-grid source
gives nearly perfect results with a computational grid that has
been sampled at only three points per wavelength, close to
the Nyquist limit of two points per wavelength. In this case,
the off-grid approach produced a maximum error in the axial
pressure that was 17 times lower than that produced by the
conventional on-grid approach.

V. CONCLUSION

A technique is presented for introducing source terms in
Fourier collocation methods at points which are not aligned

Fig. 3. The experiment depicted in Fig. 2 was repeated using an off-grid line
source. This figure depicts the magnitude of the acoustic field at the sensor
over time as a function of the source’s orientation angle θ. Staircasing errors
have been eliminated.

with the computational grid. This eliminates staircasing er-
rors, and gives a more faithful representation of continuously
defined sources. Ongoing work will validate this technique
further, and integrate it into the k-Wave MATLAB toolbox.
Additionally, an investigation into using this technique for off-
grid sensor discretisations is being undertaken, since the BLI
corresponding to an off-grid sensor gives quadrature weights
that interpolate and integrate the acoustic field over the sensor.
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Fig. 4. Three different discretised/band-limited line sources. (Left–right) On-grid, undersampled (0.5×) off-grid, oversampled (2×) off-grid, and oversampled
(10×) off-grid sources. (Top) Source values on the computational grid and (bottom) implied band-limited interpolant (BLI). The sinc functions that comprise
the on-grid source’s BLI lie on either side of the desired source line. In contrast, the sinc functions that comprise the off-grid sources lie on the desired
source line. The sinc functions that comprise the undersampled source’s BLI are clearly separated, but oversampled off-grid sources quickly convergence on a
smooth, continuous line. Note: Band-limited point sources decay quickly with distance. Hence, to reduce the memory requirements of this technique, source
contributions are truncated once they decay below ten percent of their peak.

Fig. 5. A comparison between grid-based and off-grid bowl-source algorithms used in the k-Wave toolbox, with results from the FOCUS toolbox as a
reference. The left plots depict the maximum steady-state pressure on a slice through the three-dimensional simulation. The right plots show the maximum
axial pressure. Staircasing artefacts are particularly noticeable in the near-field of the grid-based source.


