














The calculation of the spatial gradients following
equations (4a) and (4c) involves performing a 3D FFT,
followed by one or more element-wise matrix opera-
tions, followed by an inverse 3D FFT. Using the
domain decomposition scheme outlined above, each
3D FFT is executed by first performing a series of 2D
FFTs in the xy-plane (i.e. on each slab) using local
data. This is then followed by an all-to-all global com-
munication to perform a z$y transposition. This step
is necessary as the FFT can only be performed on local
data (it cannot stride across data belonging to multiple
processes). The global transposition is then followed by
a series of 1D FFTs performed in the transposed z-
dimension, followed by another global transposition
from y$z to return the data to its original layout. This
chain of operations is illustrated in Figure 4. In this
decomposition, the main performance bottleneck is the
two global transpositions required per FFT.

Examining Figure 4, it is apparent that the last glo-
bal y$z transposition of the forward FFT is paired
with an identical but reverse transposition immediately
after the element-wise operations. As the intervening
operations are independent of the order of the individ-
ual elements, it is possible to eliminate these two trans-
positions such that operations in the spatial frequency
domain are performed in transformed space (Frigo and
Johnson, 2012). This has a significant effect on perfor-
mance, with compute times reduced by 35-40% depend-
ing on the number of processes used. Note, in this case,
variables defined in the spatial frequency domain must
instead be partitioned in transformed space along the y-
dimension, with the total number of MPI processes
constrained by P � min (Ny, Nz). To avoid having idle

processes during calculations involving either regular or
transposed data, the number of processes P should ide-
ally be a chosen to be a divisor of both Ny and Nz.

As the input data to the forward FFT is always real,
the output of the Fourier transform in the first dimen-
sion is symmetric. Computational efficiency can thus
also be improved by using the real-to-complex and
complex-to-real FFTW routines which only calculate
and return the unique part of the transform. To further
improve performance, the element-wise matrix opera-
tions executed in between these transforms, as well as
those defined in equations (4b) and (4d), were merged
into compute kernels optimised to maximise temporal
data locality and performance. In some cases, the latter
involved manually inserting calls to SIMD intrinsic
functions into loop structures that the compiler was
unable to vectorise otherwise.

3.3 Input and output

The open-source HDF5 library was chosen to manipu-
late the input and output files because of its ability to
organise complex datasets in heterogeneous computing
environments. This library is available on most super-
computers and is also supported by numerical comput-
ing languages such as MATLAB and Python which is
useful for pre- and post-processing. The HDF5 library
provides two interfaces: serial and parallel. The serial
interface targets shared memory computers and assigns
a single thread to be responsible for all I/O. This inter-
face was used to generate the input files during the pre-
processing phase using a single large-memory node.
The parallel interface targets clusters and essentially

calculate 2D FFT on
each slab locally

forward 3D FFT inverse 3D FFT

Z-Y global transpose

Y-Z global transpose

calculate 1D FFT on
each slab locally

calculate 2D IFFT on
each slab locally

Z-Y global transpose

Y-Z global transpose

calculate 1D IFFT on
each slab locally

element-wise operations

Figure 4. Chain of operations needed to calculate spatial gradients using the Fourier pseudospectral method. First, the 3D forward
FFT is calculated, then element-wise operations within the spatial frequency domain are applied. Finally, the result is transformed
back to the spatial domain using an inverse 3D FFT. The transposes depicted in the dashed boxes can be omitted if the element-wise
matrix operations are performed in the transposed domain.

144 The International Journal of High Performance Computing Applications 30(2)

 at University College London on May 27, 2016hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


provides a user-friendly wrapper to the low level MPI-
I/O library. This allows multiple processes to share the
same file and read or write to it simultaneously. This
interface was used during the simulation phase as it
provides much higher I/O performance than either seri-
alised accesses or master-slave architectures (where a
single process serves all I/O requests). The parallel
HDF5 interface also allows for two different I/O access
patterns: independent and collective. In most cases, the
collective mode is preferred as it enables the HDF5
runtime to rearrange and reshape data from different
parallel processes before writing it to disk. This mode
was used for all I/O operations during the simulation
phase, the only exception being when writing scalar val-
ues to the output file.

