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Abstract—A planar hard-dielectric Fabry-Pérot (FP) optical
ultrasound sensor was modelled analytically to study how dif-
ferent wave modes affect the directionality. The sensor was
modelled as a multilayered structure using the global matrix
method. Modal dispersion curves were extracted from the model
to enable features of the directional response to be linked to
specific wave phenomena. The analytical model showed good
agreement with the measured directional response. The key
features of the directional response are linked to wave effects
such as the water-substrate and water-spacer compressional and
shear critical angles. A region of high sensitivity immediately
after the shear critical angle is associated with a leaky-Rayleigh
wave which has a frequency-dependent phase speed. At higher
frequencies, this region is diminished by a minimum which occurs
when the mirrors have the same vertical displacement, resulting
in a lack of sensitivity.

Index Terms—Fabry-Pérot, directivity, non-specular reflection,
matrix methods

I. INTRODUCTION

The Fabry-Pérot (FP) optical sensor can detect ultrasound
with high sensitivity over a broadband frequency range (tens
of MHz), with small element sizes (tens of microns). It is
frequently used in photoacoustic imaging and can be used
for general ultrasound field characterization [1]. However,
the ultrasound field measurements are affected by a complex
directional response caused by the multilayered structure of the
FP sensor. A model of the sensor directivity, and in particular
of how it relates to the specific wave types in the sensor, will
not only inform future sensor design, but could be used to
deconvolve the directional response from array measurements
made with the sensor. The use of an analytical model for the
deconvolution avoids the difficulties presented by the noise
inherent in an experimentally measured directional response
[2], [3].

In this paper, a robust hard-dielectric FP sensor is analyzed
[3]. This sensor is suitable for measurement of high acoustic
pressures as found, for example, in high-intensity focused
ultrasound (HIFU) [4]. The multilayered structure of the FP
sensor consists of two partially reflecting dielectric mirrors
separated by a thin spacer deposited on a substrate, as shown
in Fig. 1. The sensor mirrors are constructed from six sets
of alternating layers of silicon dioxide, SiO2, and zirconium
dioxide, ZrO2, separated by a spacer made from SiO2. The
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properties of the sensor materials can be found in Table I.
A focused scanning laser beam at the base of the substrate
is multiply reflected by the mirrors and the reflected light
intensity is measured. An incident ultrasound wave modulates
the distance between the mirrors changing the path length of
the laser and hence the intensity of the reflected light.

A model of the normal incidence frequency response given
by Beard et al [5], was extended by Cox & Beard [6], to model
the FP frequency-dependent directivity of a thin-film polymer
sensor up to 15 MHz. This three-layer analytical model is
only applicable to sensors for which the mirror thickness is
negligible, which is not the case here. Here, this work is
extended to an arbitrary number of visco-elastic layers thereby
allowing mirrors of finite thickness to be included. The model
is then used to explain the directional response in terms of
wave modes.

Fig. 1. Schematic of the Fabry-Pérot interferometer. Two dielectric mirrors
separated by a SiO2 spacer, with total thickness d, are deposited onto a glass
substrate. The sensor is scanned by a focused laser beam at the base of the
substrate. The beam is multiply reflected between the mirrors and the reflected
intensity measured.

II. MODEL OF FREQUENCY-DEPENDENT DIRECTIONALITY

A. Transduction Mechanism and Directivity

With reference to Fig. 1, the light from the interrogating
laser beam is multiply reflected from both mirrors. The in-
tensity from the superposition of the multiply-reflected light
wave-fields is measured. The phase difference between the
two points of reflection is φ = 4πnd/λ0, where n is the
refractive index, d is the distance between the mirrors, and
λ0 is the wavelength of the interrogating laser light. In the
presence of an acoustic wave, the change in intensity of
the reflected beam resulting from a change in phase may
arise from two mechanisms. The first is a thickness change
as the distance between the mirrors is modulated when an
acoustic wave passes through, and the second is from a change
in the refractive index of the spacer. In many cases, the
latter mechanism has been found to be negligible, and is



TABLE I
TABLE OF MATERIAL PROPERTIES

Material cL(ms
−1) cS(ms

−1) ρ(kgm−3)
Water 1448 0 1000
Glass 5600 3500 2500
SiO2 5900 3300 2500
ZrO2 3000 1500 5680

Av.HD* 4953 2488 3988
*Average mirror properties weighted by thickness.

