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Direct Estimation of Optical Parameters From
Photoacoustic Time Series in Quantitative

Photoacoustic Tomography
Aki Pulkkinen*, Ben T. Cox, Simon R. Arridge, Hwan Goh, Jari P. Kaipio, and Tanja Tarvainen

Abstract— Estimation of optical absorption and scattering of a
target is an inverse problem associated with quantitative photoa-
coustic tomography. Conventionally, the problem is expressed as
two folded. First, images of initial pressure distribution created by
absorption of a light pulse are formed based on acoustic boundary
measurements. Then, the optical properties are determined based
on these photoacoustic images. The optical stage of the inverse
problem can thus suffer from, for example, artefacts caused by
the acoustic stage. These could be caused by imperfections in the
acoustic measurement setting, of which an example is a limited
view acoustic measurement geometry. In this work, the forward
model of quantitative photoacoustic tomography is treated as a
coupled acoustic and optical model and the inverse problem is
solved by using a Bayesian approach. Spatial distribution of the
optical properties of the imaged target are estimated directly
from the photoacoustic time series in varying acoustic detection
and optical illumination configurations. It is numerically demon-
strated, that estimation of optical properties of the imaged target
is feasible in limited view acoustic detection setting.

Index Terms— Bayesian methods, biomedical optical imaging,
inverse problems, photoacoustic effects, tomography, ultrasonic
imaging.

I. INTRODUCTION

QUANTITATIVE photoacoustic tomography (QPAT)
refers to the problem of forming quantitative images

of the underlying material parameters of an imaged target
based on boundary measurements of acoustic pressure waves
generated by the photoacoustic effect. The propagation and
subsequent absorption and thermalisation of a short light pulse
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in the imaged target induces, via the photoacoustic effect, an
excess pressure, called the initial acoustic pressure distribution.
For absorber sizes of a few millimeters or less, this initial
pressure distribution relaxes by radiating as a broadband pulse
of sound in the ultrasonic frequency range. This sound can be
observed on the boundaries of the imaged target and it forms
photoacoustic time series (i.e. the measurement data). Com-
mon parameters of interest to be estimated in QPAT include:
the spatial distribution of the light absorbing chromophores
or the optical absorption, the optical scattering, and the
Grüneisen parameter linking the initial pressure distribution
to the absorbed optical energy distributions.

QPAT can be seen as the next step after photoacoustic
tomography (PAT). In PAT, images of the initial pressure
distribution, also called the photoacoustic images, are of
principal interest. In many situations these images reflect, for
example, the anatomical information of the target as produced
by its internal distribution of absorbing chromophores. For a
review on PAT in general, see e.g. [1]–[4]. Common methods
to solve the acoustic inverse initial value problem of PAT
include back projection, time reversal, and model based inver-
sion approaches [5]–[8]. Reconstruction methods in specific
acoustic measurement geometries, such as plane, cylinder,
sphere, and polyhedra have been devised [5], [9]–[15],
as well as methods that operate in more generic acoustic
measurement setting [16], [17]. In addition to acoustically
homogeneous situations, the acoustic inverse initial value
problem with heterogeneous speed of sound [18]–[23] and
attenuating propagation of sound [24]–[26] have been studied.
In acoustically limited view setting, the acoustic inverse
problem in QPAT becomes ill-posed and the estimates of
the initial pressure distribution suffer from artefacts [27].
To alleviate the issue, regularization approaches using
prior information on the spatial distribution of the initial
pressure [28], [29] and model based inversion with Moore-
Penrose pseudoinverse [30] have been used. Additionally, use
of acoustic mirrors and scatterers can improve the estimation
of the initial pressure distribution in acoustically limited view
setting [31]–[34]. For a review on the mathematics of the
acoustic inverse initial value problem in PAT, see e.g. [35].

The additional step that QPAT takes, the quantitation,
is the estimation of the spatial distributions of the optical
parameters that result in the formation of the initial pres-
sure distribution [36]–[38]. Commonly, a model based
inversion approach is used to solve the inverse prob-
lem in QPAT. Both, the radiative transfer equation (RTE)
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based optical propagation model [39]–[45] and its diffusion
approximation (DA) [46]–[55] have been used. In addition to
using photoacoustic images as the input data in the quantitation
step, combined data formed by the photoacoustic images
and diffuse optical tomography (DOT) measurement data
have been investigated [42], [56], [57]. Use of measurements
obtained with illuminations performed at multiple wavelengths
(i.e. spectral measurements) in order to obtain estimates of
the concentrations of specific chromophores based on their
absorption spectra have been studied [58]–[63]. Within the DA
framework, analytical reconstruction approaches have been
devised [64], [65]. For mathematical analysis of the optical
inverse problem in QPAT within the RTE and the DA frame-
works, see e.g. [66], [67].

In addition to approaches where the initial pressure distri-
bution is estimated first and the optical parameters of interest
afterwards, direct estimation of the optical parameters from
the photoacoustic time series has been performed recently.
In [68], [69], the DA based optical framework was used
to derive a linear Born approximation based model. The
model was subsequently coupled with a homogeneous acoustic
propagation model, and perturbations of optical absorption
and diffusion parameters were estimated directly from the
photoacoustic time series. In [70], the DA based Born approx-
imation and the full non-linear DA was used to estimate
the optical absorption, as well as the speed of sound of
the imaged target. In [71], the absorption parameter was
reconstructed within the nonlinear DA framework. In [72],
the RTE based optical forward model was coupled with a
homogeneous acoustic propagation model. The paper demon-
strated improvement of the optical absorption estimates, when
the estimates were formed directly from the photoacoustic
time series. In all [70]–[72], scattering was assumed to be
known. In [73], the studied photoacoustic illumination and
acoustic detection setup was such that the acoustic inverse
problem could not be solved in a stable fashion, and thus
the inverse problem of QPAT required the use of a direct
estimation approach.