Within the input and output files, all datasets were
stored as three-dimensional arrays in row-major order,
with dimensions defined by the tuple (Nx, Ny, Nz). For
scalars and 1D and 2D arrays, the unused tuple dimen-
sions were set to 1. For example, scalar variables were
stored as arrays of dimension (1, 1, 1), 1D vectors
oriented along the y-axis were stored as arrays of
dimension (1, Ny, 1), etc. For datasets containing com-
plex data, the lowest used dimension was doubled and
the data stored in interleaved format. Additional infor-
mation about the simulation (for example, the control
flags and parameters) was stored within the file header.

To maximise I/O performance, the datasets within
the input and output files were stored in a chunked lay-
out, where each dataset is divided into multiple blocks
or chunks that can be accessed individually. This is par-
ticularly useful for improving the throughput of partial
I/O, where only portions of a dataset are accessed at a
time. The use of chunking also provides a convenient
way to overcome one of the current MPI limits, namely
the 2 GB maximum size of a message (this is due to the
routine headers in the MPI standard being defined
using signed integers). Without chunking, this limit is
easy to exceed, particularly during MPI gather opera-
tions where hundreds of small messages are aggregated.
In addition to partial I/O, chunking enables the use of
on-the-fly data compression. This is particularly benefi-
cial for the input file, as there are often large areas of
the domain with similar material properties, for exam-
ple, the layer of water or coupling medium between the
transducer and patient. These homogeneous regions
give rise to good compression ratios, and thus reduce

the amount of communication necessary when loading
the input file. However, while both the serial and paral-
lel HDF5 interfaces can read compressed datasets, only
the serial interface can write such datasets. Thus com-
pression was only used for the input files.

For the 3D datasets, the chunk size was chosen to be
a single 2D slab matching the decomposition discussed
in Section 3.2. This is the smallest portion of data read
by each MPI process. Each slab is only ever accessed by
one process at a time, and is usually a reasonable size in
terms of I/O efficiency. For the 2D and 1D quantities,
the data was divided into chunks of fixed size along the
lowest used dimension. A chunk size of 8 MB was
found to give reasonable I/O performance. Note, it is
possible to further tune the chunk size for different size
datasets to maximise I/O performance on a given plat-
form. This can be useful on parallel cluster file systems
that use hundreds of disk drives spread over many
nodes, in conjunction with complex internode commu-
nication patterns.

3.4 Simulation stages

An overview of the stages within the simulation phase
of the parallel implementation of the k-space pseudos-
pectral model is shown in Figure 5. When the simula-
tion begins, parameters such as the domain size and the
number of time steps are loaded using a HDF5 broad-
cast read. In this operation, all processes select the
same item to be read from the file. The HDF5 library
then joins all I/O requests such that the data is only
physically read from disk once and then broadcast over
all processes using an MPI routine. Next, the 1D
decomposition of the domain is calculated as discussed
in Section 3.2, and memory for the various simulation
and temporary quantities is allocated. Note, the use of
SIMD instructions imposes several requirements on the
data layout and its memory alignment. Firstly, all mul-
tidimensional matrices must be stored as linear arrays
in row-major order. Secondly, complex quantities must
be stored in interleaved format. Finally, data structures
must be allocated using an FFTW memory allocation
routine that ensures they are aligned on 16 B
boundaries.

After memory allocation, the contents of the input
file are loaded and distributed over all processes. The
3D datasets (e.g. the medium properties) are loaded in
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Figure 5. Overview of the stages within the simulation phase of the parallel implementation of the k-space pseudospectral model.
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chunks, with each process identifying its local portion
of the domain and invoking a collective HDF5 read
operation. The 1D vectors that are scattered are loaded
in a similar fashion, while 1D vectors and scalar values
that are replicated are read using a HDF5 broadcast
read. The source and sensor masks are loaded in
chunks and broadcast to all processes, with each pro-
cess extracting the grid indices that fall within its por-
tion of the domain. Once the distribution of the source
mask is known, the drive signal for the transducer is
then sent to the relevant processes. Finally, the distri-
bution of the sensor mask is used to allocate appropri-
ate buffers to store the output data. These buffers are
eventually flushed into the output file.

