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Abstract
Current 3D photoacoustic tomography (PAT) systems offer either high image 
quality or high frame rates but are not able to deliver high spatial and temporal 
resolution simultaneously, which limits their ability to image dynamic 
processes in living tissue (4D PAT). A particular example is the planar Fabry–
Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images 
but takes several minutes to sequentially map the incident photoacoustic 
field on the 2D sensor plane, point-by-point. However, as the spatio-temporal 
complexity of many absorbing tissue structures is rather low, the data 
recorded in such a conventional, regularly sampled fashion is often highly 
redundant. We demonstrate that combining model-based, variational image 
reconstruction methods using spatial sparsity constraints with the development 
of novel PAT acquisition systems capable of sub-sampling the acoustic wave 
field can dramatically increase the acquisition speed while maintaining 
a good spatial resolution: first, we describe and model two general spatial 
sub-sampling schemes. Then, we discuss how to implement them using the 
FP interferometer and demonstrate the potential of these novel compressed 
sensing PAT devices through simulated data from a realistic numerical 
phantom and through measured data from a dynamic experimental phantom 
as well as from in vivo experiments. Our results show that images with good 
spatial resolution and contrast can be obtained from highly sub-sampled 
PAT data if variational image reconstruction techniques that describe the 
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tissues structures with suitable sparsity-constraints are used. In particular, we 
examine the use of total variation (TV) regularization enhanced by Bregman 
iterations. These novel reconstruction strategies offer new opportunities to 
dramatically increase the acquisition speed of photoacoustic scanners that 
employ point-by-point sequential scanning as well as reducing the channel 
count of parallelized schemes that use detector arrays.

Keywords: photoacoustic tomography, compressed sensing, variational 
image reconstruction, sparsity, Bregman iteration, Fabry–Pérot scanner

S  Online supplementary data available from stacks.iop.org/PMB/61/8908/
mmedia

(Some figures may appear in colour only in the online journal)

1. Introduction

Photoacoustic tomography (PAT) is an emerging biomedical, ‘imaging from coupled physics’-
technique (Arridge and Scherzer 2012) based on laser-generated ultrasound (US). It allows 
the rich contrast afforded by optical absorption to be imaged with the high spatial resolution 
of ultrasound. Furthermore, the wavelength dependence of the optical absorption can, in prin-
ciple, be utilized to provide spectroscopic (chemical) information on the absorbing molecules 
(chromophores). While PAT’s potential for an increasing variety of clinical applications is 
currently being explored (Zackrisson et al 2014, Taruttis and Ntziachristos 2015), it is already 
widely used in preclinical studies to examine small animal anatomy, physiology and pathol-
ogy (Xia and Wang 2014, Yao and Wang 2014, Jathoul et al 2015). For further applications 
and references we refer to the reviews (Wang 2009, Beard 2011, Nie and Chen 2014).

To obtain high quality three-dimensional (3D) photoacoustic (PA) images with a spatial 
resolution around one hundred µm, acoustic waves with a frequency content typically in the 
range of tens of MHz need to be sampled over cm scale apertures. Hence, satisfying the spa-
tial Nyquist criterion necessitates sampling intervals on a scale of tens of µm, which requires 
scanning several thousand detection points. Using sequential scanning schemes, such as the 
Fabry–Pérot based PA scanner (FB scanner) or mechanically scanned piezoelectric receivers, 
this inevitably results in long acquisition times. In principle, this can be overcome by using 
an array of detectors. However, a fully sampled array comprising several thousand elements, 
each with their own signal conditioning electronics and radio frequency analog-to-digital (RF 
A-D) electronics, would be prohibitively expensive, and efficient multiplexing is challenging 
due to the low pulse repetition frequency of current excitation lasers. The slow acquisition 
speed currently limits the use of PAT for applications where movement of the target will cause 
image artefacts and prohibits the examination of dynamic anatomical and physiological events 
in high resolution in real time, which is the goal in 4D PAT.

A different approach to accelerate sequential PAT scanners relies on the key observation 
that, in many situations, the spatial complexity of many of the absorbing tissue structures is 
rather low, and therefore, data recorded in a conventional, regularly sampled, fashion is highly 
redundant. It may be possible, therefore, to speed up the data acquisition without a significant 
loss of image quality by exploiting this redundancy and measuring a subset of the data chosen 
in such a way as to maximize its non-redundancy. This concept, established as the field of 
compressed sensing (CS) (Candes et al 2006, Donoho 2006, Foucart and Rauhut 2013), has 
been applied to several imaging modalities with success, most notably to magnetic resonance 
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tomography (MRI ) (Lustig et al 2007, Tremoulheac et al 2014, von Harbou et al 2015) and 
computed tomography (CT) (Ritschl et al 2011, Hämäläinen et al 2013, Jørgensen and Sidky 
2015). As the inverse problem of PAT is conceptually similar to these, there has been an 
increased interest in applying CS to PAT in different ways and for different types of scanners: 
in Guo et al (2010), Meng et al (2012a, 2012b), Provost and Lesage (2009) and Zhang et al 
(2012), 2D reconstructions from regularly sub-sampled circular and linear transducer arrays 
were computed using matrix-based algorithms and first promising results were obtained. An 
asymmetrical 2D circular sensor arrangement designed based on a low-resolution pre-image 
was examined in Cao et al (2015). In Sandbichler et al (2015), the CS-based recovery of suit-
ably transformed integrating line detector data followed by a universal backprojection in 2D 
was proposed. Another approach, using patterned excitation light, was presented in Liang et al 
(2009) and Sun et al (2011), which is a possible approach for photoacoustic microscopy, but is 
not applicable in PAT where light undergoes strong scattering. In our work, we further explore 
the potential for acceleration of high resolution 3D PAT using randomized, incoherent encod-
ing of the PA signals and a sparsity-constrained image reconstruction via variational regulari-
zation enhanced by Bregman iterations. Extensive studies with simulated data from realistic 
numerical phantoms, measured data from experimental phantoms and in vivo recordings are 
carried out to demonstrate which conditions have to be fulfilled to obtain high sub-sampling 
rates. To cope with the immense computational challenges, GPU computing is combined with 
matrix-free, state-of-the-art optimization approaches.

The remainder of the paper is organized as follows: section  2 provides background on 
theor etical and practical aspects of PAT. Section 3 describes two general approaches to accel-
erate sequential scanning schemes by spatial sub-sampling/compressive sensing and exempli-
fies their implementation with an FP scanner. In section 4, we then describe how images can 
be reconstructed from the sub-sampled/compressed data. Our methods are exemplified by 
simulation studies in section 5 and by reconstruction from experimental data in section 6. In 
section 7, we summarize and discuss the results of our work and point to future directions of 
research. Table 1 lists all commonly occurring abbreviations for later look-up.

2. Background

2.1. Basics of photoacoustic tomography

The photoacoustic signal is generated by the coupling of optical and acoustic wave propaga-
tion processes through the photoacoustic effect: firstly, the tissue is illuminated by a laser 
pulse with a duration of a few nanoseconds. Inside the tissue, the photons will be scattered and 
absorbed, the latter predominantly in regions with a high concentration of chromophores, such 
as haemoglobin. The photoacoustic effect occurs when a sufficient part of the absorbed opti-
cal energy is converted to heat (thermalised) sufficiently fast and not re-emitted: the induced, 
local pressure increase p0 initiates acoustic waves travelling in the tissue on the microsecond 
timescale. These waves can be measured by ultrasonic transducers at the boundary of the 
domain.

With several assumptions on the tissue’s properties (see Wang and Anastasio (2011) for a 
detailed discussion), the acoustic part of the signal generation can be modelled by the follow-
ing initial value problem for the wave equation:

( ) ( ) ( ) ( )∂ − ∆ = = = ∂ = =c p r t p r t p p r t, 0, , 0 , , 0 0.tt t0
2

0 (1)

The measurement data f consists of samples of p(r, t) on the boundary of the domain. See 
Beard  (2011) and Lutzweiler and Razansky (2013) for recent reviews on measurement 
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systems. The computation of a high resolution reconstruction of p0, usually referred to as the 
photoacoustic image (PA image), from f is the subject of this paper. Obtaining a high quality 
PA image is of crucial importance for any subsequent analysis, e.g. for quantitative photo-
acoustic tomography (QPAT) (Cox et al 2012), wherein the optical part of the signal genera-
tion is inverted based on the PA image.

