
Large-scale Ultrasound Simulations Using the Hybrid
OpenMP/MPI Decomposition

Jiri Jaros
Faculty of Information

Technology
Brno University of Technology

Bozetechova 2
612 66 Brno, CZ

jarosjir@fit.vutbr.cz

Vojtech Nikl
Faculty of Information

Technology
Brno University of Technology

Bozetechova 2
612 66 Brno, CZ

inikl@fit.vutbr.cz

Bradley E. Treeby
Dept. of Medical Physics and

Biomedical Engineering
University College London

Malet Place Eng Bldg
London WC1E 6BT, UK
b.treeby@ucl.ac.uk

ABSTRACT

The simulation of ultrasound wave propagation through biological

tissue has a wide range of practical applications including plan-

ning therapeutic ultrasound treatments of various brain disorders

such as brain tumours, essential tremor, and Parkinson’s disease.

The major challenge is to ensure the ultrasound focus is accurately

placed at the desired target within the brain because the skull can

significantly distort it. Performing accurate ultrasound simulations,

however, requires the simulation code to be able to exploit several

thousands of processor cores and work with datasets on the order of

tens of TB. We have recently developed an efficient full-wave ultra-

sound model based on the pseudospectral method using pure-MPI

with 1D slab domain decomposition that allows simulations to be

performed using up to 1024 compute cores. However, the slab de-

composition limits the number of compute cores to be less or equal

to the size of the longest dimension, which is usually below 1024.

This paper presents an improved implementation that exploits

2D hybrid OpenMP/MPI decomposition. The 3D grid is first de-

composed by MPI processes into slabs. The slabs are further par-

titioned into pencils assigned to threads on demand. This allows 8

to 16 times more compute cores to be employed compared to the

pure-MPI code, while also reducing the amount of communication

among processes due to the efficient use of shared memory within

compute nodes.

The hybrid code was tested on the Anselm Supercomputer (IT4-

Innovations, Czech Republic) with up to 2048 compute cores and

the SuperMUC supercomputer (LRZ, Germany) with up to 8192

compute cores. The simulation domain sizes ranged from 256
3

to 1024
3 grid points. The experimental results show that the hy-

brid decomposition can significantly outperform the pure-MPI one

for large simulation domains and high core counts, where the effi-

ciency remains slightly below 50%. For a domain size of 10243,

the hybrid code using 8192 cores enables the simulations to be ac-

celerated by a factor of 4 compared to the pure-MPI code. Deploy-

ment of the hybrid code has the potential to eventually bring the

simulation times within clinically meaningful timespans, and allow

detailed patient specific treatment plans to be created.

Keywords

Ultrasound simulations; 2D domain decomposition; OpenMP/MPI

Hybrid programming; Performance evaluation; Supercomputing,

k-Wave toolbox.

1. INTRODUCTION
The simulation of ultrasound wave propagation through biologi-

cal tissue has a wide range of practical applications. Recently, high

intensity focused ultrasound has been applied to functional neuro-

surgery as an alternative, non-invasive treatment of various brain

disorders such as brain tumours, essential tremor, and Parkinson’s

disease. The technique works by sending a focused beam of ul-

trasound into the tissue, typically using a large transducer. At the

focus, the acoustic energy is sufficient to cause cell death in a lo-

calised region while the surrounding tissue is left unharmed. The

major challenge is to ensure the focus is accurately placed at the

desired target within the brain because the skull can significantly

distort it.

Performing accurate ultrasound simulations, however, requires

the simulation code to be able to operate on large domains and de-

liver the results in a clinically meaningful time. Apart from the

physical complexity, the main obstacle in implementing new ultra-

sound treatment planning procedures in clinical practice is the com-

putational complexity. Considering the domain of interest encom-

passing the ultrasound transducer and the treatment area (normally

on the order of centimetres in each Cartesian direction), and the size

of the acoustic wavelength (on the order of hundreds of microme-

ters at the maximum frequency of interest), we have to simulate

the wave propagation over hundreds or thousands of wavelengths.