Next, execution plans for the FFT are generated.
This step is required by FFTW prior to performing the
first transform of a particular rank, size and direction.
It involves the library trying several different FFT
implementations with the objective of finding the fastest
execution pathway on the current hardware (Frigo and
Johnson, 2005). Consideration is given to many archi-
tectural aspects including the CPU, the memory system
and the interconnection network. Depending on the
domain size, this step can take a considerable amount
of time. However, as it is only executed once and there
are many thousands of FFTs in a typical simulation,
the benefit of having a fast implementation is usually
significant (this is discussed further in Section 4.2).
Unfortunately, while it is possible to save plans between
code executions, there is usually little benefit in doing
so. This is because the plans are problem-size specific,
and depend on the number and distribution of cores
within the parallel system being used. On shared clus-
ters in particular, the distribution of cores is likely to
change between runs according to the cluster utilisation
and management system.

After the FFT plans are generated, simulation con-
stants such as the k-space operator (k) and the absorp-
tion parameters (t, h, ky22, ky21) are generated. The
simulation time-loop then begins following equations
(4a) to (4d) and equation (6). For each time step, there
are six forward and eight inverse FFTs. There are two
fewer forward FFTs as the three spatial components in
equation (4a) share the same F pnf g. The source injec-
tion is implemented as an operation that updates the
value of the acoustic pressure or velocity at the relevant
grid points within the domain. In a similar vein, the
output data is collected by storing the acoustic para-
meters at the grid points specified by the sensor mask.
Aggregate quantities (e.g. the peak positive pressure)
are kept in memory until the simulation is complete,
while time-varying quantities are flushed to disk at the
end of each time step using a collective HDF5 write
routine.

When running larger simulations, a checkpoint-
restart capability is also used. This allows large

simulations to be split into several phases, which is use-
ful for staying within wall-clock limitations imposed on
many clusters, in addition to providing a degree of fault
tolerance. During checkpointing, an additional HDF5
output file is created which stores the current values of
the time-varying acoustic quantities as well as the
aggregated output quantities. Restart is performed in
the same way as a new simulation, however, after the
input file has been loaded, the checkpoint file is
opened, and the acoustic quantities and the aggregated
values are restored.

4 Performance evaluation

4.1 Benchmark platform

To evaluate the utility of the implemented k-space
pseudospectral model in the context of large-scale non-
linear ultrasound simulations for HIFU, a number of
performance metrics were investigated. These included
the strong and weak scaling properties of the code, the
absolute simulation time and cost, and the effect of the
underlying hardware architecture. The tests were per-
formed using the VAYU supercomputer run by the
National Computational Infrastructure (NCI) in
Australia. This system comprises 1492 nodes, each with
two quad-core 2.93 GHz Intel Nehalem architecture
Xeon processors and 24 GB of memory configured in a
non-uniform memory access (NUMA) design. The
compute nodes are connected to the cluster via an on-
board infiniband interface with a theoretical bandwidth
of 40 Gb/s, while the interconnection network consists
of four highly integrated 432-port infiniband switches.
This relatively simple network design reduces the
impact of process placement on interprocess network
bandwidth and latency. The I/O disk subsystem is phy-
sically separated from the compute nodes. The Lustre
parallel distributed file system is used to manage
832 TB of disk space distributed over 1040 disk drives.
This configuration offers very high bandwidth, how-
ever, latency for small I/O transactions (e.g. storing less
than 1 MB of data) can be relatively high. Also, as the
I/O subsystem is shared amongst all users, notable per-
formance fluctuations can occasionally be observed.
VAYU, similar to many other clusters, runs a Linux
based operating system controlled by the OpenPBS
batch queuing systems. Compute cores granted to the
job are always dedicated and simulation cost is deter-
mined in terms of service units (wall-clock time multi-
plied by the number of CPU cores used).

The performance metrics were evaluated using a
common set of benchmarks. The benchmark set was
designed to cover a wide range of domain sizes, from
small simulations that can be run on desktop systems,
up to large-scale simulations that approach the limits
of what is currently feasible using a supercomputer.
The simulations accounted for nonlinear wave
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propagation in an absorbing medium in which all
material properties were heterogeneous. The time vary-
ing output pressure was recorded over a 2D xy-plane
centred in the z-direction. The grid sizes increased from
224 grid points (2563 2563 256) to 234 grid points
(40963 20483 2048), where each successive bench-
mark was doubled in size, first by doubling the grid size
in the x-dimension, then the y-dimension, then the z-
dimension, and so on. The benchmarks were executed
on VAYU using different numbers of compute cores
ranging from 8 (one node) to 1024 (128 nodes) in multi-
ples of 2. The minimum and maximum number of cores
used for a particular grid size were limited by the avail-
able memory per core from the bottom (24 GB per
node or 3 GB per core), and the size of the simulation
domain from the top (P � min (Ny, Nz)). Compute
times were obtained by averaging over 100 time-steps,
excluding pre- and post-processing.