In this paper, the inverse problem of estimating the optical
parameters directly from the photoacoustic time series in
QPAT is further investigated. Simultaneous estimation of both
absorption and scattering, with parameter values correspond-
ing to realistic values in soft biological tissues, is consid-
ered in two dimensional (2D) and three dimensional (3D)
limited acoustic view situations with different optical illu-
minations. The inverse problem is described by using a
Bayesian approach to ill-posed inverse problems [74]–[76].
In the Bayesian approach, the inverse problem is viewed in the
framework of statistical inference. All parameters are treated
as random variables which depend on each other through a
model and information about these parameters is expressed
by probability distributions. In quantitative tomography, point
estimates of the posterior distributions of unknown parameters
are determined based on the measurements, the model, and the
prior information. Thus, instead of qualitative PAT images,
in Bayesian approach to QPAT one is aiming at obtaining
quantitative estimates of the parameters of (primary) interest
and their uncertainties.

The forward model used in this paper is formed by com-
bining an optical model with an acoustic propagation model.
For the optical model, the DA is used. Green’s function based
solution to homogeneous acoustic wave equation is used for
the acoustic model. The resulting forward model maps the
optical parameters of the imaged medium to the photoacoustic
time series on the boundary of the target.

The approach is tested with simulations. The effect of the
acoustic measurement geometry, the effect of the noise level,
and the effect of the optical illuminations used to generate the
data are analysed.

II. MODEL

The photoacoustic effect can be modelled by coupling the
optical and acoustic propagation models. The difference in
propagation speed of light and sound means that the initial
pressure distribution can be regarded as instantaneous with
respect to the acoustic model. This means that the coupling of
the models can be achieved by simple composition.

A. Optical Model
In this work, the propagation of light is modelled using the

DA. The DA and the used boundary condition describing the
flunce � within the computation domain � ⊂ R

n are [77]{
−∇ · κ∇� + μa� = 0, r ∈ �

ζn� + 1
2 Aκ∇� · ν = s, r ∈ ∂�

(1)

where κ = (n(μa+μ′
s))

−1 is the optical diffusion, μa = μa(r)
is the optical absorption parameter, μ′

s = μ′
s(r) is the optical

reduced scattering parameter, ζn is a dimension dependent
scaling factor (ζ2 = π−1 and ζ3 = 0.25). Further, A and
s = s(r) describe the light reflectivity and the inward light
current (i.e. the light source) on the boundary ∂�. Throughout
this work, value A = 1 is used for the reflectivity correspond-
ing to matched refractive indices inside and outside �.

Absorption of light creates spatial absorbed energy density
field H given by

H (r; μa, μ
′
s, s) = μa(r)�(r; μa, μ

′
s, s), (2)

where the parameters are as in (1).
In this work, the optical propagation model (1) is discretized

using Galerkin finite element method (FEM) [78]. FEM dis-
cretization is performed in a regular grid composed of either
square (in 2D) or cube (in 3D) elements. The optical properties
μa and μ′

s, as well as the fluence � are discretized using Q
piecewise bilinear (in 2D) or trilinear (in 3D) base functions
defined at grid nodes rq ∈ R

n , with q = 1, . . . , Q. Thus, the
parameters and the fluence are approximated as

μa(r) ≈ μh
a (r) =

Q∑
q=1

μa,qφq(r),

μ′
s(r) ≈ μ′h

s (r) =
Q∑

q=1

μ′
s,qφq(r), (3)

�(r) ≈ �h(r) =
Q∑

q=1

�qφq(r),

where φq is the base function corresponding to grid node rq ,
and μa,q , μ′

s,q and �q are the discrete representations of μa,
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μ′
s and � respectively. The discretized absorbed energy density

field (2) can then be approximated as

H h(r; μh
a , μ

′h
s , s) =

⎛
⎝ Q∑

q=1

μa,qφq(r)

⎞
⎠

⎛
⎝ Q∑

q=1

�qφq(r)

⎞
⎠, (4)

where �q is the FEM solution of (1) with parameters μh
a , μ′h

s
and s.

B. Acoustic Model

Propagation of sound, created by the instantaneous photoa-
coustic effect, in an infinite domain composed of homogeneous
non-attenuating medium is described by the acoustic initial
value problem [2], [5], [79]⎧⎪⎪⎪⎨

⎪⎪⎪⎩

1

c2

∂2

∂ t2 p − ∇2 p = 0, r ∈ R
n

p(r, t = 0) = p0(r),
∂

∂ t
p(r, t = 0) = 0,

(5)

where p is the acoustic pressure, c is the sound speed, t is
the time, and p0 is the initial pressure distribution created by
the absorption of light pulse. The initial pressure distribution
is given by

p0(r) =
{

γ H (r), r ∈ �

0, r ∈ R
n \ �

(6)

where γ is the Grüneisen parameter, and H is the absorbed
energy density as in (2). Throughout this work γ is treated as
a known constant, although in general, this is not the case.

In this work, the solution of (5) is approximated as a
solution of the wave equation [80]

1

c2

∂2

∂ t2 p − ∇2 p = 1

c2 p0(r)
∂

∂ t
gτ (t), (7)

where gτ (t) is a (temporal) Gaussian distribution, with full
width at half maximum τ , approximating the formation of
the initial pressure distribution p0 into the acoustic medium.
As τ approaches zero, (7) becomes a better approximation
to (5).

