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Abstract. Moving mesh methods provide an efficient way of solving partial differen-
tial equations for which large, localised variations in the solution necessitate locally
dense spatial meshes. In one-dimension, meshes are typically specified using the ar-
clength mesh density function. This choice is well-justified for piecewise polynomial
interpolants, but it is only justified for spectral methods when model solutions include
localised steep gradients. In this paper, one-dimensional mesh density functions are
presented which are based on a spatially localised measure of the bandwidth of the ap-
proximated model solution. In considering bandwidth, these mesh density functions
are well-justified for spectral methods, but are not strictly tied to the error proper-
ties of any particular spatial interpolant, and are hence widely applicable. The band-
width mesh density functions are illustrated in two ways. First, by applying them to
Chebyshev polynomial approximation of two test functions, and second, through use
in periodic spectral and finite-difference moving mesh methods applied to a number
of model problems in acoustics. These problems include a heterogeneous advection
equation, the viscous Burgers’ equation, and the Korteweg-de Vries equation. Simu-
lation results demonstrate solution convergence rates that are up to an order of mag-
nitude faster using the bandwidth mesh density functions than uniform meshes, and
around three times faster than those using the arclength mesh density function.
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1 Introduction

Many scientific and engineering problems require solutions to partial differential equa-
tions (PDEs). When smooth, these solutions can be efficiently computed using spec-
tral methods. However, often solutions are not equally smooth everywhere. In par-
ticular, they might exhibit features which are tightly localised in space. These include
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shock fronts, narrow pulses, and sharp corners. Such features require dense computa-
tional meshes to accurately resolve. Because spectral methods typically use standardised
meshes, the global mesh density is determined by the sampling requirements of these
localised features. This results in much of the spatial domain being oversampled, in-
creasing computational expense for no accuracy gain. As an example of when this can
become a critical issue, three-dimensional, full-wave simulations of nonlinear medical
ultrasound fields may require many tens of gigabytes of memory to store acoustic field
variables at each time-step due to large, densely sampled simulation domains [16]. These
sampling requirements arise when acoustic nonlinearity causes very high frequencies to
form, often within small regions where the acoustic pressure is particularly high.

Adaptive moving mesh methods can reduce the trade-off between accuracy and com-
putational expense by providing more optimal sampling. They place mesh nodes accord-
ing to a monitor function (sometimes called a mesh density function in one dimension)
that is computed from (and locally dependent on) the calculated solution itself. Moving
mesh methods have traditionally been implemented using finite-difference and finite-
element methods, but spectral implementations offer the opportunity to improve com-
putational efficiency further. Some examples of spectral moving mesh methods include
Fourier [8,9], Galerkin [20], and Chebyshev [22] types. These all used the arclength mon-
itor function, which clusters mesh nodes according to the gradient of the model solu-
tion. For these problems, this choice is justified by physical considerations: the model
solutions in all cases feature localised steep gradients. However, it is not clear why the
arclength monitor function might produce a mesh that is optimal.

One justification for the arclength monitor function is given in [15, §2.4]. Here, it is
shown that derivative-based monitor functions can be derived from interpolation error
bounds for piecewise polynomial interpolants. The arclength monitor function, while
not strictly optimal, can be seen to be very similar to these. But this approach does not
naturally extend to spectral interpolants. An alternative is to directly consider smooth-
ness properties of the approximated solution itself. A notable one-dimensional example
is found in the work of Tee et al. [11, 12, 23, 24]. This approach is designed for solutions
whose analytic continuations contain singularities. It works by first approximating the
analytic continuation, after which a mesh mapping is computed that is parametrised by
the locations of the approximated singularities. These mesh mappings seek to ensure that
a spectral interpolant through the composition of the approximated solution and inverse
mesh mapping converges on the true solution faster than a spectral interpolant through
the solution alone. In [25], a mesh density function is presented which is based on Tee et
al.’s approach. This work demonstrated that a singularity-based mesh density function
was significantly more effective than the arclength mesh density function in reducing the
trade-off between accuracy and computational expense. However, an obvious limitation
of this approach is that it requires the model solution’s analytic continuation to include
singularities (or at least near-singular behaviour).

Recently, Subich [21] demonstrated a more general one-dimensional spectral moving
mesh method, which uses a mesh density function that is given by the envelope of the
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high-frequency components of the model solution. However, no direct justification is
provided for why a solution envelope should correspond to a beneficial mesh density.
Moreover, the threshold beyond which frequencies are considered to be high is chosen
based on model-specific and interpolant-specific considerations. Nonetheless, using the
local frequency content of a solution to form a mesh density function is an intuitive and
general approach that has remained largely unexplored.

This paper presents a family of mesh density functions that are based on the local
bandwidth of the model solution. This approach is justified by a nonuniform analogue
of the Nyquist sampling theorem, and so does not depend on either problem-specific
or interpolant-specific considerations. This makes them applicable to both spectral and
non-spectral methods, as well as a wide range of problem types. The mesh density func-
tions are demonstrated in this paper through application to function approximation us-
ing Chebyshev polynomials, and to a variety of acoustics problems. The acoustics prob-
lems are primarily solved using a periodic spectral moving mesh method, with some
additional validation for periodic finite-difference moving mesh methods.