4.2 Strong scaling

Strong scaling describes how the execution time
changes when using an increasing number of compute
cores for a fixed problem size. Ideally, whenever the
number of compute cores is doubled, the execution
time should reduce by a factor of 2. However, in prac-
tice, all but embarrassingly parallel applications include
some level of overhead that causes them to eventually
reach a point where increasing the number of compute
cores does not reduce the execution time, or can even
make it worse.

Figures 6(a) and 6(b) show the strong scaling results
obtained for the eleven different benchmark problem
sizes using two different FFTW planing flags,
FFTW_MEASURE and FFTW_EXHAUSTIVE. These flags
determine the extent to which FFTW attempts to find
the best FFT implementation during the plan genera-
tion phase. The flag FFTW_MEASURE is the default,
while the flag FFTW_EXHAUSTIVE triggers a much
more extensive search covering the full range of options
implemented by the FFTW library. When using the
FFTW_MEASURE flag, the results show almost ideal
strong scaling for domain sizes up to 231 grid points
(20483 10243 1024) and core counts up to 256.
Within this region, all the curves have approximately
equal gradients corresponding to a speed-up of roughly
1.7x when doubling the number of cores. Beyond 256
cores, acceptable scaling is obtained for many cases,
however, there is virtually no improvement in execution
time for grid sizes of 229 and 230 grid points. Further
increasing the core count to 1024 leads to significantly
worse performance, with the exception of the grid size
of 230 grid points (10243 10243 1024) where, interest-
ingly, the performance increases markedly.

The erratic performance of FFTW at large core
counts when using the FFTW_MEASURE flag is due to

differences in the communication pattern chosen during
the planning phase. Specifically, using the integrated
performance monitoring (IPM) profiler, it was found
that in most cases, the global transposition selected by
FFTW was based on a simple all-to-all MPI communi-
cation routine which exchanges P(P 2 1) messages
amongst P compute cores. This becomes increasingly
inefficient when the message size drops into the tens of
kB range and the number of messages rises into the mil-
lions. This is the case for the very large simulations on
high core counts shown in Figure 6(a). However,
FFTW also includes other communication algorithms,
including one that uses a sparse communication pat-
tern. This routine was selected by FFTW_MEASURE for
the simulation with 230 grid points and 1024 cores, lead-
ing to significant performance gains.

The sparse communication pattern used by FFTW
combines messages local to the node into a single mes-
sage before dispatch. In the case of VAYU, this means
that 8 messages are combined together within each
node before sending to other nodes. This decreases the
number of messages by a factor of 64 and also increases
the message size. When using FFTW_EXHAUSTIVE, the
sparse communication pattern was always selected. As
shown in Figure 6(b), the impact of this on perfor-
mance is considerable. Almost all anomalies are elimi-
nated, and the scaling remains close to ideal over the
whole range of grid sizes and core counts considered.
This is consistent with profiling data, which revealed
that 30-40% of the execution time was associated with
FFT communication, another 30-40% due to FFT
operations and the remaining 15-20% due to element-
wise matrix operations. These results indicate that given
large enough grid sizes, reasonable scalability to even
larger numbers of compute cores should be possible.
Small deviations in the scaling results are likely to be
caused by the degree of locality in the process distribu-
tion over the cluster, as well as by process interactions
when performing I/O operations. For comparison, the
time to execute the FFTW planning phase using
FFTW_MEASURE for a grid size of 233 grid points
(20483 20483 2048) was 239 s when using 512 cores,
and 164 s using 1024 cores. The corresponding times
using FFTW_EXHAUSTIVE were 999 s and 834 s. This
is equivalent to the time taken to compute approxi-
mately 100 time steps. As a typical simulation of this
scale requires tens of thousands of time steps, the plan-
ning times represent a very small proportion of the total
simulation time.