Solution of (7) can be computed as a spatial convolu-
tion [81]

p(r, t) = p0(r) ∗ Gτ (r, t)=
∫

�
p0(r

′)Gτ (r − r ′, t) dr ′, (8)

where Gτ is the Green’s function corresponding to (7), which
can be expressed as

Gτ (r − r ′, t) = 1

c2 F−1{jωĝτ (ω)Ĝ(||r − r ′||, ω)}(t), (9)

where F−1 is the (temporal) inverse Fourier transformation, j
is the imaginary unit, ĝτ is the Fourier transformation of gτ .
Ĝ, in (9), is defined as

Ĝ(||r − r ′||, ω) =
⎧⎨
⎩

j 1
4 H (1)

0

(ω

c
||r − r ′||

)
, n = 2,

1
4π ||r−r ′ || exp

(
j
ω

c
||r − r ′||

)
, n = 3,

(10)

which is the solution of ∇2Ĝ + ω2

c2 Ĝ = −δ(r) [81], H 1
0 is

Hankel function of the first kind.

In this work, p0(r) in (7) is approximated using the same
base functions as in the optical model as

p0(r) ≈ ph
0 (r) =

Q∑
q=1

p0,qφq(r). (11)

Thus, (8) is approximated as

p(r, t) ≈
Q∑

q=1

p0,q

∫
�

φq(r ′)Gτ (r − r ′, t) dr ′, (12)

with the spatial integral approximated using Gaussian quadra-
tures. The Fourier transforms, in (9), are approximated by
using discrete Fourier transformation corresponding to the
temporal discretization. In discrete form, the solution (8) at
a position r can be written as

p(r) = w(r)p0 (13)

where p(r) = (p(r, t1), . . . , p(r, tT ))� ∈ R
T is a vector with

values of the acoustic pressure at time instances t1,..., tT , and
w(r) ∈ R

T ×Q is a matrix describing the convolution integral
in (8) as a linear operator, and p0 = (p0,1, . . . , p0,Q)� ∈ R

Q

is the discrete initial pressure distribution (11) as a vector.

C. Photoacoustic Simulation Model

In this work, the simulations are carried out in a pho-
toacoustic setting composed of a light absorbing target sur-
rounded by varying amount, as well as arrangement, of
point size acoustic detectors. The target and the detectors are
assumed to be immersed in an infinite homogeneous and non-
attenuating acoustic medium, and the target is assumed to have
the same acoustic parameters as the medium surrounding it.
The mathematical model for this system is the combination
of (1) and (5).

Defining the acoustic detectors as being located at positions
dk ∈ R

n , with k = 1, . . . , K , the photoacoustic time series for
illumination sm , with m = 1, . . . , M , can be expressed as

P(μh
a , μ

′h
s , sm) = Wp0(μ

h
a , μ′h

s , sm), (14)

where μh
a and μ′h

s are the optical parameters and

P(μh
a , μ

′h
s , sm) = (p(d1)

�, . . . , p(dK )�)� ∈R
T K , (15)

W = (w(d1)
�, . . . , w(dK )�)� ∈R

T K×Q ,

are as in (13) and

p0(μ
h
a , μ′h

s , sm) = (γμa,1�m,1, . . . , γμa,Q�m,Q)� ∈ R
Q ,

(16)

is a vector representation of the discretization of (6). Note that
in (16) μa,q�m,q = H h(rq ; μh

a , μ
′h
s , sm).

The photoacoustic simulation model (14) can be written, for
illumination sm , shortly as

zm = fm(x), (17)

where zm = P(μh
a , μ

′h
s , sm) ∈ R

T K , fm(x) =
Wp0(μ

h
a , μ′h

s , sm) : R
2Q → R

T K , and x =
(μa,1, . . . , μa,Q , μ′

s,1, . . . , μ
′
s,Q)� ∈ R

2Q . For multiple
illuminations, the forward model can be written as

z = f (x), (18)
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where z = (z�
1 , . . . , z�

M )� ∈ R
T K M , and f (x) =

( f1(x)�, . . . , fM (x)�)� : R
2Q → R

T K M .

III. RECONSTRUCTION METHOD

The inverse problem in QPAT, is to form estimates of the
optical absorption and scattering based on the data. In this
work, the inverse problem is approached in the Bayesian
framework for ill-posed inverse problems.

A. Bayesian Approach

Solving an inverse problem of determining unknown para-
meter distribution x ∈ R

2Q given noisy measurements, or
data, y ∈ R

T K M requires definition of an observation model
linking the parameters and the measurements. In this work,
an observation model with additive error is used and it is
written as

y = f (x) + e, (19)

where f (x) : R
2Q → R

T K M is the (deterministic) forward
model (18), and e ∈ R

T K M is a random variable denoting the
additive error, or noise. The observation model (19) links the
parameters of interest to the measurements.

Within the Bayesian approach [74]–[76], the forward
model (19) is interpreted statistically by defining probability
distributions for the unknown parameter x and the noise e. The
probability distribution of x is called the prior distribution and
it is intended to describe the existing (rough) knowledge of the
unknown x , while the noise statistics essentially characterises
the measurement setup and modelling errors. The prior and the
noise probability density function are marked with πx(x) and
πe(e) respectively. Assuming that x and e are uncorrelated in
the additive noise model (19), the Bayesian approach results
in posterior distribution π(x |y) for the unknown x conditioned
by the measurements y, and it is given by

π(x |y) ∝ πx(x)πe(y − f (x)). (20)