2 Bandwidth mesh density functions

2.1 Derivation

In this section, mesh density functions are derived from the local spatial frequency con-
tent of the solution to a model PDE. For notational purposes, it is useful to consider such
a solution as a signal u that is a function of a spatial coordinate x with corresponding
wavenumbers k. Sampling criteria for such signals are typically based on spatial fre-
quency considerations. The most famous is the Nyquist-Shannon sampling theorem for
band-limited signals, which states that perfect reconstruction requires a sampling rate of
at least twice the signal’s bandwidth, which is measured from DC to the maximum fre-
quency present.† The Nyquist-Shannon sampling criterion is typically used with uniform
sampling, but this is not strictly required. Band-limited signals with a spatially varying
frequency content can be perfectly reconstructed using non-uniform samples taken at
a rate equal to twice the local bandwidth [3]. Of course, not all signals possess a hard
cut-off in their frequency content. Hence, it is useful to consider statistical measures of
bandwidth.

Now let the signal u be 2π-periodic and normalised such that
∫ π

−π
|u|2dx=

∫ ∞

−∞
|U|2dk=1,

where U is the Fourier transform of u. The local amplitude A, phase ϕ, and spatial fre-
quency ϕx (subscripts denote differentiation) of this signal are inherently coupled when

†A similar criterion applies to signals whose power is zero below some lower bound on the absolute fre-
quency (non-baseband signals), but this requires explicit knowledge of the lower bound, and so is less gen-
eral.
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the signal is directly analysed. The analytic signal provides a way of decoupling them. It
does this by attaching an imaginary counterpart which is in quadrature with the signal.
This is typically done via the Hilbert transform‡ H, yielding

v=u+iHu=Aeiϕ .

To define a local, statistical measure of bandwidth, the analytic signal is considered to
have a joint position-wavenumber power density P(k,x) which satisfies the marginals

P(x)=
∫ ∞

−∞
P(k,x)dk= |v|2 , P(k)=

∫ π

−π
P(k,x)dx= |V|2,

where V is the Fourier transform of v. Position-wavenumber power densities can be
computed using a variety of transformations, including the short-time Fourier transform
and the wavelet transform, but it suffices to consider the concept alone here. A useful
family of statistical bandwidth measures are the even-order spectral moments

〈k2m〉=
∫ ∞

−∞
k2mP(k)dk. (2.1)

The order of the spectral moments can be chosen based on the desired weighting that is to
be given to the power density’s tail. Since the m=1 moment corresponds to the variance
(assuming symmetry in P(k) about k=0), and the square root of the variance is commonly
used as a measure of bandwidth, the second spectral moment is used for the derivation
that follows. Similar derivations are easily made for other choices of m. From the global
spectral moment, a local equivalent may be derived using the conditional power density

P(k|x)= P(k,x)

P(x)

as

〈k2〉=
∫ ∞

−∞
k2P(k)dk

=
∫ ∞

−∞
k2

(

∫ π

−π
P(k,x)dx

)

dk

=
∫ ∞

−∞
k2

(

∫ π

−π
P(k|x)P(x)dx

)

dk

=
∫ π

−π

(

∫ ∞

−∞
k2P(k|x)dk

)

P(x)dx

=
∫ π

−π
〈k2〉|xP(x)dx. (2.2)

‡Appendix A describes a method for computing a periodic Hilbert transform using nonuniformly sampled
function values.
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Here, the local second spectral moment has been defined by [6]

〈k2〉|x =
∫ ∞

−∞
k2P(k|x)dk. (2.3)

This choice of definition is intuitive when P(k|x) is considered as a local frequency distri-
bution, and when (2.1) is compared with (2.3). While (2.3) could be used to compute the
local bandwidth of a signal, it is convenient to take an alternative approach that avoids
explicitly computing a joint power density.

An alternative way of computing local spectral statistics is to consider the operator

K=

{

1
i

d
dx in the position representation,

k in the wavenumber representation.

For the wavenumber representation, this operator can be used to compute the global
second spectral moment as

〈k2〉= 〈V|K2|V〉=
∫ ∞

−∞
k2|V|2dk,

as expected. Similarly, for the position representation the global second spectral moment
is given by [6]

〈k2〉= 〈v|K2|v〉=
∫ π

−π

∣

∣

∣

vx

v

∣

∣

∣

2
|v|2dx. (2.4)

Making a comparison with (2.2), the left term of the integrand in (2.4) is considered to be
the local second spectral moment [4, 6]:

〈k2〉|x =
∣

∣

∣

vx

v

∣

∣

∣

2
. (2.5)

In [5], this interpretation of similar operators is justified by showing that it leads to es-
tablished results for a number of quantum mechanical statistics. Taking the square root
of (2.5) then gives a definition of the local bandwidth, which is used to define the first of
two proposed mesh density functions: the ordinary bandwidth mesh density function

ρ=
∣

∣

∣

vx

v

∣

∣

∣
. (2.6)