In addition to the benchmark set considering non-
linear wave propagation in a heterogeneous and
absorbing medium, additional benchmarks were per-
formed considering (1) nonlinear wave propagation in
a homogeneous and absorbing medium, and (2) linear
wave propagation in a homogeneous and lossless
medium. The strong-scaling results for both cases were
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similar to those given above. This is not surprising
given that the FFT is the dominant operation in all test
cases. In terms of absolute performance, the results for
case (1) benefit from both a reduced memory footprint
and a reduced memory bandwidth requirement.
Specifically, because the medium is homogeneous, the
medium parameters can be described using scalar vari-
ables that are easily cached, rather than large 3D
matrices that are usually read from main memory each
time they are used. This reduces the memory require-
ments by approximately 30% and the execution times
by 5-10%. For case (2), an additional advantage comes
from a reduction in the number of FFTs performed
within each time step (ten instead of fourteen). This
reduction is mirrored almost exactly in the observed

execution times, which were typically 30% less than the
execution times for an absorbing medium.

4.3 Weak scaling

Weak scaling describes how the execution time changes
with the number of compute cores when the problem
size (e.g. number of grid points) per core remains fixed.
In the ideal case, doubling the number of compute
cores should enable a problem twice as big to be solved
in the same wall-clock time. However, for the k-space
pseudospectral model, the computational work grows
slightly greater than linear with O(N log(N)) in the
number of grid points due to the FFT, while the num-
ber of point-to-point communication events increases
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Figure 6. Performance results for nonlinear ultrasound simulations in heterogeneous and absorbing media. (a), (b) Strong scaling
showing the variation of the execution time with the number of CPU cores for a fixed grid size. The domain size varies from 224

(2563) grid points to 234 (40963204832048) grid points. The plots clearly show the difference in strong scaling between
FFTW_MEASURE and FFTW_EXHAUSTIVE flags used for planning the execution of FFTs and related global communications. (c)
Weak scaling showing the potential of more cores to solve bigger problems in the same wall-clock time. The curves show the
working dataset size per core growing from 16 MB (217 grid points) up to 2 GB (224 grid points). (d) Memory usage per core for the
strong scaling results given in part (b).
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in the parallel implementation with O(P2) in the num-
ber of processors due to the matrix transpositions. As a
consequence, the weak scaling curves will always grow
(for a small number of cores, the computation time will
be dominant while for large numbers of cores the com-
munication overhead will take over). Figure 6(c) shows
the weak scaling results for the benchmark set defined
in Section 4.1 when using the FFTW_EXHAUSTIVE
planning flag. Despite the fact that the cost of the
underlying all-to-all communication step grows with
the square of the number of processes, the graph shows
relatively good weak scaling performance. The trends
suggest that simulations with even larger grid sizes
could be solved with reasonable efficiency using higher
numbers of compute cores.

4.4 Memory usage

Figure 6(d) shows how the memory usage per core
changes in-line with the strong scaling results given in
Figure 6(b). Whenever the number of cores is doubled,
the domain is partitioned into twice as many 2D slabs.
Theoretically, the memory required by each core should
be halved. However, in practice, there is an overhead
associated with the domain decomposition that grows
with the number of cores, and eventually becomes
dominant. This behaviour is clearly observed for almost
all the simulation sizes in the benchmark set. The over-
head is comprised of several components, each with a
different origin.

First, the MPI runtime allocates a significant
amount of memory for communication buffers. When
the MPI library is not restricted, it allocates as many
communication buffers for each process as there are
distinct messages to be received (one for each sender).
Moreover, if the sparse communication pattern is used,
additional scratch space must be allocated where
smaller messages can be combined and separated on
send and receive. For simulations using high process
counts where the memory used per core for the local
partition is quite low (tens of MB), the memory allo-
cated for MPI communication buffers can become the
dominant component.

Second, in addition to communication buffers, when
the domain is partitioned into more parts over an
increasing number of processes, the total memory con-
sumed by locally replicating scalar variables and 1D
arrays is increased. Moreover, additional memory is
needed for storing the code itself. While the size of the
compiled binary file is only on the order of 20 MB, a
private copy is needed for every process. Thus, when
1024 processes are used, storing the code consumes
more than 20 GB of memory. For small simulations,
this can become a significant portion of the total mem-
ory consumption.