In principle, the posterior distributions of the unknown
parameters can be estimated using Markov chain
Monte Carlo (MCMC) methods. However, these methods
can be computationally prohibitively too expensive in large
dimensional tomographic inverse problems. Therefore, point
estimates such as the maximum a posteriori (MAP) estimate
are computed. In this work, the distributions πx and πe are
modelled as Gaussian distributions, and their parameters
are denoted with x ∼ N (ηx , �x ) and e ∼ N (ηe, �e),
where ηx and �x are the mean and the covariance of the
prior information discussed in Section III-B, and ηe and �e

are the mean and the covariance characterizing the noise
and uncertainties of the measurement setup. Values for
ηe and �e, characterizing the additive error in (19) are defined
in Section IV. With the Gaussian choice for the distributions,
the negative logarithm of the posterior distribution (20)
becomes

u(x) = 1

2
‖Le(y − f (x)−ηe)‖2 + 1

2
‖Lx (x −ηx)‖2, (21)

where Le and Lx are the Cholesky decompositions of the
inverse covariance matrices, such that L�

e Le = �−1
e and

L�
x Lx = �−1

x . The point estimate of x used in this paper
is the MAP estimate

xMAP = arg min
x

u(x), (22)

which is obtained by using a Gauss-Newton algorithm [82].
The Gauss-Newton proceeds by starting from some initial
value x = x1 and using iteration

xl+1 = xl + αl�l , l ≥ 1 (23)

where αl is obtained by using a line search algorithm to find
minimum of u(xl + αl�l). �l in (23) is the Gauss-Newton
iteration direction at step l computed by solving(

J�
f (xl )

�−1
e J f (xl) + �−1

x

)
�l = J�

f (xl )
�−1

e (y − f (xl) − ηe)

− �−1
x (x − ηx ), (24)

where J f (xl ) is the Jacobian matrix of f (x) at x = xl .
An approximation xMAP ≈ xl is then obtained with sufficiently
large l.

One of the main assets of employing the Bayesian approach
is that, in addition to point estimates, one can also com-
pute (approximations for) the posterior error estimates of the
unknown parameters of interest. In Bayesian analysis, the
credibility intervals (counterparts of confidence intervals in
frequentist statistics) would be the standard choice for error
estimates. The computation of credibility intervals would,
however, call for Markov chain Monte Carlo methods which,
in our case, are not computationally feasible approaches.
Instead, in this paper, we compute approximations for the
credibility intervals that are based on local Gaussian approx-
imation of the posterior distribution at the MAP estimate.
The computation of these approximations can be derived as
follows. The forward model x �→ y = f (x) is approximated
by the first order Taylor series at xMAP

f (x) ≈ f (xMAP) + J f (xMAP)(x − xMAP) (25)

where J f (xMAP) is the Jacobian matrix of f (x) evaluated
at x = xMAP, which is obtained using the Gauss-Newton
algorithm. Then, the Taylor series approximation is substituted
into the observation model (19). By forming the mean and
covariance matrix of the combined distribution of (x, y),
and then using Schur complements to obtain the conditional
distribution of x |y results in a Gaussian approximation for
the posterior distribution, that is, x |y ∼ N (η, �), where the
(approximate) posterior mean is η = xMAP and the posterior
covariance is

� =
(

J�
f (xMAP)�

−1
e J f (xMAP) + �−1

x

)−1
. (26)

For full derivation, see [74], [75]. For true Gaussian distrib-
utions, 99.7% of the probability mass of each element xi of
x would lie in the interval ηi ± 3σi where σi = √

�(i, i).
In this paper, we refer to these intervals as posterior error
estimates. Although these intervals do not exactly correspond
to 99.7% of the respective probability mass, such posterior
error intervals can be described as safe ones. The validity
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of the approximation is evaluated in the Appendix. Thus, we
define the posterior error intervals at points rq as

Cμa (rq) = [μMAP
a,q − 3σa,q , μMAP

a,q + 3σa,q ],
(27)

Cμ′
s
(rq) = [μ′MAP

s,q − 3σs,q , μ
′MAP
s,q + 3σs,q ],

where σa,q and σs,q are the square roots of the respective
diagonal elements of the covariance matrix �.

B. Prior Model

In this work, the prior model for the unknown parameters
μa and μ′

s was chosen to be based on the Ornstein-Uhlenbeck
process [45], [63], [83]. The prior is a Gaussian distribution
with the covariance matrix defined as being proportional to
matrix � which has its elements defined as

�i j = exp(−||ri − r j ||/ξ), (28)

where i and j denote the row and column indices of the
matrix, ri and r j denote the grid node coordinates, and ξ is the
characteristic length scale of the prior describing the spatial
distance that the parameter is expected to have (significant)
spatial correlation for. The random field described by the
covariance (28) is independent of the absolute position, with
the spatial correlation between any two points ri and r j being
only dependent on the distance between the points, and the
characteristic length scale. The characteristic length scale is
typically chosen to be descriptive of the expected size of
inclusions in the target of interest.

In this work, the mean of the priors for μa and μ′
s were

chosen as

ημa = 1

2
(max μa + min μa),

(29)

ημ′
s

= 1

2
(max μ′

s + min μ′
s),

and the covariances of the priors were chosen as

�μa = 1

4
(max μa − min μa)

2 �,

(30)

�μ′
s

= 1

4
(max μ′

s − min μ′
s)

2 �,

where min μa, max μa, min μ′
s, and max μ′

s denote the min-
imum and maximum values that μa and μ′

s are expected to
vary between, with the minimum and maximum being one
standard deviation away from their midpoint. The combined
prior parameters were then

ηx =
(

ημa

ημ′
s

)
, �x =

(
�μa 0

0 �μ′
s

)
. (31)

These choices correspond to prior assumption that μa and μ′
s

are mutually uncorrelated. In biological tissues, this assump-
tion can be inaccurate in the sense that close to tissue
boundaries it is reasonable to expect that both of the optical
properties could change. This would imply some correlation
between the optical parameters, however, the uncorrelation
assumption of the optical properties promotes more generic
solutions to the inverse problem and is thus used in this work.

TABLE I

THE ILLUMINATION FUNCTIONS USED

IV. SIMULATION STUDIES

The approach was studied using 2D and 3D simulations.
The inverse problem of estimating μa and μ′

s using the
models described in Section II and the reconstruction method
described in Section III was investigated. In 2D, the acoustic
sensor configuration, optical illuminations, and the noise level
were varied. In 3D, a limited view case with acoustic mea-
surement performed only from one side of the target was
investigated.