2.2. Nyquist sampling in space and time

Before we discuss how to sub-sample the incident photoacoustic field p(r,t) in section 3, it is 
important to understand that a complete sampling requires a certain relation between sampling 
in r and t: imagine we measure the PA signal on the boundary of a domain with homogenous 
sound speed c which is band-limited to ω∗t . Firstly, the Nyquist criterion requires us to sample 
the PA signal with a temporal spacing of /( )δ ω< ∗1 2t t . Secondly, the PA signal is caused by 
incident acoustic waves coming from various spatial directions. As an incident wave with a 
wave vector k leads to a PA signal with frequency

∥ ∥ω = + + =c k k k c k ,t x y z
2 2 2

2 (2)

the band-limit ω∗t  of the PA signal implies that the spatial waves are limited by ω=∗ ∗∥ ∥ /ck t2 . To 
resolve all the spatial information, the Nyquist criterion would require to sample the domain 
boundary with a spatial spacing of /( ∥ ∥ ) /( )δ ω< =∗ ∗ck1 2 2r t2 .

3. Compressed photoacoustic sensing

3.1. Sub-sampling of the photoacoustic field

As discussed in section 1, a drawback of all current 3D PAT systems is that they offer either 
exquisite image quality or high frame rates but not both, partly due to the difficulty of realizing 

Table 1. List of commonly occurring abbreviations.

Abbreviation Meaning Reference

BP Back projection Section 4.4, (5)
BPppTV+  BP followed by TV+denoising as post-processing See TRppTV+  
cnv. Conventional (data sampling) See section 3.1.1
DMD Digital micromirror device Section 4.3
DP Discrepancy principle Section 5.2, (15)
FP Fabry–Pérot interferometer Section 3.2
L2+  Positivity-constrained ℓ2 regularization Section 4.5, (8)
mxIP Maximum intensity projection Section 5.1
PSNR Peak signal-to-noise ratio (14)
(Q)PAT (Quantitative) photoacoustic tomography Section 1
rSP Random single point sub-sampling Section 3.1.1
sHd Scrambled Hadamard sub-sampling Section 3.1.2, 4.3
TR Time reversal Section 4.4, (6)
TRppTV+  TR followed by TV+denoising as post-processing (18)
TV+  Positivity-constrained total variation regularization Section 4.5, (9)
TV+  BR Bregman iterations applied to TV+  Section 4.6, (11) and (12)
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a scheme that would complete a scan with a sufficiently small ( )δ δ,r t  in an acceptable acquisi-
tion time. In this section, we describe two novel sensing paradigms that aim to accelerate the 
data acquisition by spatially sub-sampling the incident photoacoustic field p(r, t). In this study, 
the practical realization of these two approaches is achieved via the Fabry–Pérot (FP) photo-
acoustic scanner as described in section 3.2, but they are equally applicable to other sequential 
scanning systems, such as mechanically scanned piezoelectric detectors.

For simplicity but without loss of generality, we assume that a planar detection surface 
located at x  =  0 is used, that a rectangular area [ ] [ ]×l l0, 0,y z  on it can be interrogated, and that 
the target is located in the region [ ] [ ] [ ]Ω = × ×l l l0, 0, 0,x y z . The extension to other detection 
geometries is straight forward, but complicates the notation. The concrete measurement pro-
cess can be modeled in the following way: the incident photoacoustic field on the the detec-
tion plane, p(x  =  0,y,z,t), caused by the jth pulse of the excitation laser, is first multiplied by a 
spatial window function ( )φ y z,j  and then integrated over the whole detection surface:

f t p x y z t y z y z0, , , , d d .j j∫ φ= =( ) ( ) ( ) (3)

The spatial sampling is followed by a temporal sampling, e.g. by measuring fj (t) at δ=t ii t t, 
= …i M1, ,t t. The setting is sketched in figure 1.

3.1.1. Single-point scanning. A standard approach is to try to focus ( )φ y z,j  on a single point 
( )y z,j j  (see figure 1(a)), which belongs to a set of = ×M M My z points forming a regular grid 
with spacings /δ = l My y y and /δ = l Mz z z. We will refer to the data obtained by this scanning 
pattern as the conventional (cnv.) data. Ideally, these spacings are chosen fine enough to assure 
that the Nyquist criterion is satisfied in space and time (see section 2.2).

Due to the spatio-temporal characteristics of the wave propagation, the pressure time series 
recorded at two neighbouring locations on the regular grid provide very similar information. 
To reduce the coherence of the measured time series, we can instead also sample the photoa-
coustic field at a smaller number of randomly chosen points ( ) = …y z j M, , 1, ,j j c, Mc  <  M, 
which would yield an acceleration factor of /=M M Mcsub . We will denote this sub-sampling 

Figure 1. Conceptual sketch of a Fabry–Pérot interferometer-based PAT setting with 
different spatial window functions ( )φ y z,j : (a) The interrogation beam is focused on a 
single location, leading to a very localized ( )φ y z,j . (b) A wide interrogation beam is 
used that has been pattered to produce a distributed, binary ( )φ y z,j .
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strategy by rSP-Msub. Choosing random points is firstly motivated by several results in com-
pressed sensing theory (Foucart and Rauhut 2013), that point out the importance of random-
ness for designing sub-sampling pattern. Secondly, we want to avoid choosing sampling 
pattern that might lead to systematic biases. We will return to this point in the computational 
studies in sections 5 and 6.

3.1.2. Patterned interrogation scanning. The second idea to accelerate the acquisition is to 
choose a series of orthogonal pattern ( )φ y z,j j

 with each ( )φ y z,j  being supported all over 
[ ] [ ]×l l0, 0,y z  with no particular focus on a single location (see figure 1(b)). Again, choos-
ing Mc  <  M pattern would yield an acceleration factor of /=M M Mcsub  over conventional 
single point scanning. As we will use a specific type of binary pattern based on scrambled 
Hadamard matrices described later (section 4.3), we will denote the sub-sampling strategy 
by sHd-Msub.

3.2. Implementation of sub-sampling schemes using the FB scanner

The planar, interferometry-based Fabry–Pérot photoacoustic scanner provides a convenient 
implementation of the sub-sampling strategies described above. In the standard set-up, the 
FP scanner performs the conventional single-point scanning described in section 3.1.1: for 
each pulse sent in by the excitation laser, the pressure time series at a different location on 
a grid is measured by interrogating the FP sensor head with an interrogation laser (Zhang 
et  al 2008). Due to the planar geometry and the option to introduce the excitation laser 
through the transparent detection plane, PA signals from a large range of anatomical targets 
can be scanned in the frequency range from DC to several tens of MHz on a scale of tens 
of µm ( ( )φ y z,j  in our model corresponds to the beam profile of the interrogation laser, see 
figure 1(a)). Superficial features located a few mm below the skin surface can be imaged 
with high spatial resolution from a conventional FP scan (see, e.g. Jathoul et al (2015)). 
However, as described in section 1, obtaining such an image requires scanning several tens 
of thousands of locations which, due to the repetition rates of currently available excitation 
lasers, takes several minutes.

While the single point sub-sampling described in section 3.1.1 is straight forward to 
implement with a standard FP scanner, implementing the patterned interrogation scheme 
requires several modifications: instead of focusing the interrogation beam on a single loca-
tion, the whole detection plane is illuminated and the reflected beam is patterned before 
being focused into the photo diode. The spatial modulation is inspired by the working- 
principle of the celebrated ‘single-pixel Rice camera’ (Duarte et al 2008): a digital micro-
mirror device (DMD) is used to block rectangular sections of the reflected interrogation 
beam which creates binary pattern. Note that this hardware realization slightly differs from 
the conceptual sketch in  figure  1(b), where the direct interrogation beam is patterned. 
Further details of the patterned-illumination scanner can be found in Huynh et al (2014, 
2015), Huynh et al (2016).