A complication arises when this mesh density function is computed from an analytic
signal v whose amplitude drops to zero, since computing the local bandwidth becomes
ill-posed in these regions. One approach to regularisation is to include an amplitude-
weighting. This leads to the amplitude-weighted bandwidth mesh density function, defined
as

ρ= |vx |. (2.7)

The difference between the ordinary and amplitude-weighted bandwidth mesh density
functions is as follows: The ordinary bandwidth mesh density function was derived with
equal consideration given to every point on the function. Hence, the resultant sampling
minimises local errors. The introduction of amplitude weighting will increase the sam-
pling in regions with large amplitudes, and thereby reduce the overall absolute error.
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2.2 Examples

To examine the effect of mesh transformations resulting from the bandwidth mesh den-
sity functions, a Gaussian function and a Runge-type function are considered. These both
have known Hilbert transforms, and so the ordinary and amplitude-weighted bandwidth
mesh density functions can be explicitly computed. They also represent two important
classes of function: The Gaussian is an entire function, and the Runge-type function is
analytic in a neighbourhood of the real axis. Since neither are band-limited, they are both
well-suited to the statistical bandwidth definitions given in Section 2.1, and are smooth
enough to provide spectral accuracy when a spectral method is applied to their approx-
imation. The spectral method that is used to approximate the function is a Chebyshev-
type method, implemented using the Chebfun software package [7], which adaptively
represents functions to near machine precision using Chebyshev polynomials.

For the first example, consider the following Gaussian function and its Hilbert trans-
form

u=exp(−x2), Hu=
2F(x)√

π
.

Here, F is the Dawson integral. The derivative of the corresponding analytic signal v=
u+iHu is

vx =−2xexp(−x2)+i
2−4xF(x)√

π
.

From this, the ordinary and amplitude-weighted bandwidth mesh density functions were
computed via formulae (2.6) and (2.7). Mesh transformations were then generated us-
ing Chebfun by numerically computing (and scaling/translating) the indefinite integrals
of the reciprocal of the mesh density functions on the domain x ∈ [−15,15]. The origi-
nal function u was then composed with each mapping, and the Chebyshev coefficients
corresponding to the original function and its transformed counterparts were computed.
These were used as a proxy for the approximation error, and compared to examine the ef-
fect of the transformations on the convergence rate of each Chebyshev interpolant. Fig. 1
depicts the original and transformed functions, along with their Chebyshev coefficients.

Two convergence regimes are evident in Fig. 1. The untransformed Gaussian function
exhibits a convergence rate that is faster than geometric (consistent with it being entire),
while the transformed Gaussian functions both exhibit geometric convergence. Thus, the
transformed meshes provide benefit for low-frequency spectral components, but not for
higher-frequency ones, and so their effectiveness depends on the desired accuracy of the
spectral approximation.

A similar investigation was carried out for the arclength and curvature monitor func-
tions, which are respectively defined by

ρ=
√

1+|ux|2, ρ=
(

1+|uxx|2
)

1
4 . (2.8)

Their effectiveness was assessed by the number of Chebyshev coefficients that were needed
to represent the original Gaussian under mesh transformations resulting from their use,
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Figure 1: Chebyshev interpolation of a Gaussian function under mesh transformations corresponding to the
ordinary and amplitude-weighted bandwidth mesh density functions. (Top) Function values plotted against an
untransformed spatial coordinate. The widening that results from composing the Gaussian with each mesh
transformation corresponds to an increased function sampling density. (Bottom) Chebyshev coefficients corre-
sponding to the functions depicted in top subfigure. The convergence rate for the original function is faster
than geometric, while the transformed functions exhibit geometric convergence. For this Gaussian function, the
transformations provide some benefit for low accuracy Chebyshev interpolants only.

computed as described above. For the original Gaussian function, this number was 183.
For the arclength- and curvature-based transformations, they were 1,021 and 1,513 re-
spectively. This drastic increase is likely to be the result of a lack of smoothness in the
arclength and curvature mesh density functions themselves, and can be alleviated by
through a secondary smoothing step (as is often done in moving mesh methods), as dis-
cussed in Section 3, below. Nonetheless, these results illustrate the limitation of apply-
ing the arclength and curvature mesh density functions to spectral methods, particularly
when there are no large, localised variations in the approximated function’s first or sec-
ond derivatives.
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For the second example, consider the following Runge-type function and its Hilbert
transform

u=
1

1+25x2
, Hu=

5x

1+25x2
.

The corresponding analytic signal and derivative are

v=
i

5x+i
, vx =− 5i

(5x+i)2
.

As above, the decay rate of Chebyshev coefficients was used to assess the effectiveness
of the bandwidth mesh density functions in producing mesh transformations, this time
on the interval x∈ [−1,1]. In addition, a mesh was generated using the singularity-based
approach of Tee et al. [11, 12, 23, 24], discussed in Section 1. This method makes use of
the function’s known singularities at ±0.2i. Fig. 2 depicts the original and transformed
functions, along with their Chebyshev coefficients.