For the inverse problems, the MAP estimates (22) were
computed using the Gauss-Newton algorithm (23). Gauss-
Newton algorithm started from initial value of x1 = ηx .
Accuracy of the estimates were computed using relative errors

Eμa = 100% · ‖μMAP
a − μTRUE

a ‖
‖μTRUE

a ‖ ,

(32)

Eμ′
s

= 100% · ‖μ′
s
MAP − μ′

s
TRUE‖

‖μ′
s
TRUE‖ ,

where μTRUE
a and μ′

s
TRUE are the true parameters used to

compute the simulated measurement data and μMAP
a and

μ′
s
MAP are their respective MAP estimates, obtained with (22).

A. 2D Simulations

The 2D simulations were performed in square domain
� = [−5 mm, 5 mm] × [−5 mm, 5 mm]. Two different illu-
minations (M = 2) were used to generate the simulated mea-
surement data. The illuminations were formed by functions

s(r; �) =

⎧⎪⎨
⎪⎩

1
J

mm2 , r ∈ �

0
J

mm2 , r /∈ �
, (33)

with � being combination of �L, �R, �B, �T corresponding
to left, right, bottom and top edges of the square domain
respectively. The illumination functions are listed in Table I.

For the acoustic sensor locations, six different configura-
tions were used: four densely positioned detector configura-
tions and two sparsely positioned detector configurations. The
densely positioned detector configurations were: four sided
detection geometry with sensors on �L, �R, �B, �T (number
of sensors is K = 128); three sided detection geometry with
sensors on �L, �B, �T (K = 96); two sided detection
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Fig. 1. MAP estimates for limited view acoustic detection setups. Shown
are the true optical parameters used to simulate the data (top row), fol-
lowed by MAP estimates with acoustic measurement obtained on four sides
(second row), three sides (third row), two sides (fourth row), and one side
(bottom row). The locations of the acoustic sensors are indicated with the red
dots. Four illuminating sides were used (s2D

LR and s2D
BT). The MAP estimates

were computed based on data corrupted by 1% noise.

geometry with sensors on �L, �B (K = 63); one sided
detection geometry with sensors on �L (K = 31). The
sparsely positioned detector configurations were: sensors on
a circle with a radius of 7.8 mm (K = 31); and sensors on
a semicircle with a radius of 7.8 mm (K = 15). The sensor
configurations are shown in Figures 1 and 2 with red dots.

The data was simulated in a grid composed of Q = 1369
grid nodes formed by square elements with side length
of 277.8 μm. The distribution of μa and μ′

s parameters are
shown in Figure 1 on the top row. The parameter values were
chosen to be within biologically relevant variation ranges of
fat and blood [84]. For the sound speed, value c = 1500 m/s
was used, which is similar to the speed of sound in water and
soft tissues. The temporal pressure waveforms were sampled
at 10 MHz and discretized into T = 189 temporal points at
each of the acoustic sensor location. This corresponds to a
recorded temporal pressure time series duration of 18.9μs and
an acoustic propagation distance of 28.4 mm. The temporally
Gaussian light pulse gτ had full width at half maximum of
τ = 333 ns. Normally distributed noise, with zero mean and
standard deviation proportional to the peak-to-peak pressure

Fig. 2. MAP estimates for sparsely located acoustic detection setups. Shown
are the true optical parameters used to simulate the data (top row), and MAP
estimate when using circularly (middle row) and semicircularly (bottom row)
arranged set of acoustic sensors. The locations of the acoustic sensors are
indicated with the red dots. Four illuminating sides were used (s2D

LR and s2D
BT).

The MAP estimates were computed based on data corrupted by 1% noise.

amplitude of the detected acoustic time series, was added to
the simulated measurement data. This was done for the data
obtained with the two different illuminations separately. The
standard deviation was thus defined as

σm = ε
(

max P(μh
a , μ

′h
s , sm) − min P(μh

a , μ
′h
s , sm)

)
, (34)

where ε is the noise level and m ∈ {1, 2}. Values of ε = 0.05,
0.01 and 0.001 were used corresponding to 5%, 1% and 0.1%
noise levels, or 13, 20 and 30 dB signal-to-noise ratios (SNR)
respectively.

In the inverse problem, a grid composed of Q = 961 grid
nodes formed by square elements with side length of 333.3μm
was used. For the noise statistics, the following values were
used:

ηe = 0, �e =
(

σ 2
1 I 0
0, σ 2

2 I

)
, (35)

where σ1 and σ2 are the standard deviation of the added noise
corresponding to the two illuminations used, and I ∈ R

Q×Q is
the identity matrix. These values correspond to accurately
knowing the statistics of the noise. The prior was assem-
bled according to (31), with the characteristic length scale
ξ = 1 mm. For the expected range of variation, the true
minimum and maximum of the estimated parameters were
used resembling a good prior knowledge.

B. 3D Simulations

The 3D simulations were performed in a cube domain
� = [−5 mm, 5 mm] × [−5 mm, 5 mm] × [−5 mm, 5 mm].
Two different illumination functions (M = 2), s3D

LBD and
s3D

RTV, were used to generate the simulated measurement data
which are shown in Table I with �L, �R, �B, �T, �D, �V
corresponding to left, right, bottom, top, dorsal (rear) and
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ventral (front) faces of the cube. K = 1089 acoustic sensors
were located on �L face of the cube set in square 33 × 33
sensor array.

