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ABSTRACT 

 

Acoustical attenuation (AA) maps in Ultrasound Computed 

Tomography (USCT) provide enhanced contrast between 

tissues compared to the speed of sound (SS), which is the 

most common property of tissue studied with this technique. 

Currently, the full wave inversion (FWI) methods used for 

their reconstruction are very different: the AA is mainly 

estimated using frequency domain algorithms, while the SS 

is more often recovered in the time domain. In this work we 

present a novel strategy to recover the attenuation maps 

through a straightforward and simplified procedure in the 

time domain. A gradient descent method was employed to 

optimize iteratively the attenuation distribution. The 

expression for the functional gradient of the norm of the 

global deviation between experimental and simulated data 

was obtained using an adjoint method. The optimization 

code, implemented in C++, employs a CUDA version of the 

k-Wave software to perform forward and backward wave 

propagation. Noisy simulated data was used to test the 

performance of the proposed method. The simplicity of the 

formulation of this new method may facilitate the 

reconstruction of AA and SS maps under a common 

framework in USCT. 

 

Index Terms— USCT, attenuation maps, full-wave 

inversion, adjoint method, gradient-descent. 

 

1. INTRODUCTION 

 

Ultrasound Computed Tomography (USCT) is a promising 

non-invasive and non-ionizing imaging modality that can be 

used to study the acoustical properties of tissues in the body. 

In this technique, the tissue is inspected through a set of 

ultrasound transducers which are located surrounding the 

region of interest. The transmitted and scattered pulses are 

registered in several angles and positions and later employed 

to recover the spatial distribution of properties like the SS or 

the AA, among others. The SS is well correlated with the 

tissue density and therefore, it can provide similar structural 

information to X-ray mammograms [1] (Fig. 1). 

Consequently, imaging the SS could provide an interesting 

alternative to detect breast cancer, avoiding the radiation 

and painful compression present in X-ray mammography. 

On the other hand, AA can provide enhanced contrast 

between different tissue types compared to the SS (Fig. 1) 

[1]. This may offer better discrimination of soft tissues, 

which could improve the detection of malignancies.  

The reconstruction of the mentioned acoustic properties 

with FWI algorithms offers very high resolution and 

excellent image quality in general, because by solving the 

full wave equation (FWE) they account for all the main 

processes experienced by the wave [2-5]. Nevertheless, due 

to the computational burden of FWI methods (they require 

solving the FWE several times in each iterative step), the 

reconstruction of SS and AA has been generally treated with 

methods based on simplifications of the FWE (for example 

the commonly employed ray-tracing algorithm [6]). 

However, this affects the resolution of the reconstructed 

images. The reconstruction of SS with FWI has been widely 

studied in USCT, mainly extending geophysical 

reconstruction methods to this medical modality (generally 

neglecting the presence of AA and employing time-domain 

methodologies) [2, 3]. As a result, the potential of these 

methods to improve image quality has been demonstrated. 

However, the reconstruction of AA with FWI, despite being 

an extensively documented problem in seismology 

(generally treated in the frequency-domain), has been less 

studied for USCT than SS FWI-reconstructions. In the 

references [4, 5] a FWI formulation in the frequency-

domain was introduced to obtain the quality factors (which 

indicates the energy loss per cycle) of the tissues to 

characterize the AA. The method employs a combination of 

several carefully-chosen sets of frequencies and therefore 

several minimization problems need to be performed. 

Moreover, as reference [7] demonstrates, fixed-frequency 

algorithms are hampered by instabilities and erroneous 

convergence at high frequencies evidencing the need for 

time-domain methods where the entire bandwidth of the 

signals can be employed. 

As both acoustical properties (SS and AA) can be obtained 

from the same data, it is desirable to have a common 

framework in which both distributions can be recovered 

under a similar scheme, preferably using the image-quality 
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advantages provided by the FWI methods but at the same 

time enhancing its computational efficiency.  

In this work we propose a novel strategy to recover the 

attenuation distribution (specifically we will obtain the 

distribution of the absorption coefficient), following a very 

straightforward and efficient scheme in the time domain, 

using the entire bandwidth of the signals. The proposed 

method is initiated with an estimate of the speed of sound 

distribution, which we assume has been obtained using 

standard FWI algorithms [2,3,13] totally compatible with 

the one proposed in this work to update the AA.  

 

2. FORWARD MODEL 

 

Consider a lossy medium in which the acoustic absorption 

follows a frequency power law: 

 

 

where α0  is the proportionality absorption coefficient in Np 

(rad/s)
-y

 m
-1

, ɷ is the temporal frequency, and y is the power 

law exponent which we assume to be constant and equal to 

1.5 (the value given for breast tissue in [8]).  

The changes produced in the medium by the propagating 

acoustic waves can be described by a series of coupled first-

order partial differential equations based on the conservation 

of momentum, mass, and energy [9]: 

Here d is the acoustic particle displacement, u is the particle 

velocity,  𝑝 is the pressure and 𝜌 is the density of the 

medium. The operator 𝐿 in the pressure-density relation is a 

linear integro-differential operator that accounts for acoustic 

absorption and dispersion. 
 

 

 

Here 𝜏1 and 𝜏2 are given by: 

When the coupled first-order partial differential equations 

(2) are combined, the fractional Laplacian wave equation 

(Eq. 5) is obtained [10, 11]: 

The numerical solution of the system of equations (2) can be 

efficiently computed by the CUDA version of the numerical 

solver software k-Wave [9, 12]. It employs the k-space 

pseudospectral method in which the Fourier collocation 

spectral method is used to compute spatial gradients and a k-

space corrected finite difference scheme is used to integrate 

forward in time. This scheme allows discretization close to 

the Nyquist limit of two grid points per minimum 

wavelength. This code was employed to perform the 

forward and backward wave propagation in our optimization 

algorithm and also to simulate the reference setup used to 

test it (schematically represented in Fig. 2).        