Unlike for the Gaussian function, all three mesh transformations provide an improve-
ment in the convergence rate of the Runge-type function’s Chebyshev coefficients at all
frequency scales. There is also a significant difference between the convergence rates un-
der each mesh transformation. In order of effectiveness, these are the singularity-based
mesh transformation, followed by the transformations resulting from the amplitude-
weighted and ordinary bandwidth mesh density functions. The performance gap be-
tween the singularity-based technique and the bandwidth mesh density functions is sig-
nificant. However, for many approximated functions, such as those generated numer-
ically as solutions to PDEs, exact singularity locations are unknown, and must be ap-
proximated. This reduces the performance gap significantly, as will be shown in Section
3.3.

Finally, the arclength and curvature monitor functions were again examined based
on the number of Chebyshev coefficients that was required to represent the Runge-type
function under transformations resulting from their use. For the original Runge-type
function, this number was 189. For the arclength- and curvature-based transformations,
they were 1,329 and 7,415 respectively. As before, this illustrates the limitation of ap-
plying such mesh density functions to spectral methods, especially since the Runge-type
function also exhibits no obvious localised, derivative-based features.

3 Numerical experiments

3.1 Numerical methods

To examine the application of the bandwidth mesh density functions to PDEs, two mov-
ing mesh methods are used. These are outlined below, but it is important to note that
the bandwidth mesh density functions are agnostic to the algorithmic choices that have
been made. The two moving mesh methods are differentiated by the numerical method
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Figure 2: Chebyshev interpolation of a Runge-type function under mesh transformations corresponding to the
ordinary and amplitude-weighted bandwidth mesh density functions, and the singularity-based mesh mapping
of [11, 12]. (Top) Function values plotted against an untransformed spatial coordinate. The widening that
results from composing the Runge-type function with each mesh transformation corresponds to an increased
function sampling density. (Bottom) Chebyshev coefficients corresponding to the functions depicted in top
subfigure. All exhibit geometric convergence rates, and the mesh transformations are beneficial in all cases.

they use for computing spatial gradients in the model/mesh PDEs. Both assume pe-
riodic model solutions, but one uses spectral interpolants and the other uses centred
finite-differences. For the spectral interpolants, gradients are computed using either a
collocating Fourier interpolant (when taken with respect to the computational coordi-
nate) or a rational trigonometric interpolant [1,23] (when taken with respect to the phys-
ical coordinate). For the finite-difference method, gradients are computed using centred
finite-differences of various accuracy-orders taken with respect to the computational co-
ordinate. Physical gradients are then computed using the chain rule

∂

∂x
=

∂s

∂x

∂

∂s
,
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where x and s are the physical and computational coordinates, respectively. The notation
x = x(t,s) is used to refer to x as both the physical coordinate itself, and as the time-
varying transformation between the physical and computational coordinates.

Mesh node relocation is controlled using the moving mesh PDE (MMPDE) [13]

xt=τ−1(ρxs)s.

The function ρ(x) is the solution-dependent mesh density specification, which the MM-
PDE satisfies as t → ∞. The rate at which this happens is controlled by the scalar pa-
rameter τ, which must match the time-scale over which solution features evolve. Note
that to compute the mesh gradient xs, a slight adjustment must be made to the ap-
proaches described in the preceding paragraph. Gradients are computed via the formula
xs = (x−s)s+1 (assuming x and s share a domain size). This is done because x−s is
periodic for the work presented in this paper, while x is not. Strictly speaking, this ap-
proach may not guarantee monotonicity in the implied continuous mesh mapping, but
in practice a well-sampled mesh density function ensures that this is the case.

A mesh density function is usually spatially smoothed before being applied to a MM-
PDE. This is done for a number of reasons. First, it ensures that the mesh density function
is well-sampled by the mesh, and hence that the MMPDE can be efficiently solved. Sec-
ond, it ensures smooth mesh transformations, which in turn produce fast convergence
rates when the model is solved. Third, it lessens the inherent increase in stiffness that
comes with mesh adaptivity, improving the efficiency of time-stepping algorithms [14].
Let ρ̃ and ρ be the smoothed and unsmoothed mesh density functions respectively. These
are related by the equation

ρ̃−β−2ρ̃ss =ρ, (3.1)

where the parameter β controls the degree of smoothing [14, 15]. With homogeneous
Neumann boundary conditions, (3.1) constrains the relative rate of change in the smoothed
mesh density by |ρ̃s|/ρ̃≤β, and similar behaviour is observed for periodic boundary con-
ditions. Equation (3.1) is solved using a Fourier interpolant via

ρ̃=F−1

{ F{ρ}
1+β−2k2

}

,

where k are wavenumbers corresponding to s. The smoothing parameter can be chosen
to be discretisation-dependent, so that it has a similar effect to nearest-neighbour smooth-
ing. This choice aims to ensure that the mesh density function is well-sampled, since, for
example, a well-sampled peak will be smoothed (and reduced) less than a poorly sam-
pled one. Unless otherwise stated, here β=(∆s

√
2)−1 [14], where ∆s is the discretisation

size in the computational coordinate. A numerical experiment is described in Appendix
B, which analyses this choice for one of the model problems presented below.