A sufficiently fine discretisation of the simulation domain which

avoids numerical dispersion and instability can easily lead to grid

sizes exceeding 10
12 elements. Storing all the necessary acoustic

quantities for such a large simulation domain in computer memory

requires petabytes of memory and its processing reaches the order

of exascale.

We have recently developed a pure-MPI pseudospectral simula-

tion code using 1D domain decomposition that has allowed us to

run reasonable sized simulations using up to 1024 compute cores

[3]. However, this implementation suffers from the maximum par-

allelism being limited by the largest size of the 3D grid used. At

the age of exascale, more and more systems will have numbers of

processing cores far exceeding this limit. For example, a realis-

tic ultrasound simulation performed by the k-Wave toolbox might

use a grid size of 10243. Here, the 1D pure-MPI decomposition

would only scale up to 1024 cores at most leading to calculation

times exceeding clinically acceptable times (in this case between

30 and 72 hours). In contrast, top supercomputer facilities dispose

with several hundred thousand compute cores and could provide

the simulation result within an hour, if efficiently employed.

The second problem arising from limited parallelism is the total

amount of memory that can be used to store simulation data. Not

Proceedings of the 3rd International Conference on Exascale Applications and Software 115



scaling the code to larger core counts holds the simulation domain

size below 4096
3, which is not enough for some clinical applica-

tions (e.g., the use of shocked waves to vaporise a piece of tissue

which can produce hundreds of harmonics).

This paper presents an improved implementation that exploits a

2D hybrid OpenMP/MPI decomposition. The 3D grid is first de-

composed by MPI processes into slabs. The slabs are further parti-

tioned into pencils assigned to threads on demand. This is supposed

to (i) exploit shared memory within nodes and limit inter-process

communication, (ii) employ 8 to 16 times more compute cores, (iii)

increase the overall memory capacity while reducing the commu-

nication time.

2. DISTRIBUTED IMPLEMENTATION OF

ULTRASOUND SIMULATIONS
The k-Wave toolbox [8] is designed to simulate ultrasound wave

propagation in soft-tissues and bone, modelled as fluid and elas-

tic media, respectively. In the k-Wave toolbox, the k-space pseu-

dospectral method is used to solve the system of governing equa-

tions described in detail by Treeby in [9]. These equations are

derived from the mass conservation law, momentum conservation

law, and an empirically derived acoustic pressure-density relation

that accounts for acoustic nonlinearity, absorption, and heterogene-

ity in the material properties [9].

The k-space and pseudospectral methods gain their advantage

over finite difference methods due to the global nature of the spatial

gradient calculations [4]. This permits the use of a much coarser

grid for the same level of accuracy. However, the global nature

of the gradient calculation, in this case using the 3D fast Fourier

transform (FFT), introduces additional challenges for the develop-

ment of an efficient parallel code. Specifically, the FFT requires a

globally synchronising all-to-all data exchange. This global com-

munication can become a significant bottleneck in the execution of

spectral models. Fortunately, considerable effort has already been

devoted to the development of distributed memory FFT libraries

that show reasonable scalability of up to tens of thousands of pro-

cessing cores [2], [5], [7].

The distributed implementation was written in C++ as an exten-

sion to the open-source k-Wave acoustics toolbox [8]. The standard

message passing interface (MPI) was used to perform all interpro-

cess communications, the MPI version of the FFTW library was

used to perform the Fourier transforms [2], and the input/output

(I/O) operations were performed using the HDF5 library [1]. To

maximise performance, the code was also written to exploit single

instruction multiple data (SIMD) instructions such as SSE or AVX.

A detailed description can be found in [3]. The simulation time

loop can be broken down into several phases:

1. The gradient of acoustic pressure is calculated by the Fourier

collocation spectral method. This operation requires one for-

ward 3D FFT and a few element-wise operations.