4. Image reconstruction from sub-sampled data

In this section, we describe a model of the accelerated data acquisition and how to invert it.

S Arridge et alPhys. Med. Biol. 61 (2016) 8908
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4.1. Continuous forward model

The PAT forward operator, A, maps a given initial pressure p0 in the volume [ ] [ ] [ ]× ×l l l0, 0, 0,x y z  
to the time dependent pressure on the detection plane, = =¯ ( )p p x y z t: 0, , , , as determined by 
(1): ¯ =p Ap0. A more detailed discussion of the operator A and its adjoint can be found in 
Arridge et al (2016). In this work, we assume that the target’s dynamics are slow enough to be 
well approximated by a constant within the acquisition time. A sensing operator C implements 
(3) to produce the measured data R∈f c M Mc t from the detection plane pressure p̄:

¯ ε ε= + = +f Cp CAp ,c
0 (4)

where we added the term ε to account for additive measurement noise. In the following, C 
denotes the sampling operator: the conventional point-by-point scan described in section 3.1.1 
(where Mc  =  M) or one of the two sub-sampling strategies, the random single-point sub-sam-
pling described in section 3.1.1 or the patterned interrogation described in section 3.1.2.

4.2. Image reconstruction strategies

Given the compressed data f c, there are in principle two strategies of how to reconstruct p0: 
in two-step procedures, we first reconstruct the detection plane pressure p̄ from f c based on 

¯=f Cpc  (data reconstruction) and then use a standard PAT reconstruction for complete pla-
nar data (see, e.g. Kuchment and Kunyansky (2011)). In one-step procedures, p0 is recon-
structed directly from f c using a model-based approach (4). While both approaches have 
advantages and disadvantages and novel two-step procedures have been introduced in Betcke 
et al (2016), Huynh et al (2015) and Sandbichler et al (2015), the focus of this work is not 
to carry out a fair, detailed comparison between one-step and two-step approaches: we rather 
want to emphasize on the differences between simple, linear reconstruction techniques and 
variational, model-based reconstruction techniques, independent of the former being two-step 
and the latter being one-step procedures. To ease the following presentation, we first introduce 
the discrete PAT model we will use for numerical computations before discussing the details 
of the reconstruction techniques.

4.3. Discrete forward model

As all methods we examine directly rely on the wave equation (1), we need a fast numerical 
method for 3D wave propagation with high spatial and temporal resolution. Our choice is the 
k-space pseudospectral time domain method (Mast et al 2001, Cox et al 2007, Treeby et al 
2010) implemented in the k-Wave Matlab Toolbox (Treeby and Cox 2010). For the following, 
it is only important that k-Wave discretizes [ ] [ ] [ ]Ω = × ×l l l0, 0, 0,x y z  into = × ×N N N Nx y z 
voxels // / / / / /∆ = l Nx y z x y z x y z and uses an explicit time stepping. The time step used will always 
be the same as used in the temporal sampling of the pressure field, i.e. δ∆ =t t (see sec-
tion 3.1). From now on, all variables used are discrete although we will continue to use the 
same notation for them. For instance, the discretization of the PAT forward operator is now a 
matrix R∈ ×A N N M Ny z t , mapping the discrete initial pressure R∈p N

0  to the pressure at the first 
layer of voxels in x direction at the Mt discrete time steps, as these voxels represent the detec-
tion plane. Note that we cannot construct A explicitly, but rely on computing matrix-vector 
products with A and AT using k-Wave. A detailed discussion of the implementation can be 
found in Arridge et al (2016). The discrete sub-sampling operators C map from the pressure-
time series of the detection plane voxels to R∈f c M Mc t. The single point sampling operators 
(see sections  3.1.1 and 3.1.1) simply extract the pressure-time series at the sensor voxels 
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(which are, in general, only a subset of the detection plane voxels). For the interrogation with 
binary sensing pattern constructed by the DMD (see section 3.2), (3) can be implemented by 
multiplying a M N Nc y z×  binary matrix H with the vector of pressure values at the scanning 
voxels, separately for each time point t. Compressed sensing theory suggests that random 
Bernoulli matrices are optimal for many applications (Foucart and Rauhut 2013). As those 
are difficult to implement exper imentally and computationally, we use scrambled Hadamard 
matrices which are known to have very similar properties compared to a random Bernoulli 
matrices and can be implemented very efficiently by a fast-fourier-transform-like operation 
(Do et al 2012, Foucart and Rauhut 2013). Note that as the entries of Bernoulli and Hadamard 
matrices take the values {−1, 1} and not {0, 1} as implemented by the DMD, we need to 
demean experimental data in a pre-processing step. Further details can be found in Betcke 
et al (2016), Huynh et al (2015, 2016).

4.4. Linear back-projection-type reconstructions

As described above, we will use simple, linear two-step procedures to compare the more 
sophisticated variational methods to: first, we reconstruct the complete data by the pseudo-
inverse of C: †C f c (see (4)), where for the sub-sampling operators we consider here, † =C CT. 
Then, we either multiply with R∈ ×AT N N N My z t (called back-projection (BP) here), or with the 
discrete time reversal (TR) (Finch and Patch 2004, Xu and Wang 2004, Jathoul et al 2015) 
operator ◃ R∈ ×A N N N My z t:

=p A C f: T T c
BP (5)

= ◃p A C f: .T c
TR (6)

The difference between BP and TR (including enhanced variants of TR (Stefanov and Uhlmann 
2009)), is discussed in more detail in Arridge et al (2016). In summary, in the continuous set-
ting, they differ in the way they introduce the time-reversed pressure time series at the detec-
tion plane: TR approaches use them as a time dependent Dirichlet boundary condition for the 
wave equation (1) while the adjoint approach introduces them as a time dependent source term 
without altering the boundary conditions.

4.5. Variational image reconstruction

Variational regularization (Scherzer et al 2009) is a popular and well understood approach 
for approximating the solutions of ill-posed operator equations like (4) in a reasonable and 
controlled manner: the regularized solution is defined as the minimizer of a suitable energy 
functional E. Assuming that the additive noise, ε, is i.i.d. normally distributed, a reasonable 
approach is to solve

λ= = − +λ E J{ }( ) ∥ ∥ ( )p p CA p f p: argmin argmin
1
2

,
p p

c
2
2

 (7)

to obtain a regularized solution λp . While the first term in the composite functional mea-
sures the misfit between measured and predicted data (data fidelity term), ( )J p  has to render 
the minimization problem (7) well-posed by ensuring existence, uniqueness and stability of 
λp  (regularization functional). Furthermore, its choice can be used to penalize or constrain 

unwanted features of λp , thereby encoding a-priori knowledge about the solution. The regu-
larization parameter λ> 0 controls the balance between both terms.
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The first variational method we examine corresponds to classical, zeroth-order Tikhonov 
regularization, augmented by the physical constraint ⩾p 00 :

p CA p f p: argmin
1
2

.
p

c
L2

0
2
2

2
2λ= − ++ { }∥ ∥ ∥ ∥

⩾
 (8)

As a second functional ( )J p , we examine the popular total variation (TV) energy, which is a 
discrete version of the total-variation seminorm (Rudin et al 1992, Burger and Osher 2013):

λ= − ++ { }∥ ∥ ( )
⩾

p CA p f p: argmin
1
2

TV .
p

c
TV

0
2
2

 (9)

The energy ( )pTV  measures the ℓ1 norm of the amplitude of the gradient field of p (the details 
of its implementation are given in appendix A) and is a prominent example of non-smooth, 
edge-preserving image reconstruction techniques, and, more generally, of spatial sparsity 
constraints. While TV regularization has been used for PAT before (see, e.g. Huang et  al 
(2013)), our main interest in it arises from its results when applied to sub-sampled data for 
other imaging modalities (Lustig et al 2007, Brune et al 2011, Ritschl et al 2011, Hämäläinen 
et al 2013, Mueller 2013, Benning et al 2014, Jørgensen and Sidky 2015, von Harbou et al 
2015): TV regularization is often able to recover the object’s main feature edges even for high 
sub-sampling factors. Therefore, we focus on this rather general regularization energy in this 
first PAT sub-sampling study and examine more specific functionals in future work.