Fig. 2. Labelling notation for the GMM for a system of n-elastic layers, there
are four bulk waves in each layer consisting of compressional (L, solid) and
shear (S, dotted) waves travelling upwards (-) or downwards (+). The sum of
one bulk wave type in a single layer is given by a complex amplitude A. The
stress and displacement, from the bottom and top of the interface of adjacent
layers, must be continuous.

not considered here [6]. The change in phase, ∆φ, from the
modulation of the spacer thickness due to an external acoustic
pressure change, ∆p, can be written as

∆φ =

(
4πn

λ0

)
∂d

∂p
∆p. (1)

The term ∂d/∂p gives the sensitivity of the thickness to an
external acoustic pressure change. The change in thickness
is given by the difference in vertical displacement, uz , from
the initial distance, d, between the two mirrors. Hence the
sensitivity of thickness to a pressure change is

∂d

∂p
=
uz(d)− uz(0)− d

∆p
. (2)

For an incident pressure wave of unit amplitude, ∆p = 1, and
∂d/∂p is simply the change in thickness.

The frequency-dependent directional response can be cal-
culated by averaging ∂d/∂p over the area illuminated by the
focused laser beam, weighted by the beam profile S(x):

D(f, θ) =

∫∞
−∞(∂d/∂p)S(x)dx∫∞

−∞ S(x)dx
. (3)

An example of this calculation when weighted by a top-hat
laser beam profile can be found in [6] and a more detailed
explanation of the FP transduction mechanism can be found
in [5].

B. Global Matrix Method
The global matrix method (GMM) describes elastic and

visco-elastic wave propagation in multilayered media [7],
allowing all 30 layers in the hard-dielectric FP sensor to
be modelled. As mentioned in Section II-A, the vertical
displacement at each mirror is needed to calculate directivity.
The well known isotropic stress-strain relationship for elastic
materials and strain tensor for small deformations [7], can be
combined to give the time-varying vector particle displacement

ρ0
∂2u

∂t2
= (λ+ 2µ)∇(∇ · u)− µ∇× (∇× u). (4)

Using the Helmholtz method [8], the displacement vector can
be written as u = ∇φ +∇ × ψ, and Eq. (4) can be written
as two separate wave equations:

∂2φ

∂t2
− c2L∇2φ = 0, (5)

∂2ψ

∂t2
− c2S∇2ψ = 0, (6)

where φ and ψ are scalar and vector potentials. Equation (5)
describes compressional waves based on the scalar potential
and Eq. (6) describes shear waves where ψ points perpendic-
ular to the displacement ∇ × ψ and the direction the wave
travels. The model is simplified to two dimensions (2D) by
defining the vector potential as ψ = (0, ψ, 0), where ψ is a
scalar [6]. This constrains the shear wave propagation to be
only vertically polarized in the plane (x, z), thus excluding
the out-of-plane motion of horizontally polarized shear waves
and Love modes. This is not a limitation as, by definition,
horizontally polarized shear waves will not affect the vertical
displacement of the sensor, which is needed to calculate the
directional response. The resulting displacement vector is

u =

(
∂φ

∂x
− ∂ψ

∂z
, 0,

∂φ

∂z
+
∂ψ

∂x

)
. (7)

Plane wave solutions to Eq. (5) and Eq. (6), at a single
frequency, take the form φ = AL exp{i(k · x − ωt)} and
ψ = AS exp{i(kt · x − ωt)}, where AL and AS are the
compressional and shear wave amplitudes, k is the wavenum-
ber vector, and ω is the circular frequency. The stress and
displacement within each layer of the FP sensor can be found
from the superposition of acoustic fields from four bulk waves.
These are upward and downward travelling longitudinal and
shear waves and can described by a complex amplitude, as
shown in Fig. 2.

The simplified 2D model results in four boundary conditions
at the interface between two adjacent elastic layers. For
perfectly bonded elastic layers, the normal, σzz , and shear,
σxz , stress, and normal, uz , and transverse, ux, displacement
must be continuous across the interface [7]. Therefore there
are four equations for every interface in the system. At a solid-
liquid interface there exists only three boundary conditions as
there is no continuity of transverse displacement.

The equations for an n-layered structure can be assembled
into a single (global) matrix which consists of 4(n− 1) equa-
tions and 4n unknown wave amplitudes [7]. Knowledge of



four of the wave amplitudes allows the system to be rearranged
and solved for the remaining amplitudes. Since water can only
support a compressional wave and there are no waves travel-
ling in the negative z-direction of the substrate backing, three
of the wave amplitudes in the half-spaces (A+

S1, A
−
Ln, A

−
Sn

in Fig. 2) are set to zero. Additionally the wave amplitude
for the incident compressional wave in water, A+

L1, can be
set to 1 with no loss of generality. The complex reflection
coefficient is calculated by taking the ratio of the reflected
wave amplitude and incident wave amplitude, R = A−L1/A

+
L1.

In addition, the dispersion curves for the sensor model can
be obtained by finding the frequency-wavenumber pairs at
which the determinant of the global system matrix is singular.
Evaluating the GMM with a complex wavenumber allows
absorption to be added to individual layers. Additionally, a
small imaginary part of the wavenumber allows the leaky-
Rayleigh wave to be easily identified [9].