2. The acoustic particle velocity (a 3D vector) is calculated based

on the acoustic pressure gradient using three inverse 3D FFTs

and a few element-wise operations.

3. The gradients of particle velocity for each spatial dimension

are calculated using three forward and three inverse 3D FFTs

interleaved by several element wise operations.

4. The acoustic density is updated based on the particle velocity

gradients using several element-wise operations.

5. The acoustic pressure field is updated based on the particle

velocity gradients, acoustic density, and the non-linearity and

absorption operators. This step includes two forward and

two inverse 3D FFTs, and several elementary element-wise

operations such as multiplication, addition, division, etc.

6. The desired acoustic quantities are sampled in regions of in-

terest and either stored on the disk as time-varying series or

further processed to calculate e.g. maximum, average, RMS,

etc.

There are two important features of the time loop that should be

highlighted. First, there are only two places where communication

among MPI processes is required. It is within the 3D FFT while

performing the distributed matrix transposition, and while the data

is being sampled, collected, and stored using the parallel HDF5 li-

brary. To reduce the communication burden, pairs of forward and

inverse FFTs do not bring the data into the original shape in be-

tween, instead a transposed shape is used to reduce the amount of

communication to one half [3]. Moreover, the output data is col-

lected and stored using chunks enabling buffering and staging of

I/O operations. The second observation is that the simulation time

loop is dominated by the FFT calculation. This accounts for nearly

60-80% (the higher number of processes, the higher proportion) of

the execution time while the rest of the element-wise operations

and the I/O only contribute by 40-20% [3]. Moreover, the FFT

itself spends the vast majority of its time waiting for data being

transmitted and transposed over the network.

The following subsections describe two different decompositions

of the 3D simulation space we have developed: the 1D pure-MPI

decomposition and the 2D Hybrid OpenMP/MPI decomposition.

2.1 Pure-MPI Decomposition
The pure-MPI decomposition is based on the 1D slab decom-

position natively supported by the FFTW library. In this case, the

3D domain is partitioned along the z axis and every MPI process

receives a given number of 2D slabs. In practice, all 3D matri-

ces (acoustic pressure, velocity, density, etc.) are partitioned and

distributed this way while several other support data structures are

either partitioned and scattered or simply replicated [3]. The com-

munication phase consists of one MPI_Alltoall communica-

tion performed as a part of the FFT, see Fig 1.

It has to be noted, that this decomposition provides reasonable

scaling as long as the number of MPI processes is smaller than

the z dimension size of the simulation domain. It also allows easy

deployment on many supercomputing systems and eliminates prob-

lems with proper thread pinning, memory affinity, and so on. How-

ever, the disadvantage, apart from the limited number of processes

to be used, is the communication overhead. With a growing num-

ber of MPI processes, the messages get smaller and smaller, while

the number of messages grows with P 2. This eventually leads to

network congestion and bandwidth decrease caused by the high la-

tency of routing small messages.

2.2 Hybrid OpenMP/MPI Decomposition
The hybrid OpenMP/MPI decomposition tries to alleviate the

disadvantages of the pure MPI decomposition by introducing a sec-

ond level of decomposition and further breaking the 1D slabs up

into pencils. In contrast to pure-MPI 2D decompositions, the small-

est chunk an MPI process can receive still remains a 1D slab. Thus,

the total number of MPI processes inherits the same limit as the 1D

decomposition presented above. However, in this case, MPI pro-

cesses are not mapped and bound to all compute cores, but only

to one core per socket or node. Once a process is mapped on a

socket/node, it spawns several OpenMP threads to process a given

number of pencils from the allocated slab/slabs. Considering that

116 Proceedings of the 3rd International Conference on Exascale Applications and Software

Large-scale Ultrasound Simulations Using the Hybrid OpenMP/MPI Decomposition Jaros, Nikl & Treeby



Figure 1: 1D domain decomposition and communication pat-

terns within a 3D FFT.