4.5 Simulation cost and execution time

For the user, another important metric that must be
considered when running large-scale simulations is their
financial cost. For this purpose, the simulation cost is
defined as the product of the wall-clock execution time
and the number of compute cores used. On VAYU, this
cost is expressed in terms of service units (SUs). These
are directly related to the number of core-hours used,
scaled by a few other factors such as the priority the
user assigns to the job. SUs represent an accountant’s
view on the parallel economy. On a large shared paral-
lel computer, each user is typically allocated a share of
the resource. On VAYU this corresponds to a certain
number of SUs per quarter, and it is left to the user to
determine how best to use this allocation. As scaling is
never ideal, the more compute cores assigned to a job,
the higher the effective cost. However, for time critical
problems, using the highest possible number of cores
may still be desirable.

Figure 7(a) shows the anticipated total simulation
cost for the grid sizes in the benchmark set against the
number of compute cores used. As the grid size
increases, more time steps are also necessary to allow
the ultrasound waves to propagate from one side of the
domain to the other. Using the diagonal length of the
domain and assuming a Courant-Friedrichs-Lewy
(CFL) number of 0.2, the number of time steps grows
from 2200 for a grid size of 2563 2563 256 to 25,000
for a grid size of 40963 20483 2048 grid points. The
results in Figure 7(a) show that for a given grid size,
the simulation cost remains fairly constant as a func-
tion of core count, with the ratio between the highest
and lowest costs always less than 2 (this is to be
expected given the strong-scaling results).

NCI, the owners of VAYU, charge US$ 0.1 per SU
to commercial projects. Using this value, the approxi-
mate cost of each simulation in US dollars is also
shown in Figure 7(a). If run to completion, the largest
simulation performed would take around 4.5 days on
1024 compute cores and would cost slightly over
US$10,000. At this point in time, such a large simula-
tion is clearly not routine. However, VAYU is now a
relatively old system, and with continued price perfor-
mance trends it is not impossible to see the cost of such
a simulation dropping to a few hundred dollars within
the next few years.

4.6 Comparison of different architectures

Thus far, only the performance of the MPI implemen-
tation of the k-space pseudospectral model running on
the VAYU cluster has been considered. For compari-
son, Figure 7(b) illustrates the execution times per time
step for two equivalent models implemented in
(a) MATLAB and (b) C++ but parallelised for shared-
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memory architectures using OpenMP rather than MPI
(some of the details of this implementation are dis-
cussed in Jaros et al. (2012)). For these comparisons,
the benchmark set was extended to include smaller grid
sizes starting at 221 grid points (1283 1283 128).
Three different computer configurations were consid-
ered: (1) a desktop machine with 12 GB of RAM and a
single Intel Core i7 950 quad-core CPU running at
3.2 GHz, (2) a server with 48 GB of RAM and two
Intel Xeon X5650 hex-core CPUs running at 2.66 GHz
and (3) an identical server with 144 GB of RAM. The
two server configurations differ in that the memory
controller is not able to operate at 1333 MHz when ser-
ving 144 GB of RAM and drops its frequency to
800 MHz. The effect of this is to reduce the memory
bandwidth by about 33%.

Each line in Figure 7(b) represents a different combi-
nation of computer configuration and implementation.
The slowest performing combination is the MATLAB
implementation running on the quad-core i7 system
(this was the starting point for the development of the
C++ codes (Treeby and Cox, 2010a)). Using the
shared-memory C++ implementation on this machine
reduces the execution time by a factor of about 8.
Moving to the 12-core Xeon systems more than dou-
bles this factor, although there are clear differences
between the 48 GB and 144 GB configurations due to
the fact that the model is memory bound. In compari-
son, to match the performance of the shared memory
code running on the 12-core Xeon system, the MPI ver-
sion of the code requires 16-cores on VAYU. The
higher core-count needed by the MPI version of the
code for equivalent performance reflects the fact that a
non-trivial overhead is incurred since all communica-
tions between cores must pass through the MPI library

(and in many cases, over the network). Of course, the
benefit of the MPI implementation is the possibility of
running the code over multiple nodes on a cluster,
enabling both much larger domain sizes and much
faster execution times. For example, for a grid size of
226 grid points, the MPI code running on 256 cores is
approximately two orders of magnitude faster than the
MATLAB implementation on the quad-core i7 system,
and one order of magnitude faster than the shared
memory C++ implementation running on the 12-core
Xeon systems.