III. DIRECTIVITY ANALYSIS

A. Experimental Directivity Measurements

The model was compared to directivity measurements of
the planar hard-dielectric sensor presented in [3]. To record
these measurements, the FP sensor was mounted within the
base of a specially designed water bath suspended above the
optics needed for the interrogation of the sensor. A broadband
(up to 50 MHz) plane wave photoacoustic source attached
to a rotating stage was incremented at 0.25◦ intervals about
the point of interrogation on the surface of the FP sensor. A
focused laser beam, tuneable in the range of 1440 − 1640
nm (Tunics T100S-HP, Yenista Optics, France), was used to
measure the FP sensor at an acquisition rate of 200 Hz. The
measured time series were Fourier transformed to give the
frequency-dependent directional response of the FP sensor. A
more detailed description of the directivity measurement can
be found in [10].

B. Feature Analysis

The analytical model shows good agreement with the mea-
sured directional response as shown in Fig. 3, where the
key features have been labelled. In order to gain a greater
understanding of the origin of the features in the directional
response, Fig. 4(a)-(c) shows plots of the magnitude of the
complex reflection coefficient, |R| (solid line), and the nor-
malized directivity (dashed) of Fig. 3(b) at three frequencies.

The first critical angle, θcL , can be identified in Fig. 4(a)-(c)
as the peak in |R| at 15◦. This peak is linked with a sharp
dip in directivity. At the lowest frequency shown (0.1 MHz)
the critical angle peak is sharp but broadens as the frequency
increases. This is due to the increasing significance of the thin
layers at the shorter wavelengths, so the reflected energy is
spread over a wider angular range between the water-substrate
and water-spacer critical angles. At very high frequencies,
beyond those displayed, this peak becomes a double cusp,
peaking at both critical angles. At angles just above after the
compressional critical angles, |R| dips and deepens as the
frequency increases (> 35 MHz), causing a small peak in

Fig. 3. Directivity measurement (a) and model (b) of the Fabry-Pérot
interferometer. Key features which are common to both: 1 & 2) compressional
and shear critical angles, 3) peak after water-substrate and water-spacer com-
pressional critical angles at high frequencies, 4) peak preceding Rayleigh wave
with a frequency-dependent phase speed, 5) minimum from no difference in
the vertical displacement of the mirrors.

directivity which can be seen in Fig. 3(a)-(b) label (3). There
is a small discontinuity in the directional response, seen in
Fig. 4(a)-(c), associated with the water-substrate shear critical
angle, θCS

, at 25◦.
The maximum peak in the directivity occurs immediately

preceding the leaky-Rayleigh wave angle, θR, which can be
identified by a characteristic dip in |R|, seen in Fig. 4(a)-(c)
and Fig. 3 label (4). At low frequencies, the phase speed of
the Rayleigh wave is that of a Rayleigh wave travelling on
the water-substrate interface (0.91cS,glass). As the frequency
increases, the effect of the mirrors and substrate becomes
significant, and the Rayleigh phase speed moves towards the
average shear speed of the mirrors and spacer, seen in Fig.
4(e)-(f). At even higher frequencies (not shown here), higher
order Rayleigh modes will appear [9], [11].

The directivity peak associated with the leaky-Rayleigh
wave is diminished by the crossing of the minimum high-
lighted in Fig. 4(c)-(d). This moves from a higher to a lower
angle as the frequency increases from 0.1 − 50 MHz. This
minimum is a not a feature of the GMM, but a result of the
transduction mechanism. The minima occur where the two
vertical displacements in Eq. (2) are identical. Hence, there is
no difference in vertical displacement and the interferometer
is not sensitive to a change in pressure from an acoustic wave.



Fig. 4. (a)-(c) Magnitude of the normalized directivity (dashed line) and reflection coefficient (solid line), evaluated with an imaginary wavenumber component
at different angles. The first (θCL

) and second (θCL
) critical angles produce a dip and peak in the directivity. Immediately after the first critical angle, there

is a peak in directivity. The Rayleigh angle (θCR
) moves as the leaky-Rayleigh wave phase speed changes from 91% shear speed of the glass substrate to

the average shear speed in the mirrors and spacer, as can be seen in (e)-(f). The minimum seen in (d), which has been plotted in dB scale for clarity, cuts
across the Rayleigh wave and is caused when the vertical displacement is identical at the two points of reflection from the laser beam.

IV. SUMMARY

The main aim of this paper was to investigate how different
wave modes affect the directionality of a hard-dielectric FP
ultrasound sensor. An analytical model based on the GMM
showed good agreement when compared with measured di-
rectivity data. Using the GMM model, the main features in
the directional response, shown in Fig. 3, were linked with
different physical wave phenomena. In future, the model could
be used to help deconvolve the directional response for array
measurements made with a hard-dielectric FP sensor.
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