Figure 2: 2D domain decomposition and communication pat-

terns within a 3D FFT.

many current supercomputers comprise of shared memory nodes

typically integrating two sockets of 8 cores, we are able to scale the

simulation up by a factor of 8 or 16. Moreover, the OpenMP threads

can employ shared memory to significantly reduce the amount of

inter-process communication and help in exploiting local caches.

It should be noted, that the 2D decomposition requires two com-

munication phases to be carried out (one transpose along the y axis

followed by another one along the z axis). Pure-MPI approaches

typically implement this by a sequence of MPI_Alltoall com-

munication over the y and z axis [7], [5]. Since the whole 1D slab is

always placed on one socket/node, the hybrid implementation can

efficiently employ the shared memory to perform the first transpo-

sition. The second transposition is carried out the same way as the

1D decomposition (see Fig 2), however, with a fewer number of

processes (fewer and bigger messages, higher bandwidth, etc.).

The hybrid OpenMP/MPI simulation code was implemented in

a very similar way to the pure-MPI one. The FFT calculation is

based on the FFTW library tuned to be able to work with the 2D

decomposition. We used our custom implementation presented in

[6]. In a nutshell, it uses OpenMP FFTW kernels to perform se-

ries of 1D FFTs, a multi-threaded local transposition accelerated

by SIMD instructions, and a distributed transposition offered by

the FFTW library to carry out the communication part. This im-

plementation has proved its superiority over pure-MPI approaches

and enables better scaling than the original FFTW library (see [6]

for more detail).

The element wise operations implemented in various steps of the

simulation time loop were merged into a small number of kernels to

maximize the temporal locality, written to utilise SIMD extensions,

and run in parallel using the OpenMP library. To ensure correct

thread and memory affinity, the First Touch Strategy was used.

3. EXPERIMENTAL RESULTS
The experimental evaluation of the hybrid decomposition was

performed on two supercomputing systems, Anselm and Super-

MUC. Anselm is a Czech supercomputer operated by the IT4Inno-

vations National Supercomputing Center in Ostrava, Czech Repub-

lic. Anselm is an Intel-infiniband cluster based on Sandy Bridge

processors (2x8 core Intel E5-2665 at 2.4GHz and 64GB RAM per

node) interconnected by a 40Gb Fat-tree infiniband interconnec-

tion. The maximum number of cores we could use was 2048.

SuperMUC is a German supercomputer operated by Gauss Cen-

tre for Supercomputing and Leibniz Supercomputer Centre in Mu-

nich, Germany. SuperMUC is also an Intel-infiniband cluster based

on similar Sandy Bridge CPUs (2x8 core Intel Xeon E5-2680 at 2.7

GHz and 32GB RAM per node) interconnected by a 40Gb Fat-tree

infiniband network. The maximum number of cores we could use

was 8192.

Comparing the hardware configuration, both systems are very

similar and should produce very close results. The software stack

on the other hand is different and allows us to check different com-

pilers and MPI libraries. On Anselm, we used a GNU software

stack comprising of a GNU C++ compiler (g++-4.8), the OpenMPI

library in version 1.8.4, FFTW 3.3.3, and HDF5 1.8.13. The sched-

ule manager is based on the OpenPBS software. SuperMUC on the

other hand is based on an Intel software stack including an Intel

Compiler 2015, Intel MPI in version 5.0, FFTW 3.3.3 and HDF5

1.8.12. The schedule manager is based on LoadLeveler.

3.1 Test configurations
One of the most important issues rising when working with a

hybrid OpenMP/MPI code is the proper mapping of MPI processes

and threads to cores, sockets and nodes. Improper setting can sig-

nificantly deteriorate performance by allowing the threads to mi-

grate among cores/sockets and losing the memory affinity. Since

the default behaviour of MPI is to bind one process per core, spawn-

ing new threads by this process often leads to the threads being

bound to the same core. As a consequence, one core is heavily

overloaded while others are kept idle. The setting for three test

configurations was as follows:

1. Pure-C (pure-MPI code, core level mapping) - This configu-

ration uses the pure-MPI code implementing the 1D decom-

position compiled without the OpenMP extension. This code

is the reference for comparison. No special care has to be

taken to run this code.