As all of the involved functionals and constraints are convex, a variety of methods exist to 
solve (7) computationally. In this work, we use an accelerated proximal gradient-type method 
described in appendix B.

4.6. Bregman iterations

A potential drawback of variational techniques like (7) is that they inevitably lead to a system-
atic bias of the regularized solutions: the solution λp  moves from an un-biased data-fit towards 
a minimizer of ( )J p . Formally, let f CApc

0=˜  be the true, noise-free data and λ̃p  the solution 
of (7) for ˜=f fc c. Then, by the minimizing properties of λ̃p , we have

λ λ λ− + − + =λ λJ J J∥ ˜ ˜ ∥ ( ˜ ) ⩽ ∥ ˜ ∥ ( ) ( )CAp f p CAp f p p
1
2

1
2

,c c
2
2

0 2
2

0 0 (10)

and thereby, ( ˜ ) ⩽ ( )λJ Jp p0 . For the TV energy, this bias manifests in the well-known, non- 
linear contrast loss of TV regularized solutions (Burger and Osher 2013). For PAT, this 
systematic error poses a crucial limitation on the use of TV regularized PA images for quanti-
tative analysis like QPAT studies. To overcome this drawback, an iterative enhancement of 
variational solutions by the Bregman iteration (Bregman 1967) was proposed in Osher et al 
(2006): for (7), they take the form

λ= − + +λ
+ J{ }∥ ( )∥ ( )p CA p f b pargmin

1
2

,k

p

c k1
2
2

 (11)

( )= + − λ
+ +b b f CA p ,k k c k1 1 (12)

with b0  =  0. This iteration has several attractive features (Burger and Osher 2013): it solves 
the un-regularized problem

p p CA q fmin subject to argmin
p q

c
2
2∈ −J( ) ∥ ∥ (13)
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by solving a sequence of well-regularized problems (11) while the residual of iterates, 
∥ ∥−λ

+CA p fk c1 , is monotonically decreasing. The potential of Bregman iterations, in par-
ticular when used on sub-sampled data, has been demonstrated in Benning et al (2014), Brune 
et al (2010), Mueller (2013) and von Harbou et al (2015). Note the difference between the use 
of the Bregman iteration in the Split Bregman method (Goldstein and Osher 2009), a method 
to solve problems like (7) which is also known as the augmented Lagrangian method, and the 
usage here which does not have an equivalent Lagrangian interpretation.

5. Simulation studies

We now examine the different inverse methods described in the previous section when applied 
to sub-sampled data from numerical phantoms.

5.1. Realistic numerical phantom

While studies using numerical phantoms composed of simple geometrical objects can provide 
valuable insights to the basic properties of the inverse problem and reconstruction methods, it 
is often unclear how their results translate to experimental data from complex targets. In this 
section, we briefly describe the construction of a realistic numerical phantom that will be used 
in the main simulation studies.

The phantom is based on a segmentation of a micro-CT scan of a mouse brain 
( × ×533 400 346 voxel) into gray matter, vasculature and dura mater. The vasculature is 
morphologically closed (dilation followed by erosion) using the 18-neighborhood as a con-
volution kernel. Thereafter, the vasculature is one connected component with respect to the 
26-neighborhood. The whole segmentation is clipped to the bounding box of the vasculature 
leading to a size of × ×306 423 345. Next, a gray matter voxel in the central part of the seg-
mentation is chosen uniformly at random. It is used as the seed point for the construction of 
an artificial cancer tissue inside the gray matter by a stochastic growth process that consists of 
an iterative application of morphological operations on the surface voxels. Figure 2 shows the 
final result of this construction. Note that vasculature and tumor tissue are non-intersecting.

For the studies in this work, the clipped volume is embedded into a cubic volume of 5123 
voxels, centered in y and z direction and in two different heights in x direction: in the first 
phantom, called Tumor1, the distance between the detection plane x  =  0 and the phantom is 
half of the distance between the plane x  =  lx and the phantom. In the second phantom, called 
Tumor2, it is centered in x direction, leading to a larger distance between sensor and target 
(see figure 3). To construct p0 from the segmentation, all vasculature voxels are given the 
value of 1, whereas the tumor tissue is given the value of 0.7 for Tumor1 and 0.3 for Tumor2. 
Next, p0 is down-sampled to the desired resolution [ ]N N N, ,x y z  by successive sub-averaging 
over × ×2 2 2 blocks. For Tumor1, we modify the resulting p0 to obtain sharper boundaries: 
p0 is normalized such that ( ) =pmax 10  and the intensity p0,i of all non-zero voxels i is set to 
(2p0,i  +  1)/3, thereby ensuring a contrast minimal value of 1/3 between background and tar-
get. Figure 3 shows maximum intensity projections (mxIP) of the resulting p0.

5.2. Simulation studies with Tumor1

We first examine the inverse reconstructions using Tumor1 with N  =  1283 for ‘inverse crime’ 
data (Kaipio and Somersalo 2007), which means that we assume that we have exact knowl-
edge of all physical parameters, which are summarized in table 2, and use the same model 

S Arridge et alPhys. Med. Biol. 61 (2016) 8908



8918

for both data simulation and reconstruction. In addition, we sampled the data with the spatial 
spacing given by the Nyquist criterion: the spatial sampling intervals /δy z coincide with the 
spatial spacing of the computational grid /∆y z and are fine enough to capture all relevant spa-
tial frequencies of the incident photoacoustic field (see section 2.2): p0 was pre-smoothed to 
ensure that its discrete approximation by the truncated Fourier basis used in k-Wave was non-
oscillatory. This is reflected in a sharp drop of the power spectrum of the pressure time series 
around 4.8 MHz, which (see section 2.2) corresponds to a spatial Nyquist rate equal to the 
spatial spacing / /δ = ∆ = 156.25y z y z  µm. White noise with a standard deviation of σ = 0.001 
is added to the clean data CAp0, leading to a signal-to-noise ratio (SNR) of 18.63 dB.

For all computed solutions p, voxels with negative pressure and all sensor voxels have been 
set to 0 in a post-processing step. We will mainly rely on a visual comparison of the results 
via maximum intensity projections along the y direction (see figures 3(b) and (e)). Unless 
stated otherwise, the color scale of each figure is determined independently. It ranges from 
0 to the value separating the / ≈100 256% 0.39% largest values of p from the smaller values. 
This clipping is necessary to avoid that a few large outliers determine the contrast of the 
image and complicate the comparison between different methods. In addition to the visual 
comparison, we report the mean-squared-error (MSE) between the reconstructed solution p 
and p0, i.e. ∥ ∥ /−p p N0 2

2 , in the conventional logarithmic scaling termed peak-signal-to-noise 
ratio (PSNR):

=− −( ) ∥ ∥⎜ ⎟⎛
⎝

⎞
⎠p p

N
p pPSNR , : 10 log

1
0 10 0 2

2 (14)

Figure 2. 3D visualization (a)–(d): different views) of the segmentation used for the 
construction of the realistic numerical phantom: vasculature (red), artificial tumor 
tissue (green) and gray matter (gray). Volume rendering was carried out by SCI Institute 
(2015).
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p might have a different scaling compared to p0 and contain small scale noise. As this typically 
does not influence the evaluation of a human observer, we also do not want to account for it 
when computing the PSNR. Therefore, we first rescale and threshold p and p0,

{˜
∥ ∥

˜ ( ) ⩾⎛
⎝⎜

⎞
⎠⎟ α α= =

∞
p

p
p

p v v vthres , 0.1 , accordingly, where thres , if
0 else

,0

and then compute ( ˜ ˜ )p pPSNR , 0  by (14).