The 3D simulation domain was discretized into cube ele-
ments with side length 277.8μm. This resulted in a simulation
grid composed of Q = 50653 grid nodes, which was used to
compute the simulated measurements. The temporal data was
sampled at 10 MHz and discretized into T = 128 temporal
points, corresponding to a recorded temporal pressure time
series duration of 12.7μs and an acoustic propagation distance
of 19.1 mm. The same full width at half maximum, as in 2D,
of τ = 333 ns was used for gτ . The parameters used for μa
and μ′

s to compute the data are shown in Figure 6. Noise
was added in the same fashion as in 2D with the noise level
ε = 0.001 corresponding to 0.1% noise level.

In the inverse problem, the simulation grid was composed
of Q = 29791 grid nodes. The statistics of the noise mean
and covariance matrix were chosen as in (35), and the prior
was assembled according to (31), with the characteristic length
scale ξ = 1 mm. For the expected range of variation, the
true minimum and maximum of the estimated parameters
were used.

V. RESULTS

2D MAP estimates of μa and μ′
s are shown in Figure 1

for the data with noise level at 1%. Illuminations s2D
LR and

s2D
BT were used. Results of four simulations where the acoustic

sensors were located on the sides of the square domain �
are shown. Visually the estimates of μa look comparable to
each other even in the case when the acoustic sensors have
located on only one side of the imaged target. In the one
sided sensor configuration, however, some artefacts in the
estimate are evident and visually look as if streaming away
from the sensors. Larger differences between the estimates of
μ′

s obtained with different acoustic sensor configurations are
evident, but even in the case of one sided acoustic sensor
configuration the estimate resembles the true μ′

s.
2D MAP estimates of μa and μ′

s are shown in Figure 2
for sensor configuration where the sensors were located on a
circle or semicircle. The noise level was 1% and illuminations
s2D

LR and s2D
BT were used. In the case of the circle, the number

of acoustic sensors was equal to that used in the one sided
configuration. Visually the estimates of μa and μ′

s are closer
to the true parameters and contain less artefacts in comparison
to one sided acoustic configuration. The estimate of μ′

s is
closer in amplitude to the true value as well. In the case of
semicircle, degradation of the visual quality of the estimate
is evident in comparison to full circle configuration. However,
although the semicircle configuration has less sensors than the
one sided configuration in Figure 1, the estimate is better in
visual quality.

Figure 3 shows 2D MAP estimates of μa and μ′
s for

noise levels 5%, 1% and 0.1% for two sided acoustic sensor
configuration. Illuminations s2D

LR and s2D
BT were used. As it

can be seen, at high noise levels, the estimates of μ′
s are

smooth and blurry, whereas at the low noise level, the estimate
becomes sharper. The effect suggests, that at high noise levels,

Fig. 3. MAP estimates for varying noise levels. Shown are the true optical
parameters used to simulate the data (top row), followed by MAP estimates
with the data being corrupted by 5% (second row), 1% (third row), and
0.1% (fourth row) noise. The locations of the acoustic sensors are indicated
with the red dots. Four illuminating sides were used (s2D

LR and s2D
BT).

information about the high spatial frequency components
of μ′

s is lost. Estimates of μa, on the other hand, appear
to become polluted by spatially high frequency noise when
the noise level is high. Figure 4 shows the posterior error
intervals of the MAP estimates of Figure 3 on a diagonal
of the domain �, computed with (27). As the noise level
decreases, the estimates become more accurate, the posterior
error intervals decrease and, in particular, the point estimates
are consistent with the error estimates. For the absorption
coefficients, the posterior error intervals also reflect the intu-
itive hypothesis that the error intervals should be larger at
points which are further away from the measurement locations.
Also, as expected, the error intervals for the scattering coef-
ficient are larger than for the absorption coefficient, and they
decrease slower with decreasing noise level. Regarding the
width of the error intervals, we remind that we employ ±3σ
intervals which are expected to contain almost 100% of the
probability mass.

Figure 5 shows 2D MAP estimates of μa and μ′
s when num-

ber of illuminating sides has been varied. Estimates were com-
puted with four side (s2D

LR and s2D
BT), three side (s2D

LB and s2D
T ),

and two side (s2D
L and s2D

B ) illuminations. Noise level
was 0.1%. As the total illumination surface is reduced
from four sided illumination to two sided illumination, the
information in the areas far from the illuminating sides
becomes poorer. This is reflected in estimates of μa as becom-
ing more distorted in those areas, as evident in the top right
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Fig. 4. Posterior error intervals for varying noise levels. Shown are the
true optical parameters used to simulate the data (top row), followed by the
approximate ±3σ posterior error intervals corresponding to 5% (second row),
1% (third row), and 0.1% noise levels. The points at which the error
intervals are shown are on diagonal cross sections across the domain and
are indicated as black lines in the top row images. The plots show the
true parameters (solid line), the MAP estimates (dotted line), and the error
intervals (grey areas). Four illuminating sides were used (s2D

LR and s2D
BT).

corner of the estimate produced by using illumination pair s2D
L

and s2D
B . Estimate of μ′

s becomes overall worse everywhere as
the total illuminating surface is reduced, with no clearly visible
spatial location where the estimate is worst.

3D MAP estimates of μa and μ′
s are shown in Figure 6.

Illuminations s3D
LBD and s3D

RTV were used. The figure depicts
situation where the acoustic sensors are located on one
side of the imaged target. The estimates of both parame-
ters work reasonably well, although they both suffer from
imaging artefacts caused by the limited view. The inclusions
(volumes of higher absorption or scattering in comparison to
the ambient value) are visible in both absorption and scattering
estimates.

Table II shows the relative errors of the MAP estimates
shown in Figures 1 and 2 for the six simulated 2D acoustic
sensor geometries and one 3D simulation shown in Figure 6.
For the 2D simulations the relative errors are shown for noise
levels of 5%, 1% and 0.1%. Illuminations s2D

LR and s2D
BT were

used in 2D and s3D
LBD and s3D

RTV in 3D. Based on the relative
errors it is evident that the quality of the estimates of μa and μ′

s
improves when the noise level is reduced, or when the sensors
are located in multiple directions of target. On the smallest
error level of 0.1%, the circular and semicircular detector
geometries resulted in lower relative errors of the estimates
than in the one sided detector geometry.