2. Hybrid-S (hybrid code, socket level mapping) - This con-

figuration uses the hybrid OpenMP/MPI code implement-

ing the 2D decomposition compiled with the OpenMP li-

brary. The code starts one MPI process per socket and then

spawns 8 threads per process. On Anselm, the code was

launched with mpirun -map-by socket -bind-to

socket ./executable, the number of threads was set

by environmental variable OMP_NUM_THREADS=8 pinned

by GOMP_CPU_AFFINITY="0-15". On SuperMUC, the

LoadLeveler automatically sets all necessary environmental

variables when specifying task per nodes equal to 2.

3. Hybrid-N (hybrid code, node level mapping) - This con-

figuration uses the hybrid OpenMP/MPI code implement-

ing the 2D decomposition. The code starts one MPI pro-

cess per node and then spawns 16 threads per process. On

Proceedings of the 3rd International Conference on Exascale Applications and Software 117

Large-scale Ultrasound Simulations Using the Hybrid OpenMP/MPI Decomposition Jaros, Nikl & Treeby



Anselm, the code was launched with mpirun -map-by

node -bind-to none ./executable, the number of

threads was set by OMP_NUM_THREADS=16 and thread bind-

ing by GOMP_CPU_AFFINITY="0-15". On SuperMUC,

the LoadLeveler automatically sets all necessary environmen-

tal variables when specifying task per nodes equal to 1.

The performance was investigated by a few simulation cases cal-

culating the propagation of nonlinear waves in heterogeneous and

absorbing media with a source driven by a sine wave. The domain

sizes were chosen to equal 2563, 5123, and 1024
3 grid points. We

did not test larger domains due to extensive simulation cost and the

allocation limits. However, we expect better scaling with large sim-

ulation domains. The number of simulation timesteps varied from

100 to 1000 in order to get stable results and run the simulation for

a reasonable timespan. The overall simulation run was, however,

much longer due to the necessity of FFTW plan creation, which

could take up to 30 minutes [3].

3.2 Strong Scaling
The strong scaling plots describe how the execution time de-

creases with increasing number of compute resources. The size

of the problem is fixed. Fig. 3 and Fig. 4 show strong scaling for

simulation domains of 2563 and 512
3 grid points, respectively, and

the number of compute cores growing from 16 (1 node) up to 2048

cores (128 nodes) on the Anselm supercomputer. The curves show

the average execution time per one time step of the pure-MPI and

two hybrid versions.

It can be seen that the simulation time decreases linearly, slowly

reaching a plateau at the end (2048 cores). This is given by the size

of the simulation grid, which is simply too small to keep all cores

busy; one core only has 8k or 65k grid points to calculate. We can

also conclude that the hybrid implementation is not so efficient for

small core counts and the Pure-C code beats the hybrid ones almost

twice. The clue is hidden in the communication part (the amount of

computation is the same in all cases). In the Pure-C code, all cores

participate in the communication transposing its part of the grid.

However, the hybrid codes only use the master thread to communi-

cate while the others are sleeping. Since the messages are quite big

at low core counts, the loss in concurrency affects the performance

by a great deal. For the smallest simulation domain size of 2563,

the hybrid decomposition seems to be inefficient. The Hybrid-S

code offers a factor of two in performance, however, when using

8 times more resources. The efficiency is thus very low. For a

bigger domain of 512
3, the hybrid codes scale much better and

catches up with the Pure-C code at 128 cores (Hybrid-S version)

or 512 cores (Hybrid-N version). The real strength of the hybrid

code becomes evident beyond the scaling capability of the Pure-C

code (512 cores). The Hybrid-S configuration offers more than 2.3

times higher performance when running on 2048 cores (efficiency

of 57% compares to 512 cores).

The same test was also performed on SuperMUC, see Fig. 5.