Table 2. Parameter of the different inversion models used.

parameter Tumor1/2 Knot Hair Vessels

( )N N N, ,x y z 128 (44,264,264) (28,128,128) (42,282,282)
( )∆ ∆ ∆, ,x y z  (µm) 156.25 75 (62.12,62.12,68.00) 50
Mt 740 391 56 621

/δ∆t t (ns) 31.25 12 20 10
M 16 384 17 424 16 384 19 881
( )δ δ,x y 156.25/312.5 150 / 100
c0 (m s−1) 1500 1540 1500 1420

Figure 3. Maximum intensity projections of the realistic numerical phantoms (color 
map ‘parula’, see figure  7(b)): (a)–(c) Tumor1 (d)–(f ) Tumor2. In both cases, the 
detection plane corresponds to the top edge of the Y and Z projections.
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Figure 4 shows the results of TR and BP for using rSP-128 or sHd-128 sub-sampling, 
i.e. accelerated by a factor of =M 128sub  compared to the conventional scan. This high sub-
sampling factor leads to unsatisfactory reconstructions. The different sub-sampling strategies 
lead to a different appearance of back-propagated noise and sub-sampling artifacts in the 

Figure 4. Tumor1 results (mxIP) of linear methods: (a) phantom (see figure  3), 
detection plane corresponds to the top edge. (b) Visualization of the rSP-128 sub-
sampling pattern: while each of the = ×M 128 128 pixel corresponds to one possible 
scanning location, all black pixels correspond to one of the Mc  =  128 random locations 
actually scanned. (c) A ×128 128 Hadamard matrix to symbolize the sHd-128 pattern 
(the actual matrix is of size ×128 16384) (d)–(i): TR and BP results for conventional 
data (left column), rSP-128 (middle column) and sHd-128 (right column) and their 
corresponding PSNR in dB.
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reconstructed images: in the rSP-128 case, both features and noise are back-propagated along 
the surfaces of spheres centered on the scanning locations while in the sHd-128 case, the 
non-local nature of the patterned interrogation leads to back-propagation along planes paral-
lel to the detection plane. Figure 5 shows the corresponding results of the classical Tikhonov 
regularization (8), denoted by ‘L2+’, TV regularization (9), denoted by ‘TV+’ and of the 
Bregman iteration (11) and (12) applied to TV regularization, denoted by ‘TV+Br’. Despite 
the high sub-sampling factor, TV+ and TV+Br are still able to reconstruct the main structures 
of the phantom without excessive image noise.

In the results shown, the regularization parameter λ for L2+  and TV+  was chosen by the 
discrepancy principle (DP): for the general variational problem (7), the discrepancy principle 
selects λ such that

∥ ∥
σ

κ
−

=λCA p f

M
,

c

c
 (15)

for ⩾κ 1. The DP is based on the heuristic argument, that the regularized solution λp  should 
explain the data f c no more than up to the noise level, which is assumed to be known. As the 
residual is monotonically increasing in λ, the DP is robust and easy-to-implement. We chose a 
simple interval-based method that linearly interpolates the left hand side of (15) (the discrep-
ancy of the data) in the current search interval. It was terminated when κ = 1.25 was reached 
within a tolerance of 0.01. The Bregman iterations were started with λ +TV Br  =  λ +10 TV , where 
λ +TV  is the regularization parameter found for TV+, and stopped as soon as the discrepancy 
of λ

+pk 1 falls below κ (recall that the residual, and thereby the discrepancy monotonically 
decreases with k, see section 4.6). This typically happens after about 10 Bregman iterations.

5.2.1. Enhancement through Bregman iterations. The Bregman iteration was introduced to 
compensate for the systematic contrast loss of TV regularized solutions. Figure 6 compares 
TV+  and TV+Br solutions using the same color scaling and additionally shows mxIPs of the 
positive and negative parts of the difference between TV+Br and TV+. The difference plots 
demonstrate that using Bregman iterations especially improves the contrast of the small scale 
vessel structures and that the benefit is more pronounced for sub-sampled data compared to 
conventional data.

5.3. Simulation studies with Tumor2

The good quality of, e.g. the TV+  Br results for the very high sub-sampling factor of 128 have 
to be interpreted with care: the phantom Tumor1 used was intentionally easy to reconstruct as 
it was close to the sensors and had high contrast (see figure 3). In addition, the data was cre-
ated by the same forward model used in the reconstruction, which is known as committing an 
‘inverse crime’ (Kaipio and Somersalo 2007), and the conventional data was sampled finely 
enough to fulfill the Nyquist criterion. The phantom Tumor2 was designed to carry out simu-
lation studies that more accurately reproduce the challenges of experimental data scenarios.

5.3.1. Inverse crimes. While inverse crimes are, to a certain extend, unavoidable when car-
rying out simulation studies, they make it more difficult to extrapolate the results obtained to 
experimental data. In this section, we discuss how to bridge this gap by modifying the model 
used for the data generation.
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Figure 5. Tumor1 results (mxIP) of variational methods: (a)–(c) see figure 4 (d)–(l): 
L2+, TV+  and TV+Br results for conventional data (left column), rSP-128 (middle 
column) and sHd-128 (right column) and their corresponding PSNR in dB.
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 • The sensitivity of the FP sensor varies spatially (Zhang et al 2008). While this effect can 
be mitigated by calibration and data pre-processing procedures, a residual uncertainty 
remains that we will model by modifying the discrete (static) data generation model to

f CW Apc
s 0 ε= + (16)

where Ws is a diagonal matrix that multiplies the pressure-time course of each voxel i in 
the x  =  1 plane by a random variable wi following a centered log-normal distribution:

( ) ( )σ= ∼Nw X Xexp , 0, 1i s i i (17)

We choose σ = 0.2s  (90% of wi are in [0.72,1.39]).
 • In a similar spirit, we assume that we only have a rough estimate of the statistics of ε, e.g. 

from baseline measurements, and can, therefore, only approximately decorrelate the data 
before the inversion. The residual uncertainty about the noise variance per sensor voxel is 
modeled by replacing the additional noise term ε by εWn , where Wn is constructed like Ws 
with σ = 0.1n  (90% of wi are in [0.85,1.18]). Keeping σ = 0.001, as the standard deviation 
of ε, we end up with an average SNR of 9.51 (the value is considerable lower than for 
Tumor1 due to the larger distance to the sensors and the lower contrast of Tumor2).

 • Although we assume that the medium we image is sufficiently homogeneous to assume 
a constant sound speed c0 in the inverse reconstruction, the real sound speed will slightly 
vary, especially between different tissue types. We use ˜+c c0  for the data generation, 
where c̃ is constructed by adding a smooth, normalized Gaussian random field and the 
normalized initial pressure p0 (as it represents a tissue different from the background). 

Figure 6. Contrast comparison between TV+  and TV+Br solutions (see figure 5): the 
images in the left two columns share the same color scale. The third and forth column 
show mxIPs of the positive (red scale) and negative (blue scale) part of the difference 

−+ +p pTV Br TV .
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Then, c̃ is centered and scaled such that its mean is 0 and its maximal absolute value is 
0.05c0 (a sound speed variation of 5% is not unusual for soft tissue (Jin and Wang 2006)). 
The resulting sound speed is shown in figure 7(a).

 • Among the many other ways to modify the data generation model are to include acoustic 
absorption, inhomogeneous illumination, acoustic reflections, baseline shifts and drifts in 
the pressure-time series, correlated noise and corrupted channels. We leave these exten-
sions to future studies.

Figure 7(c) compares the noise-free pressure-time series of a single voxel after adding 
sensitivity and sound speed variations (adding noise and noise variation complicates a visual 
comparison).

5.3.2. Nyquist criterion. In contrast to the previous studies, we now compare to conventional 
data acquired on a regular grid having a grid spacing corresponding to twice the length deter-
mined by the Nyquist criterion (see section 5.2): / /δ = ∆ =2 312.5y z y z  µm, i.e. we model the 
conventional data by extracting the pressure-time series at a sub-set of the 1282 detection plane 
voxels forming a regular grid with spacing 2. This is closer to the measured datasets we will 
examine in section 6. All acceleration factors are defined with respect to the total number of loca-
tions of the regular grid which is given by /= =M 128 2 40962 2 . Note that it now also makes 
sense to consider rSP-1 and sHd-1 as ‘sub-sampling’ pattern: although Mc  =  M, the data they 
measure cannot be converted to the conventionally sampled data, as was the case with Tumor1.