5 Application example

To illustrate the utility of the developed nonlinear
ultrasound model for solving real-world problems, a
complete large-scale nonlinear ultrasound simulation
representing a single HIFU sonication of the kidney
was performed. The medium properties for the
simulation were derived from an abdominal CT scan
using the MECANIX dataset (OsiriX Imaging
Software)

This was re-sampled using linear interpolation to
give the appropriate resolution. The density of the tis-
sue was calculated from Hounsfield units using the data
from Schneider et al. (1996), and the sound speed was
then estimated using the empirical relationship given by
Mast (2000). The remaining material properties were
assigned book values (Duck, 1990). The HIFU trans-
ducer was defined as a circular bowl with a width of
10 cm and a focal length of 11 cm. The shape of the
transducer within the 3D Cartesian grid was defined
using a 3D extension of the midpoint circle algorithm
(Treeby and Cox, 2010a). The transducer was posi-
tioned behind the patient as shown in Figure 8(a), and
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Figure 7. (a) The simulation cost in terms of service units (core-hours) displayed on the left y-axis and USD on the right y-axis.
The number of time steps is derived from the time the wave needs to propagate along the diagonal length of the domain. (b)
Execution time per time-step running different implementations of the k-space pseudospectral model on different machines.
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was driven at 1 MHz by a continuous wave sinusoid.
The acoustic intensity at the transducer surface was set
to 2 W/cm2 to simulate a treatment that would likely
operate largely in a thermal regime (i.e. with minimal
cavitation). Outside the body, the medium was assigned
the properties of water (Duck, 1990). The total domain
size was 17 cm3 14.3 cm3 14.3 cm and the grid

spacing in each Cartesian direction was set to 93 mm,
giving a total grid size of 20483 15363 1536 grid
points and a maximum supported frequency of 8 MHz
(i.e. eight harmonics of the source frequency). The
simulation length was set to 220 ms with a CFL number
of 0.18, giving a total of 19,800 time steps. Simulations
of this scale and complexity have not previously been
possible.

The simulation was executed using 768 cores on
VAYU with seven checkpoint-restart stages. The total
wall-clock time was 31 hours and 20 minutes, and the
total memory used was 780 GB. The compressed input
file was 45 GB, while the output file was 450 GB. This
comprised 36 GB to store the peak positive and peak
negative pressure across the domain, and 414 GB to
store the time varying pressure and particle velocity for
6 periods in steady state over a 45 mm3 30 mm3 30
mm region surrounding the HIFU focus. Transverse
and sagittal slices through the peak positive pressure
overlaid onto the corresponding CT data used to define
the material properties are shown in Figure 8(b)-(c).
The distortion of the ultrasound focus due to the body
wall and the fat layer surrounding the kidney is clearly
visible. These effects have been noted clinically, and
remain a barrier to the application of HIFU in the kid-
ney (Illing et al., 2005). Thus, one possible future appli-
cation of the developed k-space model would be a
systematic investigation into the conditions necessary
for viable HIFU ablation in the kidney (for example,
the maximum thickness of the fat layer). In any case,
the example serves to illustrate the utility of the
implementation.

6 Summary and discussion

A full-wave model for simulating the propagation of
nonlinear ultrasound waves through absorbing and
heterogeneous media is presented in the context of
model-based treatment planning for HIFU. The gov-
erning equations are discretised using the k-space pseu-
dospectral method. The model is implemented in C++
using MPI to enable large-scale problems to be solved
using a distributed computer cluster. The performance
of the model is evaluated using grid sizes up to
40963 20483 2048 grid points and up to 1024 com-
pute cores. This is significantly larger than most ultra-
sound simulations previously presented, both in terms
of grid size and the number of wavelengths this accu-
rately represents. Given the global nature of the gradi-
ent calculation, the model shows good strong scaling
behaviour, with a speed-up of 1.7x whenever the num-
ber of cores is doubled. This means large-scale prob-
lems can be spread over increasing numbers of
compute cores with only a small computational over-
head. The overall efficiency of the parallel implementa-
tion is on the order of 60%, which corresponds to the

x−position [cm]

z−
po

si
tio

n 
[c

m
]

0 2 4 6 8 10 12 14 16

−6

−4

−2

0

2

4

6

y−
po

si
tio

n 
[c

m
]

−6

−4

−2

0

2

4

6

y

x

z

(a)

(b)

(c)