The model and mesh PDEs are coupled together using a quasi-Lagrange approach.
This replaces the usual time-derivatives in the model PDE with an advective derivative

d

dt
=

∂

∂t
+

∂x

∂t

∂

∂x
.
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It is notable that this yields an implicit system of PDEs, and that the coupled model/mesh
system may be stiffer than either PDE individually. Time-stepping is performed using
the method of lines, with Matlab’s ode15i function [19] used to integrate the system
of ordinary differential equations that results from the spatial discretisation previously
discussed. This algorithm solves ODEs of the form f (t,y,yt) = 0 using adaptive-order
backward differentiation formulae, with an adaptive timestep size. Here, y is a vector of
solution values and mesh node positions, and yt =dy/dt.

3.2 Example problems

The bandwidth mesh density functions are demonstrated through application to four
problems and three acoustic models. These each exhibit different feature types. The
first problem is based on a heterogeneous advection equation, and exhibits the formation
and propagation of a sharp crest. The second problem is based on the viscous Burg-
ers’ equation, and exhibits the formation of a stationary shock front. These problems
are used to demonstrate the performance of spectral and finite difference moving mesh
methods in Section 3.3 and Section 3.4, respectively. The third problem is also based on
the viscous Burgers’ equation, and exhibits the formation, propagation, and merging of
multiple shock fronts. The fourth problem is based on the Korteweg-de Vries equation,
and exhibits the formation of multiple solitons, and their subsequent interactions. All
use dimensionless units and a periodic domain x∈ [−π,π). The time-stepping algorithm
was provided with relative and absolute error tolerances of 10−9 and 10−10, to ensure that
errors in the spatial numerical method dominate. The mesh speed parameter is τ=10−2.
For the illustrations presented in Figs. 3-6 below, the amplitude-weighted bandwidth
mesh density function was used in conjunction with the spectral moving mesh method
described in Section 3.1.

3.2.1 A heterogeneous advection equation

The first model presented in this section is an advection equation with a heterogeneous
sound speed:

ut−uxxt= c(x)ux, c(x)= [1+0.9cos(x)]−1 .

Recall that the usual time-derivative has been modified in the above expression to ac-
count for the movement of the mesh nodes. This model describes linear wave propaga-
tion, with a propagation speed that is slower in the middle of the domain than the edges.
It is solved using a sinusoidal initial condition

u(0,x)=cos(x−π),

and the resulting wave is propagated until t=2π, when it has travelled the full length of
the spatial domain and periodic wrapping begins to occur. For this problem, the initial
and final waveforms are equal, and can be compared to measure the accuracy of a given
simulation. The heterogeneous sound speed causes the peak in the wave to sharpen as
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t = π/8

t = π/4

Figure 3: A solution to the heterogeneous advection equation. (Top) Snapshots showing the formation of a
sharp wave crest. The solution and its computed Hilbert transform are represented by solid and dashed lines
respectively. Dots indicate mesh nodes. (Bottom) A combined solution/mesh plot. Colours indicate the model
solution (yellow high, blue low), and the trajectories of mesh nodes are shown as black lines. The mesh has
been downsampled to N=32 nodes for clarity.

it propagates through the centre of the domain, making an adaptive mesh beneficial. A
solution to this problem is depicted in Fig. 3, computed using N = 64 mesh nodes. The
snapshots in the upper subplot show the formation of the sharp wave crest, and the lower
subplot shows the trajectories of the mesh nodes, which cluster densely around this crest.

3.2.2 The viscous Burgers’ equation

The second model presented in this paper is the viscous Burgers’ equation. Within a
moving mesh framework, it is given by

ut−uxxt =uux+εuxx.

The nonlinear term causes this model to evolve shock fronts, with their severity con-
trolled by diffusion at a rate given by ε.
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Figure 4: A solution to the viscous Burgers’ equation. (Top) Snapshots showing the formation of a steep,
stationary shock front. The solution and its computed Hilbert transform are represented by solid and dashed
lines respectively. Dots indicate mesh nodes. (Bottom) A combined solution/mesh plot. Colours indicate the
model solution (yellow high, blue low), and the trajectories of mesh nodes are shown as black lines. The mesh
has been downsampled to N=32 nodes for clarity.

The first of two problems that use Burgers’ equation exhibits a single, stationary shock
front. It is given by the following initial condition and diffusion coefficient:

u(0,x)=sin(x), ε=10−2.

(This problem is modified from that described in [10] to suit a domain of length 2π.) The
simulation is terminated at t = 1.6037, which is approximately when the shock front is
steepest. A solution to this problem is depicted in Fig. 4, computed using N = 64 mesh
nodes. The snapshots in the upper subplot show the formation of the shock front, and the
mesh node trajectories in the lower subplot smoothly converge around this shock front.

The second problem that uses Burgers’ equation exhibits seven propagating shock
fronts that merge over time. It is given by the following initial condition and diffusion
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Figure 5: A combined solution/mesh plot for Burgers’ equation. Colours indicate the model solution (yellow
high, blue low), and the trajectories of mesh nodes are shown as black lines. The mesh has been downsampled
to N=32 nodes for clarity. The mesh nodes track each shock front.

coefficient:

u(0,x)=2sin(x)+cos(7x), ε=10−2.