5.3.3. Reconstruction results. As the results of TR and BP are of similar quality as for 
Tumor1 (see figure 4) we omit them here, and concentrate on the results of the variational 
methods. We again used the DP (κ = 1.25) to select the regularization parameter. Figure 8 
compares them for rSP-16 and sHd-16 sub-sampling: TV+Br, again, leads to the best results 
by visual impression and PSNR. In figure 9, we therefore examine the influence of Msub on 
the reconstructed images only for TV+Br: up to =M 16sub , the rSP-based TV+Br reconstruc-
tions only slightly deteriorate. From =M 16sub  to =M 32sub , however, a clear degradation 
is visible. For the sHd sub-sampling, the image quality remains acceptable up to =M 32sub .

Figure 7. (a) x-slice of the sound speed used to generate ‘no-inverse-crime’ data for the 
Tumor2 phantom (b) color scale, range: 1350–1650 m s−1, (c) noise-free pressure-time 
series to demonstrate the effect of sensitivity and sound speed variation (inset zooms 
into particular section of the plot).
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Figure 8. Tumor2 results (mxIP) of variational methods: (a)–(c) see figure 4 (d)–(l): 
L2+  TV+  and TV+Br results for conventional data (left column), rSP-16 (middle 
column) and sHd-16 (right column) and their corresponding PSNR in dB.
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Figure 9. TV+Br results for Tumor2 phantom, comparison between different sub-
sampling factors Msub.
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5.3.4. Influence of the spatial sub-sampling pattern. As described in section 3.1.1, a random 
partition of the scanning locations was chosen as the main single point sub-sampling pattern 
to avoid unintended systematic artifacts like aliasing and was furthermore inspired by several 
results in compressed sensing theory (Foucart and Rauhut 2013). In figure 10, we compare 
this random pattern to using a regular sub-sampling pattern based on a coarse grid, which we 
denote as gSP-Msub. The results show that the concrete choice of the single point sub-sampling 
pattern seems to be a minor influence, compared to, e.g. the choice of the inverse method used. 
We leave a more detailed examination and the design of optimal (dynamic) sampling pattern 
for further research.

6. Experimental data

In this section, we examine the sub-sampling strategies for three example experimental data 
sets. To have a ground truth, sub-sampling was only carried out artificially: for each experi-
ment, a conventional data set was acquired first, and sub-sampled data sets were produced 
from this data thereafter.

6.1. Single point sub-sampling—dynamic phantom

We start with data acquired by a conventional single point FP scanner, measuring a pseudo-
dynamic experimental phantom, which we call ‘Knot’.

Figure 10. Influence of the spatial sub-sampling pattern in single point sub-sampling: 
(a) phantom (b)–(c) visualizations of rSP-16 and gSP-16 (d)–(f) TV+Br reconstructions. 
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6.1.1. Setup. Figure 11(a) shows the experimental setup: two polythene tubes were filled with 
10% and 100% ink and interleaved to form a knot. One of the loose ends was tied to a motor 
shaft (top right corner of figure 11(a)) while the other three ends were fixated. The pseudo-
dynamic data was acquired in a stop-motion style: a conventional scan (duration  ∼15 min) 
was performed while the whole arrangement was fixed. Then, the motor shaft was rotated by a 
stationary angle, causing the knot to tighten and to move into the direction of the motor, and a 
new scan was performed. This way, a conventional data set comprising 45 frames was acquired. 
The tubes were immersed in a 1% Intralipid solution with de-ionised water. The excitation 
laser pulses used had a wavelength of 1064 nm, an energy of around 20 mJ and were delivered 
a rate of 20 Hz. A conventional scan consisted of ×134 133 locations (δ δ= = 150x y  µm),  
measured over Mt  =  625 time points with a resolution of δ = 12t  ns.

6.1.2. Preprocessing. First, the data was clipped to ×132 132 locations. The baseline of the 
pressure-time course at each location was estimated by the median of the pre-excitation-pulse 
time points (1–4) and subtracted. Then, a zero-phase band-pass filter around 0.5–20 MHz was 
applied (see applyFilter.m in the k-Wave toolbox). The 1% locations with the highest 
variance (computed by the time points 7–13) were excluded from the further analysis. Finally, 
the remaining data was clipped to the time points 10–400.

6.1.3. Results. Table 2 shows the parameters of the acoustic model used for the inversion. 
Note that the spacing of the spatial grid, / /∆x y z, is 2 times finer than the distance between scan-
ning locations: assuming a sound speed of 1540 m s−1 the Nyquist criterion would require that 
we had sampled with /δ = 38.5y z  µm in space and δ = 25t  ns in time to be able to reconstruct 
initial pressure distributions leading to signals with a frequency content of 20 MHz. This means 
that the conventional data is over-sampled in time, but already under-sampled in space, similar 
to the simulation studies with Tumor2 (see section 2.2). When choosing a finer spatial grid 
spacing to reconstruct the data as compared to the one in which it was recorded we attempt to 
recover some spatial resolution from the higher temporal resolution of the pressure time series.

In 4D PAT, we can vary the sub-sampling operator C used in each frame i. For single-point 
sub-sampling, one would try to avoid measuring the pressure time series at the same location 
in subsequent frames as it may contain very similar information3. Therefore, we randomly 

3 For patterned interrogation, one would not use the same pattern jφ  in subsequent frames.

Figure 11. Experimental phantoms. (a) Dynamic phantom ‘Knot’. (b) Static phantom 
‘Hair’.
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partitioned the set of all scanned locations into Msub subsets, each containing /=M M Mc sub 
different random locations. This yields a sequence of Msub sub-sampling operators Ci, 
= …i M1, , sub that we periodically apply to the set of all 45 frames, i.e. after Msub frames, 

each locations has been scanned once and the +M 1sub -th frame is scanned with C1, again. 
Figure 12 shows the inverse reconstructions of the middle frame 23 for conventional data, 
rSP-4, rSP-8 and rSP-16 (a movie of the complete reconstruction can be found in the sup-
plementary material (stacks.iop.org/PMB/61/8908/mmedia)). Next to TR, TV+  and TV+Br, 
we also show the result of post-processing the TR solution pTR with positivity-constrained TV 
denoising, which we will denote by ‘TRppTV+’:

λ= − ++ { }∥ ∥ ( )
⩾

p p p p: argmin
1
2

TV ,
p

TRppTV
0

TR 2
2

pp (18)

where we chose λpp large enough to suppress most visible reconstruction artifacts. Solving (18) 
is discussed in appendix B. The regularization parameter chosen for TV  +  was λ +TV   =  0.02 
for the conventional data while this value was multiplied by /M4 sub for the sub-sampled data. 
For TV+Br, we carried out 10 Bregman iterations with λ +TV Br  =  λ +12.5 TV .

6.2. Patterned interrogation—static phantom

Next, we investigate data acquired by the patterned interrogation FP scanner (see figure 1(b)), 
measuring a static experimental phantom, which we will call ‘Hair’.

6.2.1. Setup. The full technical details of the scan can be found in Huynh et  al (2014). 
The target to be scanned was a knotted artificial hair (see figure 11(b), diameter  ∼150 µm), 
immersed in 1% Intralipid solution and positioned approximately 2 mm above the detection 
plane and 3 mm under the Intralipid surface. On the DMD, an active area of ×640 640 micro-
mirrors was subdivided by grouping ×5 5 micromirrors to form one of ×128 128 ‘pixels’. 
Due to an angle in the optical path, each pixel corresponded to an area of ×62.12 68 µm on the 
detection plane. Then, the rows of a ×16384 16384 scrambled Hadamard matrix were used to 
implement ×128 128 binary pattern on the DMD.

6.2.2. Preprocessing. First, the data needed to be calibrated to fit to our model (see 
 section 4.3). Subsequently, a zero-phase band-pass filter around 3–22.5 MHz was applied and 
the data was clipped to the time points 85–140.