 

2. INVERSION PROCEDURE 

 

Using the set of experimental measurements of the pressure 

field generated by all the emitting transducers at the 

receiving transducers, we want to obtain the scattering 

potential, which represents the distribution of a certain 

acoustical property in the medium. Using the reconstructed 

potential within accurate simulations of the wave 

propagation, it should be possible to reproduce the set of 

experimental measurements of the pressure field. Norton 

[13] proposed a way to compute the scattering potential 

using an adjoint method. It is based on an iterative process 

which minimizes the norm of the global deviations between 

experimental 𝑝𝑜𝑏𝑠 and simulated signals 𝑝. 
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Figure 2. Scheme of an USCT system with a ring 

configuration conformed by M ultrasound arrays  
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Figure 1. Comparison of density, sound speed and 

attenuation coefficient values relative to blood for different 

soft tissues [1].  
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In order to minimize the global error norm ε (Eq. 6) with 

respect to α0(r), we evaluate the functional gradient 
∂ε

∂α0
. 

This functional gradient gives the direction to update the 

current estimate of the scattering potential to ensure 

minimization of the global error.  

In this work, for simplicity we only consider the effect of 

the attenuation due to the absorption (i.e., neglecting its 

effect on the dispersion, as it is relatively minor). 

Furthermore, as we assumed that the exponent y in (Eq. 1) is 

a constant, the inversion problem consists of recovering the 

distribution of the absorption coefficient 𝛼0.  

Using the adjoint method proposed in [13] and the fractional 

Laplacian wave equation (Eq. 5), a simple expression to 

calculate the functional gradient for each iteration can be 

obtained:  

The adjoint field (𝑝∗) in Eq. (7) is obtained by running the 

wave model with an adjoint source term derived from the 

time-reversed difference between the experimental and 

simulated signals at each receiver. It is important to note 

that the functional gradient Eq. (7) only requires solving the 

wave equation Eq. (5) twice per iteration: once for the direct 

propagation of the pressure field generated by the emitter (to 

obtain 𝑝), and a second time to obtain the adjoint field (𝑝∗).  

The fractional Laplacian term in Eq. (7) becomes simpler to 

compute in the Fourier domain: 

Once the functional gradient is known, the distribution can 

be updated using a steepest descent algorithm. 

Here 𝜉𝑘
𝑖𝑡  is the step which modulates the value of the 

gradient in each update of the image and can be chosen by a 

line search method. The optimization code was implemented 

in C++. 
 

3. NUMERICAL EXPERIMENTS  

 

To test the results of the proposed algorithm, we choose to 

employ simulated instead of real data (to highlight the 

algorithmic aspects of our work and to demonstrate its 

feasibility to reconstruct the AA distribution). To make the 

numerical data more comparable to real-world experiments, 

random Gaussian noise was added to give a signal to noise 

ratio (SNR) of 40 dB, similar to the SNR present in our 

experimental USCT system [15] where this code will be 

applied in future works. The simulated setup was a circular 

ring of detectors of 200 point elements with a field of view 

of 128 mm and a 500 kHz central frequency. The 

simulations to obtain the reference data (or “experimental” 

data) were conducted with a 150 x 150 pixel grid. As the 

simulated noisy data was generated with the same model 

used for the inverse solver, the reconstruction was 

performed with a different sized grid of 128 x 128 pixels (to 

avoid inverse crime, see reference [14]).  A 2-dimensional 

numerical phantom representing a coronal slice of breast 

with 4 different tissues (fat, fibroglandular tissue, benign 

and malignant tumors) was studied. In this work, we started 

the reconstruction of the attenuation with a converged map 

of speed of sound. The initial guess for attenuation was a 

homogenous map with the absorption coefficient of water 

(1.61 e-12 Np (rad/s)
-y

 m
-1

 or 0.0022 dB (MHz)
-y

 cm
-1

) [8].  

The image update using equations (7) and (9) can be 

obtained using the signals from one emitter and all the 

receivers. Nevertheless, better stability and fewer artifacts 

were observed when the image was updated with the 

average value of the functional gradients from several 

independent emitters. Therefore, in this work, each image 

update was performed with the mean functional gradient 

obtained by using 4 emitters. One full iteration, using the 

signals from all the 200 emitters, consisted of 50 image 

updates. The final resulting image was filtered using a 

median filter. To quantify the obtained results, the mean 

values and the standard deviation of all the pixels 

compounding several regions of interest (ROIs) with the 

same size as the lesions of the numerical phantom were 

obtained and compared with the expected values in those 

ROIs (see Fig 3 D). 

 

4.  DISCUSSION AND CONCLUSIONS 

 

The proposed algorithm (Fig. 3A and 3B) is capable of 

accurately recovering the shape and values of the structures 

present in the real phantom. The reconstructed image was 

obtained in 16 minutes with 2 iterations using an Intel Xeon 

16-CPU @2.4GHz with a Nvidia GeForce GTX 660.  The 

proposed algorithm is efficient and straightforward to 

implement, and due to the similarity with the schemes to 

reconstruct the speed of sound with FWI, it will allow both 

acoustical distributions to be reconstructed in a common 

framework. These results are encouraging, and we are 

currently working on the reconstruction of real data. We are 

confident that the possibility of having quantitative US 

images in a reasonable time will expand the applications of 

this technique. 
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expected ones. 
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