This simulation is terminated at t= 1, when most of the shock fronts have merged, and
the remainder have diffused significantly. A solution to this problem is depicted in Fig. 5,
computed using N=128 mesh nodes. The mesh nodes follow each wavefront smoothly,
and become denser as the central shock front increases in severity. This kind of problem
was identified by Hale [11] as being problematic for singularity-based methods, which
fail to generate a mesh when singularities coalesce (in this problem, each wavefront cor-
responds to a set of singularities).

3.2.3 The Korteweg-de Vries equation

The third model presented in this paper is the Korteweg-de Vries equation, which com-
bines nonlinear wave propagation with dispersion. Within a moving mesh framework,
it is given by

ut−uxxt=αuux+βuxxx.

The Korteweg-de Vries model admits solitons in its solutions. These are waveforms
whose size, shape, and velocity are constant provided they remain well separated. Their
speed is amplitude-dependent, and when two solitons interact the faster soliton is shifted
forwards and the slower soliton is shifted back. After interacting, solitons regain their
original shape. It is not clear that solitons are difficult to resolve since they appear visu-
ally smooth, but their analytic continuations are known to include singularities that limit
convergence rates [23]. The initial condition and parameters

u(0,x)=cos(x), α=−π, β=−(0.022)2π3,
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Figure 6: A combined solution/mesh plot for the Korteweg-de Vries equation. Colours indicate the model
solution (yellow high, blue low), and the trajectories of mesh nodes are shown as black lines. The mesh has
been downsampled to N= 32 nodes for clarity. The mesh nodes compress around each soliton, and smoothly
track them as they interact.

were chosen to match the problem presented in [26], modified to suit a domain of length
2π. The initial condition first steepens, before dispersion causes a number of solitons to
form and propagate. Soliton formation begins at approximately tB=1/π, and completes
at around tF = 3.6tB. After this, the solitons propagate until the periodic boundary con-
ditions cause them to interact. The simulation was terminated at t= 8tB . A solution to
this problem is depicted in Fig. 6, computed using N=128 mesh nodes. The mesh nodes
compress around each soliton, and continue to track them as they interact.

3.3 Spectral convergence rates

This section provides a performance evaluation for the bandwidth mesh density func-
tions when applied to the periodic spectral method described in Section 3.1. They are
judged by the rates at which approximated solutions to the problems in Section 3.2 con-
verge as the number of mesh nodes increases, measured using the maximum absolute
error in the final simulated solution. This illustrates the ability of meshes resulting from
the bandwidth mesh density functions to reduce the trade-off between computational
resource usage and accuracy.

First, the advection problem was solved with a varying number of mesh nodes. Three
different mesh specifications were used: one uniform specification, and two based on the
ordinary and amplitude-weighted bandwidth mesh density functions. To evaluate their
performance, the initial and final waveforms were interpolated onto 10,001 uniformly
distributed mesh nodes and compared, since they should be equal to one another. Fig. 7
depicts these results. Both adaptive meshes produced error convergence rates which are
more than five times faster than those produced by the uniform mesh. It also seems that
there is a slight advantage to using the amplitude-weighted bandwidth mesh density
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Figure 7: The error in the final waveform for the advection simulation depicted in Fig. 3 computed using a
spectral moving mesh method. The solutions computed using the bandwidth mesh density functions exhibit
much faster convergence rates that those that used a uniform mesh.

function over the ordinary one. The arclength and curvature mesh density functions
(2.8) were also applied to the advection problem, but produced unstable time-stepping
due to their lack of smoothness.

A similar evaluation was performed for the first Burgers’ equation problem (which
exhibits one shock front). A set of uniform mesh results were first generated for varying
N, computed to near machine precision using Chebfun’s spin algorithm [7]. Results were
then computed for four adaptive methods. The first was the singularity-based method of
Tee et al. [11,12,23,24]. This was applied with odd numbers of nodes in the range N=15
to N=99 (odd N ensures a node at x=0 for their implementation). The remaining results
were computed using the spectral moving mesh method described in Section 3.1, in con-
junction with the arclength, ordinary bandwidth, and amplitude-weighted bandwidth
mesh density functions. These used even node numbers in the range N=16 to N=100.
All approximated solutions were interpolated onto 10,001 uniformly distributed mesh
nodes and compared to the results computed using the spin algorithm when the uni-
form mesh was at its densest. Fig. 8 depicts this comparison. The uniform mesh produces
very slow convergence for this problem. The arclength mesh density function provides a
significant improvement, but nonetheless converges far more slowly than the remaining
methods. The singularity-based method and the two bandwidth mesh density specifi-
cations clearly perform best. These all produced error convergence rates that were more
than an order of magnitude faster than those produced by a uniform mesh, and two to
three times faster than those using the arclength mesh density function. Once again, the
amplitude-weighted bandwidth mesh density function outperforms its ordinary coun-
terpart, this time by a larger margin. It also outperforms the singularity-based approach,
though by a smaller margin. As with the advection problem, the curvature mesh density
function was also applied to the Burgers’ equation problem, but was again non-smooth,
causing instability in the simulation.
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Figure 8: Convergence plots for solutions to the viscous Burgers’ equation simulation depicted in Fig. 4 using a
spectral moving mesh method. The bandwidth mesh density functions clearly produce faster convergence rates
than a uniform mesh specification or the arclength mesh density function, and converge at a similar rate to the
singularity-based method of Tee et al. [11,12,23,24].