6.2.3. Results. Table 2 shows the parameters of the acoustic model used for the inversion. 
Note that the conventional data is, again, slightly over-sampled in time but under-sampled in 
space. For all computed solutions p, all voxels in the first 6 x-layers were set to 0 in a post-
processing step. The latter was done to ease the visualization of the results through maximum 
intensity projections: the first 12 time points of the signal only seem to contain noise, which 
means that up to a distance of /∆ ∆ =c12 5.8t x0  in voxel length, p0 will only account for noise. 
For TR and BP solutions, voxels with negative values were also set to 0. Figure 13 shows 
different reconstructions using the conventional data (sHd-1) and =M 4, 8, 16sub : the regular-
ization parameter chosen for TV+Br was λ = ⋅+

−1.5 10TV Br
4 for the conventional data while 

this value was first divided by Msub and then multiplied by 1/1.2/1.4 for / /=M 4 8 16sub  for the 
sub-sampled data. A total of 10 Bregman iterations were carried out.

S Arridge et alPhys. Med. Biol. 61 (2016) 8908

http://stacks.iop.org/PMB/61/8908/mmedia


8930

Figure 12. Results for frame 23 of the data set Knot: in each sub-figure, maximum 
intensity projections in X (top), Y (middle) and Z (bottom) direction are shown.
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Figure 13. Results for data set Hair: in each sub-figure, maximum intensity projections 
in X (top), Y (middle) and Z (bottom) direction are shown.

6.3. In vivo measurements—single point sub-sampling

While validating inverse methods on data from experimental phantoms is an important step 
forward from pure simulation studies, experimental phantoms cannot reproduce all the fea-
tures of real in vivo data sets. As a last example, we therefore investigate a static in vivo data 
set of skin vasculature and subcutaneous anatomy near the right flank of a nude mouse, which 
we will call ‘Vessels’.
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6.3.1. Setup. The data was acquired with an excitation wavelength of 590 nm, further techni-
cal details and illustrations can be found in Jathoul et al (2015). A conventional scan consisted 
of ×142 141 locations over a region of size of 14 mm  ×  14 mm (δ δ= = 100x y  µm), measured 
at Mt  =  630 time points with a resolution of δ = 10t  ns.

6.3.2. Preprocessing. The data was clipped to ×141 141 locations and to the time points 
10–630.

6.3.3. Results. Table 2 shows the parameters of the acoustic model used for the inversion. 
Note that by a similar reasoning about the spatial and temporal sampling intervals, the spa-
tial spacing / /∆x y z is, again, chosen 2 times finer than the distance between scanning loca-
tions. Figure 14 shows maximum intensity projections and a slice through z  =  74 for TR, 
TRppTV+  and TV+Br solutions when using the conventional, rSP-4 and rSP-8 data. The 
denoising parameter λpp , was, again, chosen large enough to suppress most visible reconstruc-
tion artifacts. The regularization parameter chosen for TV+Br was λ = ⋅+

−6.25 10TV Br
2 for 

the conventional data while this value was multiplied by /M4 sub for the sub-sampled data. A 
total of 10 Bregman iterations were carried out.

7. Discussion, outlook and conclusion

7.1. Discussion

The main results of the simulation studies (section 5) can be summarized as follows.

 • Using model-based variational reconstruction methods employing spatial sparsity 
constraints, such as TV+, (9), is essential for obtaining good quality PA images from 
sub-sampled PAT data. The linear methods, TR (6) and BP (5), and the L2+  method (8) 
could not produce images of acceptable quality in any setting.

 • The results obtained for Tumor1 and Tumor2 demonstrate that the image quality obtained 
for a certain sub-sampling rate Msub varies strongly: the ‘inverse crime’ data of the more 
superficial, high contrast target Tumor1 can be up-sampled up to =M 128sub  without 
a significant loss of image quality. On the other hand, a bad model-fit, i.e. a mismatch 
between of the models used for data generation and inversion, combined with a more 
challenging target, such as Tumor2, significantly impairs the image quality beyond a 
certain sub-sampling rate ( =M 16sub –32 in our particular example).

 • Using Bregman iterations improves upon conventional variational approaches for PAT. 
Most importantly, the systematic contrast loss of small scale structures such as blood 
vessels is mitigated which is a crucial prerequisite for QPAT studies.

 • Sub-sampling by patterned interrogation (sHd) was slightly more efficient than single 
point sub-sampling (rSP).

The sub-sampling rates we achieved with experimental data were similar to those 
obtained with simulated data in the more realistic Tumor2 scenario. However, unexpect-
edly, the qualitative difference between the linear methods TR and BP and the variational 
methods TV+  and TV+Br was not as dramatic as in the simulation studies (see fig-
ures 4, 5, 12 and 13). In many cases, post-processing the TR solution with TV+ denois-
ing, (18), comes remarkably close to the TV+  solution, which is not to be expected 
from the simulation studies (see, e.g. the TR sHd-128 solution in figure 4). In addition, 
Bregman iterations could not improve much over conventional variational approaches, 
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Figure 14. Results for in vivo data set Vessels: in each sub-figure, from top to bottom: 
Maximum intensity projections in X,Y,Z direction and slice through z  =  74.
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again in contrast to our findings in section 5.2.1. A partial explanation for both findings 
is a bad model fit: while some pre-processing routines (e.g. baseline correction, band-
pass filtering and a detection and deletion of corrupt channels) were implemented and 
carried out to align the data with the model used, other known model-mismatches (e.g. 
the inhomogeneous sensitivity of the FP sensor and the non-whiteness of the measure-
ment noise) were not accounted for.

A closer examination of the ‘Knot’ data reveals several flaws which deteriorated our results: 
firstly, the optical excitation was inhomogeneous in lateral direction (see figure 12), leading 
to an inhomogeneous initial pressure distribution in regions consisting of the same materials. 
The TV energy is not well-suited to recover such targets. Secondly, a the baseline shifts in 
the data are more complex than what we corrected for and a spatio-temporal visualization of 
the data shows several artifacts on the sensor that our automatic channel deletion procedure 
cannot fully remove. And lastly, the acoustic properties of the polythene tubes lead to reflec-
tions we did not account for in our model. For these reasons, the decrease in image quality for 
sub-sampled data is faster compared to the simulation studies. While we see a clear advantage 
of using TV+  as opposed to the simpler TRppTV+, using Bregman iterations does not seem 
to lead to a better image quality.

The ‘Hair’ data was acquired with the novel patterned FP scanner which still suffers 
from several major technical difficulties, e.g. the widening of the interrogation beam leads 
to a significant loss in SNR and systematic shifts in signal power can be observed that 
need to be examined more carefully. Furthermore, we suspect that the hair knot might have 
moved during the acquisition (see figure 13(c)). For these reasons, already the reconstruc-
tions from the sHd-1 data are not of very good quality. If we accept these as a ground truth 
nonetheless, we see that we can reach sub-sampling rates of around =M 8sub  without a 
significant further loss of image quality. If we compare the different methods, we find that 
TRppTV+ yields the visually most appealing results while BPppTV+ and TV+Br look 
very similar. As BPppTV+  is more or less the first iterate of the optimization scheme we 
use to compute TV+Br (see  appendix B), the latter might, again, point to a bad model-fit 
(see above).

For the ‘Vessel’ data set, the visual impression of the conventional data reconstructions 
(see figure 14) and the fact that we did not have to perform any pre-processing suggest that 
the in vivo data examined is of good quality and we have a good model-fit. A comparison with 
the results from experimental phantoms further reveals that the diffusive nature of biological 
tissue leads to a more even lateral illumination. Now, TV+Br clearly outperforms TR and 
TRppTV+. For instance, from the slice view we can see that TR seems to overestimate the 
diameter of the blood vessels. The reason for not achieving high sub-sampling rates despite 
the good data quality is the apparent mismatch between the target geometry and the spatial 
sparsity constraints employed by the TV energy: the PA image is exceptionally rich in vas-
culature, but TV regularization tends to break up such anisotropic, line-like structures (see 
figure 14(i)).