Since having a much bigger allocation here, we used a grid size of

1024
3 and executed the simulation with core counts ranging from

64 to 8192. Again, the Pure-C code is faster for lower core counts

while the hybrid implementations win at the other side of the range.

An interesting peak occurs for 2048 cores (Hybrid-S) and 4096

cores (Hybrid-N) where the performance is much lower than ex-

pected. This peak was also observed on other grid sizes always

at the position where the number of cores is twice as high as the

size of z dimension for Hybrid-S version, and four times higher for

the Hybrid-N version. When investigating of this phenomenon, we

tried different FFTW planning flags (patient and exhaustive), vari-

ous compiler flags, MPI versions, and pinning strategies, however,

��

��

��

���

���

���

����

�� �� �� ��� ��� ��� ���� ����

�
��

�
��
�
��
��
�
�
	�
�
�
�

�
	�

�������������	

��	��������� ����������	

	
��� ������� �������

Figure 3: Strong scaling on Anselm, simulation grid of 2563.

��

���

���

���

����

����

����

����

�� 	� �� ��� ��� ��� ���� ����

�
��

�
��
�
��
��
�
�
	�
�
�
�

�
	�

�������������	

��	��������� ����������	


���� �������� ��������

Figure 4: Strong scaling on Anselm, simulation grid of 5123.

we did not succeed in eliminating this behaviour. We suspect that

it has something to do with the critical message size where MPI

changes the policy of transmitting messages (sync. vs buffered), or

that FFTW is unable to find a good communication plan.

To support this hypothesis we took a simulation flat profile, see

Table 1. The peaks in execution time directly correspond to the

communication share. In a typical run, the communication share

is about 50%, while in those exceptional cases the communication

share springs up to 75%. The profile confirmed our hypothesis that

the distributed transposition is not done optimally and a custom

routine needs to be implemented to ensure the correct behaviour.

This table also reveals that the hybrid OpenMP/MPI decomposition

bounds the communication at a reasonable level of 50%, even for

high core counts.

Fortunately, at least one of the hybrid versions works correctly

Table 1: Communication share for various core counts and hy-

brid implementations on SuperMUC (grid 10243).

core count Hybrid-S (MPI share) Hybrid-N (MPI share)

1024 51.60% 46.24%

2048 71.48% 48.95%

4096 52.84% 74.38%

118 Proceedings of the 3rd International Conference on Exascale Applications and Software

Large-scale Ultrasound Simulations Using the Hybrid OpenMP/MPI Decomposition Jaros, Nikl & Treeby



���

���

����

����

����

����

��	��

	�
��

�� ��� ��� ��� ���� ���� ���� ����

�
��

�
��
�
��
��
�
�
	�
�
�
�

�
	�

�������������	

�������������� ����������	

����� ������� �������

Figure 5: Strong scaling on SuperMUC, simulation grid of

10243.

at a given core count and the user has the ultimate choice. Finally,

we would like to note that Hybrid-S version offers almost 4 times

higher performance over Pure-C, which yields efficacy of almost

50%, which is not so bad considering the code is proven to be com-

munication and memory bound.

4. CONCLUSIONS
This paper has presented our first attempt to improve scaling of

large-scale ultrasound simulations using the hybrid OpenMP/MPI

decomposition. The main goal was to enable the code to employ

a number of compute cores exceeding the limit imposed by the

standard 1D decomposition (the size of the z dimension). By in-

troducing a second level of decomposition and breaking the 1D

slabs assigned to MPI processes into pencils computed by OpenMP

threads, as well as eliminating the need for another inter-process

transposition by the shared memory, we have been able to acceler-

ate the simulation by a factor of 4. This was achieved on Super-

MUC when using 8192 compute cores to compute ultrasound wave

propagation over a simulation domain discretised into 1024
3 grid

points. We also managed to keep the communication overhead at

an acceptable 50%.