In addition to the results presented in Fig. 8, results were gathered using the ampli-
tude of the solution’s analytic signal as a mesh density function. It was found that this
produced a small benefit over a uniform mesh. This is likely because the feature of inter-
est is a steep gradient, which produces an analytic signal with an infinite amplitude in the
limit as the gradient’s magnitude increases to infinity. This may help to explain why the
amplitude-weighted bandwidth mesh density function outperforms the ordinary band-
width mesh density function for this problem. In contrast, when the amplitude was used
as a mesh density function for the advection problem, no benefit was found because the
amplitude of the solution’s analytic signal is approximately constant. This illustrates the
problem specificity of amplitude-weighting, and may motivate alternative mesh density
functions for other applications, for instance one which includes an amplitude weighting
for small amplitudes only.

3.4 Finite-difference convergence rates

This section provides a performance evaluation for the bandwidth mesh density func-
tions when applied to the periodic finite-difference moving mesh method described in
Section 3.1. This highlights the fact that the frequency considerations on which the
bandwidth mesh density functions are based are relevant for piecewise polynomial in-
terpolants as well as spectral ones.

First, the performance evaluation for the advection equation was repeated. Three
sets of results were computed using the amplitude-weighted bandwidth mesh density
function, with each corresponding to a different accuracy-order for the finite differences.
Fig. 9 depicts these results. The spectral convergence rates have been replaced with al-
gebraic ones, as expected, and as the accuracy-order of the finite-difference method in-
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Figure 9: The error in the final waveform for the advection simulation depicted in Fig. 3 computed using centred,
periodic finite-difference moving mesh methods. The numbers in the legend indicate the accuracy-order of the
finite-difference method that was used. Adaptive meshes computed using the amplitude-weighted bandwidth
mesh density function improve the performance of these finite difference methods to the point where they’re
comparable with a spectral method on a uniform mesh.

creases, the accuracy improves. Fig. 9 also depicts the previous spectral results for a uni-
form mesh. It is clear that the introduction of mesh adaptation can improve the perfor-
mance of finite-difference methods to such an extent that they exceed that of the uniform
spectral method.

Second, the performance evaluation for Burgers’ equation was repeated using the
finite-difference moving mesh method. In contrast to the results in Section 3.3, only the
arclength and amplitude-weighted bandwidth mesh density functions were examined.
Fig. 10 depicts these results. The spectral convergence rates have been replaced with
algebraic ones, as expected, and as the accuracy-order of the finite-difference method
increases, the accuracy improves noticeably in almost all cases. Comparing each finite-
difference method, it is clear that the amplitude-weighted bandwidth mesh density func-
tion improve upon the results obtained using the arclength mesh density function sig-
nificantly. Fig. 10 also depicts the previous spectral results for a uniform mesh, and it is
clear that the adaptive meshes drastically outperform a uniform mesh in this case.

4 Summary and discussion

Two new mesh density functions have been presented and applied to both static func-
tion approximation, and to a number of time-varying model problems in acoustics. They
are called the bandwidth mesh density functions, and are derived from the local spatial
frequency content of the model solution. Their performance compares favourably with
other approaches, and they are applicable to a wide range of problem types. In particular,
they have been shown to outperform the arclength mesh density function and to match
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Figure 10: Convergence plots for solutions to the viscous Burgers’ equation simulation depicted in Fig. 4 using
centred, periodic finite-difference moving mesh methods. The numbers in the legend indicate the accuracy-order
of the finite-difference method that was used. The amplitude-weighted bandwidth mesh density function clearly
produces faster convergence rates than the arclength mesh density function.

the performance of singularity-based methods. These numerical experiments were con-
ducted using Chebyshev polynomials, and both a periodic spectral moving mesh method
and a periodic finite difference moving mesh method, with good performance observed
for all three.

The bandwidth mesh density functions presented in this paper are not the only ones
that could be derived from consideration of the local spatial frequency content of a solu-
tion. Possible alternative choices that could be made include:

• Using a different order of spectral moment, or using a different spectral statistic
altogether;

• Decoupling the amplitude and phase of signals using an approach that doesn’t in-
volve the analytic signal [17];

• Computing the local statistics using an explicit position-wavenumber power den-
sity;

• Regularising the ordinary bandwidth mesh density function by adding a small con-
stant to the denominator, or by introducing amplitude-weighting for small ampli-
tudes only.

It is also pointed out in [21] that not all frequency components in a solution will result in
aliasing error in spectral collocation methods. Hence, it may be useful to apply a high-
pass filter as a preconditioning step before computing bandwidth mesh density func-
tions.