Fig. 5. MAP estimates for varying illuminations. Shown are the true optical
parameters used to simulate the data (top row), followed by MAP estimates
with four (s2D

LR and s2D
BT, second row), three (s2D

LB and s2D
T , third row), and

two illuminating sides (s2D
L and s2D

B , fourth row). The locations of the acoustic
sensors are indicated with the red dots. The MAP estimates were computed
based on data corrupted by 0.1% noise.

Fig. 6. MAP estimates in 3D. Shown are the true optical parameters used
to simulate the data (top row), and the MAP estimates (bottom row). The
three back faces of the cubes show the maximum value projection of the
optical parameters along the perpendicular axis. The red and green contour
surfaces denote the areas where the parameters have 75% and 50% values
of the parameter range. These values are pointed out by the red and green
arrows, respectively, beneath the colorbars. The red plane denotes the location
of the acoustic sensors. Six illuminating sides were used (s3D

LBD and s3D
RTV).

The MAP estimates were computed based on data corrupted by 0.1% noise.

Relative errors of μa and μ′
s when the illuminating functions

have been varied are shown in Table III for estimates shown
in Figure 5. Based on the relative errors, it is evident that the
estimates become worse when the total illuminating area is
reduced or when the noise level is increased.
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TABLE II

RELATIVE ERRORS Eμa AND Eμ′
s

FOR THE MAP ESTIMATES OF μa AND

μ′
s OBTAINED IN 2D FOR THE SIX DIFFERENT ACOUSTIC SENSOR

CONFIGURATIONS AND FOR THE SIMULATION STUDY IN 3D. IN 2D,
ILLUMINATIONS s2D

LR AND s2D
BT WERE USED, WHEREAS

IN 3D s3D
LBD AND s3D

RTV WERE USED

TABLE III

RELATIVE ERRORS Eμa AND Eμ′
s

FOR THE MAP ESTIMATES OF μa AND μ′
s

OBTAINED IN 2D FOR THE THREE DIFFERENT ILLUMINATION PAIRS.
THE ACOUSTIC SENSORS WERE LOCATED ON TWO SIDES OF THE

TARGET: �L AND �B

VI. DISCUSSION AND CONCLUSION

In this work, a Bayesian approach to the direct estimation
of the optical parameters from photoacoustic time series was
described. The forward model was based on coupling the
optical and the acoustic propagation models where the DA
was used for the optical propagation and the acoustic model
was formed by using Green’s function of the homogeneous
wave equation. The MAP estimates of the optical absorption
and scattering distributions were computed.

The numerical 2D simulations show, that when the acoustic
view of the imaged domain becomes limited, the estimates
of the optical parameters degrade in terms of relative error.
This was shown with simulations where acoustic sensors were
located on four, three, two and one edge of the imaged square
shaped domain. Similar effect was seen when the sensors
were located on either a circle or a semicircle. Qualitatively
(visually) the estimates of the optical parameters were good
in each sensor setting. In 2D simulations, it was found that
the estimates can be improved if the noise level of the data
is reduced, or if the sensors are placed such that they enclose
the imaged domain at least partially. This suggests that the
quality requirements on measurement systems with a limited
view acoustic sensor geometry are more demanding than in
settings where the acoustic measurement can be done in
more enclosing fashion. In 3D, one numerical simulation was
performed with the acoustic sensors located on one face of
a cube shaped imaged target. Although the relative errors of
the estimated optical parameters were higher, in comparison to
the similar setting in 2D, the estimates were qualitatively good
with the distinct shape and quantitative value of the estimated
parameters being similar to the true parameters.

The work presented in this paper takes quantitative pho-
toacoustic tomography closer to being practically realizable
imaging modality. In comparison previously published similar
approaches that estimate the optical properties directly form
the photoacoustic time series [68]–[73], this work combines
the full nonlinear photoacoustic forward model into a Bayesian
inverse problem approach, providing estimates of both the
optical absorption and scattering in acoustically limited view
measurement setting in three spatial dimensions. The approach
enables inclusion of sophisticated prior models of the para-
meters of interest and statistical information on the noise
and uncertainties related to the imaging modality into the
estimation process. In addition, the approach is able to provide
posterior error intervals to aid assessing the quality of the
estimates.

In this work the numerical implementation of the pho-
toacoustic model, and the Bayesian approach used to
form the estimates of the optical parameters, was done
in MATLAB (R2011b, The MathWorks Inc., Natick, MA).
Time to form the MAP estimates in 2D was within few minutes
for a workstation equipped with Xeon E5649 (Intel Corpo-
ration, Santa Clara, CA) processor operating at 2.53 GHz,
whereas in 3D the estimation took few days on a computer
with Xeon E5-2630 operating at 2.40 GHz (Intel Corporation,
Santa Clara, CA). Increase in computational time, when shift-
ing from 2D to 3D, is expected as the number of unknowns
grows exponentially with the number of dimensions. Part of
the large difference between the estimation times is explained
due code level differences: some of the optimizations done
in 2D (e.g. precomputation of some of the matrices) could
not be performed in 3D due to memory limitations. Part of
the reason why the memory consumption was an issue in 3D
is explained by the use of direct (and possibly) naive form
of implementing the Gauss-Newton algorithm: this involved
explicitly assembling large matrices and then using direct
approaches to solve for Gauss-Newton iteration direction.
Additional work needs to be done, in order to make the
estimation process faster.