7.2. Outlook

As the simulation studies show that a model misfit can severely decrease the sub-sampling 
rates achievable, we need to improve the accuracy of the acoustic forward model to obtain 
better results for experimental data: data pre-processing aligns the data with the forward 
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model, model calibration can determine some uncertain parameters of the forward model 
(such as the FP sensitivity distribution or the noise statistics), and Bayesian model selection 
(Toussaint 2011) or Bayesian approximation error modeling (Arridge et al 2006, Kaipio 
and Somersalo 2007, Tarvainen et al 2013) can reduce or account for the uncertainty in 
other parameters, such as c0. To improve the results for in vivo data (see figure 14) acous-
tic absorption models of biological tissue (Treeby et  al 2010, Treeby 2013) need to be 
incorporated.

While we exploited spatial sparsity to accelerate the acquisition of a single scan here, 
the next step to enable 4D PAT imaging with both high spatial and temporal resolution (see 
section 6.1) is to extend the frame-by-frame inversion methods examined here to full spatio-
temporal variational models that also exploit the temporal redundancy of data generated by 
dynamics of low complexity.

We used the TV energy as a generic, well-understood first example of a spatial sparsity 
constraint. However, as discussed above, it is, e.g. not very suitable to recover thin vas-
culature. Higher sub-sampling rates could be reached by employing more sophisticated 
regularization functionals designed to recover such anisotropic structures (Kutyniok and 
Lim 2012).

Choosing random locations as single-point sub-sampling and scrambled Hadamard pat-
tern as patterned interrogation was based on results obtained for similar applications such as 
CT and MRI. The optimal choice for PAT applications is yet to be determined. For instance, 
Schmid et al (2016) has shown that a non-uniform distribution of the sampling locations in 
single-point sub-sampling can be used to focus into a specific area (at the expense of the reso-
lution elsewhere). A theoretical examination, e.g. through micro-local analysis (Frikel and 
Quinto 2015), could help to gain new insights on this.

7.3. Conclusion

In this study, we investigated different possibilities to sub-sample the incident photoacous-
tic field in order to accelerate the acquisition of high resolution PAT. In simulation studies, 
we demonstrated that PAT wave fields generated by targets with a low spatial complexity 
can indeed be highly compressible and identified under which conditions this feature can 
be exploited to obtain high quality images from highly sub-sampled data: firstly, variational 
image reconstruction methods employing sparsity constraints that match the structure of the 
target have to be used. Secondly, using an accurate forward model well-aligned with the data 
is crucial. We furthermore applied the methods developed to three experimental data sets from 
experimental phantoms and in vivo recordings. While obtaining promising first results, we 
also identified several challenges for realizing the full potential of data sub-sampling, most 
notably obtaining a good model-fit as discussed above. While we focused on sub-sampling 
the data using the Fabry–Pérot based scanner, the novel reconstruction strategies offer new 
opportunities to dramatically increase the acquisition speed of other photoacoustic scanners 
that employ point-by-point sequential scanning as well as reducing the channel count of paral-
lelized schemes that use detector arrays.
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Appendix A. Discrete total variation energy

Let the voxels of the 3D pressure R∈p N, with N N N Nx y z=  be indexed by (i, j, k), = …i N1, , x, 
= …j N1, , y, = …k N1, , z. Using finite forward differences, the most commonly used discret-

ization of the total variation seminorm with Neumann boundary conditions is given by

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )∑= − + − + −+ + +p p p p p p pTV ,
i j k

i j k i j k i j k i j k i j k i j k
, ,

1, , , ,
2

, 1, , ,
2

, , 1 , ,
2

where ( ) ( )=+p p:N j k N j k1, , , ,x x
, ( ) ( )=+p p:i N k i N k, 1, , ,y y

 and ( ) ( )=+p p:i j N i j N, , 1 , ,z z
. Additional terms have 

to be added to account for different boundary conditions: in the simulation studies, we use 
Dirichlet boundary conditions which requires to add the jumps at the domain boundaries. For 
the experimental data, we impose Dirichlet boundary conditions at the detection plane voxels 
x  =  0 while Neumann boundary conditions are applied on all other faces of the image cube.

Appendix B. Optimization

The optimization problem given by (7) consists of the minimizing the sum of two functionals 
( ) ( ) ( )λ= +E D Jp p p , where we can compute the gradient of the strictly convex, smooth 

functional ( )D p ,

( ) ∥ ∥ ( ) ( )= − ∇ = −D Dp CA p f p A C CA p f
1
2

, ,c T T c
2
2 (B.1)

but no higher derivatives, and we know how to compute the proximal operator of the convex, 
potentially non-differentiable functional ( )J p :

α
= + −α JJ p q q pprox : argmin

1
2

.
q

, 2
2{ }( ) ( ) ∥ ∥ (B.2)

In the case of ( )J p  being the positivity-constrained TV energy, the proximal operators simply 
solves a positivity-constrained TV denoising problem (18).

A wide range of semi-smooth, first order optimization algorithms for image reconstruction 
have been developed over recent years (Burger et al 2014), each of them advantageous for a 
specific scenario. In our case, the special feature of PAT is that the application of A and AT 
requires considerably more computation time than solving most proximal operators (B.2), 
including the 3D positivity-constrained TV denoising problem (18), up to a high numerical 
precision. Under these circumstances, the rather simple proximal gradient descent scheme:

( ( ))η= − − = = …ηλ
+

Jp p A C CAp f p k Kprox , 0, 1, ,k k T T k c1
,

0 (B.3)

turns out to be most efficient if tuned carefully (see Goldstein et al (2014) for an extensive 
overview).
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 • The step-size η is set to 1.8/L, where L is an approximation of the Lipschitz constant of 
A C CAT T . For a given setting and sub-sampling scheme, L can be computed quite effi-
ciently by a simple power iteration and then stored in a look-up table.

 • We use a gradient extrapolation modification (  fast or accelerated gradient methods) 
ensuring a quadratic convergence. The concrete technique we use is the FISTA algorithm 
(Beck and Teboulle 2009), where we restart the acceleration if an increase in ( )E pk  is 
detected and switch to a normal gradient for this iterations k, followed by up to 5 back-
tracking steps if necessary (η is, however, not changed for future iterations).

 • For the 3D PAT problems considered in this work, the iterates from k  =  11 onwards are 
usually visually not distinguishable. However, we computed a maximum of K  =  50 itera-
tions for all except for Knot, where we only computed K  =  20 iterations. We terminated 
the iteration earlier if pk did not change or ( )E pmink

k  did not decrease for 5 times in a 
row.

The proximal operator for (8) can be computed component-wise and explicitly:

α α
= + − ⇔ =

+
⎜ ⎟⎛
⎝

⎞
⎠p q q p p

q
argmin

1
2

max 0,
1

.
q

i
i

0
2
2

2
2{ }˜ ∥ ∥ ∥ ∥ ˜

⩾
 (B.4)

The positivity-constrained TV denoising is implemented by a primal-dual hybrid gradient 
algorithm as described in Chambolle and Pock (2011).

Appendix C. Implementation

All routines have been implemented in as part of a larger, Matlab toolbox for PAT image 
reconstruction which will be made available in near future. The toolbox relies on the k-Wave 
toolbox (see Treeby and Cox (2010), www.k-wave.org/) to implement A and AT, which allows 
to use highly optimized C++ and CUDA code to compute the 3D wave propagation on paral-
lel CPU or GPU architectures. To give an idea about the range of different computations times, 
computing one application of A for the in vivo Vessels scenario (see table 2) in single precision 
takes 15 s using the optimized CUDA code on a Tesla K40 GPU (counting only the GPU run-
time), 51 s using the Matlab code on the same GPU, 47 s/6 min 36 s using the optim ized C++ 
code on 12/1 cores of an Intel Xeon CPU (2.70 GHz) (counting only the CPU run-time) and 
4 min 3 s/26 min 48 s using the Matlab code on 12/1 cores of the same CPU.
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