The bandwidth mesh density functions can be extended to multidimensional prob-
lems using the Riesz transforms. For a d-dimensional signal, the Riesz transforms yield
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d components which can be combined with the original signal to form what is called a
monogenic signal. A similar approach to that presented in this paper may then be used to
compute a multi-dimensional equivalent of the bandwidth mesh density functions. The
focus of future work will be on investigating this, and on applying the resultant monitor
functions to large-scale medical acoustics simulations.
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Appendices

A An algorithm for computing the periodic Hilbert transform of

a function from nonuniform samples

The bandwidth mesh density functions require a complex-valued analytic signal to be
defined from the real-valued solution to a model PDE. In one dimension, this is typically
done using the Hilbert transform, which can be defined in the frequency domain by

Hu=F−1{(−isign(k))Fu} .

For equispaced samples, this is easily approximated using fast Fourier transforms. For
nonuniform samples, computing a Fourier transform is not so straightforward. An alter-
native is to use its definition as a convolution

Hu=
1

2π
p.v.

∫ π

−π
u(τ)h(τ−x)dτ, h(x)=cot

( x

2

)

, (A.1)

where p.v. indicates the Cauchy principal value, and h is the circular Hilbert kernel.

When computing this integrand, special consideration needs to be made for the sin-
gularity at τ=x. As described in [2], this singularity can be made removable by rewriting
(A.1) as

Hu=
1

2π

∫ π

−π
(u(τ)−u(x))h(τ−x)dτ+

u(x)

2π
p.v.

∫ π

−π
h(τ−x)dτ. (A.2)

The singularity is now present only in the second integral; the first integral is instead of
indeterminate form at τ=x. The singularity is easily dealt with by noting that the circular
Hilbert kernel is antisymmetric and 2π periodic, meaning the Cauchy principal value of
the second integral is equal to zero.

The indeterminate point in the first integral in (A.2) is evaluated by computing the
limit of the integrand as τ→ x. To do so, note that the Hilbert kernel can be obtained by
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making the Cauchy kernel, defined as 1/x, 2π-periodic:

cot
( x

2

)

=2

[

1

x
+

∞

∑
n=1

(

1

x−2πn
+

1

x+2πn

)

]

.

Now let t=τ−x and f (t)=u(τ)−u(x). From the first integrand in (A.2), write

f (t)h(t)=2 f (t)

[

1

t
+

∞

∑
n=1

(

1

t−2πn
+

1

t+2πn

)

]

.

As t→0, each of the terms in the sum will cancel one another. Thus,

lim
t→0

f (t)h(t)= lim
t→0

2 f (t)

t
.

Because f (0)=0, this fraction is indeterminate. It can be solved using L’Hospital’s rule:

lim
t→0

f (t)h(t)=2 f ′(0).

Returning to the original variables, this is written as

lim
τ→x

[(u(τ)−u(x))h(τ−x)]=2u′(τ),

which can be substituted into the left integrand in (A.2) when it is solved.
Finally, to compute the Hilbert transform, a change of variables is made from x to s.

Letting û=Hu, this gives

û(x)=
1

2π

∫ π

−π
F(x,τ)τsds, F=

{

(u(τ)−u(x))h(τ−x), τ 6= x,

2uτ , τ= x.

This is solved using the trapezoid rule, discretised at a set of equispaced, discrete s nodes.
Let subscripts now denote the index of a variable, rather than differentiation. The vari-
able τ is discretised equal to x, and so the resultant expression is

ûi=
1

2π ∑
j

Fi,j

(

∂x

∂s

)

j

∆s, Fi,j =







(uj−ui)h(xj−xi), i 6= j,

2
(

∂u
∂x

)

i
, i= j.

B Analysis of the mesh density smoothing parameter

One free parameter in many moving mesh methods is the degree of smoothing that is
applied to a computed monitor function prior to its application within a MMPDE. For
the advection problem outlined in Section 3.2.1 (and examined in Sections 3.3-3.4), the
mesh smoothing parameter’s effect was investigated by varying it from β= 1 to β= 20.
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Figure 11: Error and number of timesteps for the advection simulation depicted in Fig. 3 with a varying
smoothing parameter. Smoothing increases from left to right. Both the number of timesteps required (solid
line) and the error (dashed line) decrease slightly as the mesh density function is increasingly smoothed, before
turning around and increasing at a faster rate. Beyond the turning point, the mesh density function may
become so smooth that the resulting mesh is no longer beneficial. Note that the minimum error is achieved

for a smoothing parameter that is very close to the discretisation-dependent choice β=(∆s
√

2)−1 which equals
7.2 for this example.

Fig. 11 depicts the error in the resulting solution, as well as the number of timesteps that
were taken. As the mesh density function is increasingly smoothed, both the number of
timesteps required and the error slowly decrease, before turning and increasing at a faster
rate. This reflects the fact that the mesh density function has been smoothed to a point
where it no longer produces a beneficial mesh [18]. The turning point in the error is close
to the smoothing parameter choice mentioned in Section 3.1, which is β=(∆s

√
2)−1≈7.2

for this example.
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