The current study was limited to acoustically homogeneous
and non-attenuating medium, however, in practice the assump-
tions are not necessarily valid and imaged targets are likely to
be acoustically more complex. Thus, the presented approach
could be taken forward by using more complete acoustic
simulation models. On the other hand, the DA was used as the
optical simulation model in this work. A more realistic (as well
as numerically more challenging) photoacoustic simulation
model would be based on the RTE [39]–[41], [43]–[45], [67].
The use of the RTE would make it possible to investigate the
parameter estimation problem of QPAT, for example, when the
optical scattering has anisotropic behaviour, or when highly
directed light sources are used. Recently, a direct estimation
of the optical absorption from the photoacoustic time series
using a Tikhonov regularized least squares scheme and the
RTE as the forward model has been investigated [72].

The Bayesian approach, used in this work, makes it possible
to incorporate quantitative prior information into the inverse
problem. The approach also enables modelling of complex
error sources, such as might be arising from physical acoustic
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sensors or light sources. These issues could be handled by
using, for example, the approximation error method [74], [85],
which has been used in QPAT in [51], [55].

In conclusion, the numerical results shown in this work
demonstrate that by coupling the optical and acoustic sim-
ulation models to a single photoacoustic model, it is possible
to estimate the optical parameters from the photoacoustic time
series even in a acoustically limited view setting. The results
thus indicate that achieving quantitative photoacoustic tomog-
raphy should be feasible in practical acoustic measurement
geometries.

APPENDICES

APPENDIX [FEASIBILITY OF THE NORMAL

APPROXIMATION OF THE POSTERIOR]

When approximating a (posterior) density π(x |y) with a
(normal) distribution π∗(x |y), s.t. x |y ∼ N (η, �), the proba-
bilities of events are generally never equal. Here, we define a
safe approximation as one for which estimated errors based on
the approximative marginal distributions are larger than those
based on the actual posterior model. Thus, for example, we
call the model safe if∫ ηi+χσi

ηi−χσi

π∗(xi |y) dxi ≥
∫ ηi+χσi

ηi−χσi

π(xi |y) dxi , (36)

for all i = 1, . . . , 2Q, and some χ > 0, where σi = √
�(i, i).

We note that for nonlinear models, the asymptotic decay of
the actual posterior is often slower than for a normal model
and thus the condition (36) can fail for a large enough χ . The
feasibility of the approximation depends on the underlying
problem and the relevance of the choice of χ , or the choice
of the error interval in general.

For normal approximations, the probabilities of parameter
being within ±χσ intervals corresponding to χ = 1, 2, 3 are
68.3%, 95.5%, and 99.7% respectively. In order to compare
the probabilities of the approximative posterior distribution
derived error intervals to the normal distribution, a Monte
Carlo approach is adopted.

Random samples of optical absorption μa and μ′
s, rem-

iniscent to the parameter distribution studied in the main
text, were generated, denoted by x�, � = 1, . . . , 100. For
each sample, the corresponding noisy data y� was simulated
using the observation model (19) with the same noise levels
(5%, 1%, and 0.1%), illuminations (s2D

LR and s2D
BT), and acoustic

detection setup (detectors on two sides of the target), as used
in results of Figure 4. The MAP estimates x�

MAP, and the
normal distribution statistics η� and �� of the approximative
posterior distribution, were computed using the approach
presented in Section III for each of the data y�. From the
covariance matrices ��, standard deviations σ� were computed
by taking the square root of the diagonal part of the matrices.
Figure 7 shows a typical generated parameter distributions,
their MAP estimates, and the ±3σ� error intervals.

Based on the estimates x�
MAP, the true parameters x�, and

the standard deviations σ�, sample based probability of x�

being within the error interval [x�
MAP −χσ�, x�

MAP +χσ�] was
computed for χ = 1, 2, 3. The probabilities were computed

Fig. 7. An example of generated true parameters (top row), MAP estimates
(second row), and approximative ±3σ posterior error intervals (bottom row)
used in the analysis presented in the Appendix. The points at which the error
intervals are shown are on diagonal cross sections across the domain and are
indicated as black lines in the top row images. The error interval plots show
the true parameters (solid line), the MAP estimates (dotted line), and the error
intervals (grey areas). Four illuminating sides were used (s2D

LR and s2D
BT). The

locations of acoustic sensors are indicated with the red dots. Results shown
for 1% noise level.

TABLE IV

EVALUATION OF VALIDITY OF NORMAL DISTRIBUTION APPROXIMATION

OF POSTERIOR DISTRIBUTION. SHOWN ARE SAMPLE BASED PROBA-
BILITIES OF ESTIMATES OF μa AND μ′

s BEING WITHIN χ STANDARD

DEVIATIONS FROM THE TRUE PARAMETERS FOR NOISE LEVELS

5%, 1%, AND 0.1%. REFERENCE PROBABILITY, THAT A

TRUE NORMAL DISTRIBUTION HAS, IS ALSO SHOWN

by counting the proportion of discretization points, for which
the true parameter was within χ standard deviations of the
estimate, with respect to number of disretization points, for
all �, and then taking the average of the proportions. The
probabilities were computed for μa and μ′

s separately. The
sample based probabilities are shown in Table IV.

Based on the sample based probabilities, the normal distrib-
ution approximation of the posterior distribution, and the error
intervals derived from the approximation, can be considered
safe for both μa and μ′

s, except when the noise is small. The
reason that the approximation fails at small noise levels, is
likely to be caused by not including modelling errors in the
observation model (19): at small error levels, the numerical
errors of the forward model should be considered as well.
However, even when the noise level is as low as 0.1%, the error
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intervals derived from the approximate posterior statistics, are
less than 1.2% away from being safe estimates of error for μa.
Thus, the normal distribution approximation of the posterior
distribution, and the error intervals derived from it, can be
considered safe.
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