Figure 8. (a) Sagittal and transverse slices through the
abdominal CT scan used to define the material properties for
simulating a HIFU treatment of the kidney. The approximate
position of the HIFU transducer is shown with a white circle.
(b)-(c) Saggittal and transverse slices through the simulated
distribution of maximum pressure overlaid onto the
corresponding CT slices. The pressure distribution is displayed
using a log-scale and is thresholded at -30 dB. The distortion of
the HIFU focus due to the body wall and the fat layer
surrounding the kidney is clearly visible.
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ratio between computation and communication. The
large communication overhead is due to the global all-
to-all transposition that must be performed for every
FFT (a second transposition is avoided by performing
operations in the spatial frequency domain in trans-
formed space). Finally, the efficacy of the model for
studying real-world problems in HIFU is demonstrated
using a large-scale simulation of a HIFU sonication of
the kidney.

In the context of the large-scale problems outlined in
Section 1 and Table 1, the model developed here allows
many problems of interest to be solved using a full-wave
model for the first time. This is relevant for studying the
aberration of HIFU beams in the body when the focal
intensities are relatively low. This has many possible
applications, for example, in treatment planning, expo-
simetry, patient selection and equipment design.
However, solving even larger problems involving high
focal intensities where many 10’s or 100’s of harmonics
may be present (Yuldashev and Khokhlova, 2011) is
still currently out of reach. Looking forward, there are
two numerical strategies that might allow the model to
be extended further. First, the governing equations
could be solved on a non-uniform grid (Treeby, 2013).
In the current model, the grid spacing is globally con-
strained by the highest frequency harmonic that exists
anywhere in the domain. However, in practice, the
high-frequency harmonics are usually restricted to a
small region near the ultrasound focus. Using a non-
uniform grid would allow the grid points to be clustered
around steep regions of the wavefield, and thus signifi-
cantly reduce the total number of grid points needed for
accurate simulations (Treeby, 2013). Second, a domain
decomposition approach could be used in which FFTs
are computed locally on each partition using local
Fourier basis (Israeli et al., 1994; Albin et al., 2012).
This would replace the global communication required
by the 3D FFT with local communications between
processes responsible for neighbouring partitions.

Considering the computer code, the main limitation
is related to the 1D decomposition used to partition the
domain. Although this approach exhibits relatively
good scaling characteristics, it limits the maximum
number of cooperating processes to be P � min (Ny,
Nz). This limitation is particularly relevant looking
towards the exascale era, where supercomputers inte-
grating over 1M cores are predicted to appear before
2020 (Dongarra et al., 2011). Being prepared for this
sort of compute facility requires simulation tools that
can efficiently employ hundreds of thousands of com-
pute cores. Moreover, while the trend in supercomput-
ing is to integrate more and more compute cores, the
total amount of memory is growing much more slowly
(Dongarra et al., 2011). Effectively, this means the
memory available per core will remain constant or even
decrease in next generation systems. As an example,

VAYU has 11,936 cores with 3 GB/core, while its suc-
cessor RAIJIN has 57,472 cores with only 2 GB/core.
This is relevant because with the current 1D decompo-
sition, the maximum grid size that can be solved is ulti-
mately limited by the memory per core. Both of these
drawbacks could be solved by using a 2D partitioning
approach where the 2D slabs are further broken into
1D pencils, with every process assigned a subset of pen-
cils rather than a complete 2D slab. This would make
higher numbers of compute cores (and thus memory)
accessible to the simulation, where P�min N2

y , N
2
z


 �
.

Another challenge for the current implementation is
the amount of output data generated by the code.
When recording the time-varying acoustic pressure and
particle velocity in a central region (e.g. near the HIFU
focus), a single simulation can easily generate 0.5 TB of
output data. Copying, post-processing, visualising and
archiving such large amounts of data quickly becomes
impractical. New techniques for on-the-fly post-
processing are thus needed. The use of localised data
sampling also introduces a work imbalance into the
simulation code. If the output data is only collected
from a small region of the domain, only a small subset
of the processes actually store data to the disk, with the
rest idle. The effective bandwidth to disk could thus be
improved by redistributing the data to idle processes after it
is collected, allowing more cores to be used for disk opera-
tions. Similarly, if some processes only collect a very small
amount of data (e.g. from a single grid point in the local
partition), the I/O subsystem can become congested by
many small write requests resulting in poor performance.
In this case, it would be better to collect the output data
within each node before writing to disk. These improve-
ments will be explored as part of a future work.
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