We also observed curious behaviour for some configurations (num-

ber of processes and threads) where the simulation time abruptly in-

creased. This may be attributed to the inability of the FFTW to find

an optimal communication plan at this configuration. We can also

conclude, that the scaling gets better for bigger simulation domains.

While for domain sizes of 2563 grid points, the hybrid decompo-

sition does not bring much improvement due to the small amount

of work, large domains of 10243 and bigger appear to benefit from

the additional compute resources very well.

In our future work, we would like to test the code for bigger grid

sizes, introduce custom communication plans, and further optimise

the simulation code.

5. ACKNOWLEDGEMENTS
The project is financed from the SoMoPro II programme. The re-

search leading to this invention has acquired a financial grant from

the People Programme (Marie Curie action) of the Seventh Frame-

work Programme of EU according to the REA Grant Agreement

No. 291782. The research is further co-financed by the South-

Moravian Region. This work reflects only the author’s view and the

European Union is not liable for any use that may be made of the

information contained therein. This work was also supported by the

research project "Architecture of parallel and embedded computer

systems", Brno University of Technology, FIT-S-14-2297, 2014-

2016.

This work was supported by the IT4Innovations Centre of Ex-

cellence project (CZ.1.05/1.1.00/02.0070), funded by the European

Regional Development Fund and the national budget of the Czech

Republic via the Research and Development for Innovations Oper-

ational Programme, as well as Czech Ministry of Education, Youth

and Sports via the project Large Research, Development and Inno-

vations Infrastructures (LM2011033).

The authors gratefully acknowledge the assistance of Sebastian

Lehrack from the LMU Faculty of Physics, and the Gauss Centre

for Supercomputing e.V. (www.gauss-centre.eu) for funding this

project by providing computing time on the GCS Supercomputer

SuperMUC at Leibniz Supercomputing Centre (LRZ, www.lrz.de).

6. REFERENCES

[1] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson.

An Overview of the HDF5 Technology Suite and Its

Applications. In Proceedings of the EDBT/ICDT 2011

Workshop on Array Databases, AD ’11, pages 36–47, New

York, NY, USA, 2011. ACM.

[2] M. Frigo and S. G. Johnson. The Design and Implementation

of FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005.

[3] J. Jaros, A. P. Rendell, and B. E. Treeby. Full-wave nonlinear

ultrasound simulation on distributed clusters with applications

in high-intensity focused ultrasound. The International

Journal of High Performance Computing Applications,

2015(2):1–19, 2015.

[4] T. D. Mast, L. P. Souriau, D.-L. D. Liu, M. Tabei, A. I.

Nachman, and R. C. Waag. A k-space method for large-scale

models of wave propagation in tissue. IEEE Trans. Ultrason.

Ferroelectr. Freq. Control, 48(2):341–354, 2001.

[5] P. Michael. PFFT-An extension of FFTW to massively parallel

architectures. Society for Industrial and Applied Mathematics,

35(3):213–236, 2013.

[6] V. Nikl and J. Jaros. Parallelisation of the 3D Fast Fourier

Transform Using the Hybrid OpenMP/MPI Decomposition. In

Mathematical and Engineering Methods in Computer Science,

LNCS 8934, pages 100–112. Springer International

Publishing, 2014.

[7] D. Pekurovsky. P3DFFT: A Framework for Parallel

Computations of Fourier Transforms in Three Dimensions.

SIAM Journal on Scientific Computing, 34(4):C192–C209,

Jan. 2012.

[8] B. E. Treeby and B. T. Cox. k-Wave: MATLAB toolbox for

the simulation and reconstruction of photoacoustic wave

fields. Journal of Biomedical Optics, 15(2):021314, 2010.

[9] B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox. Modeling

nonlinear ultrasound propagation in heterogeneous media with

power law absorption using a k-space pseudospectral method.

The Journal of the Acoustical Society of America,

2012(131):4324–4336, 2012.

Proceedings of the 3rd International Conference on Exascale Applications and Software 119

Large-scale Ultrasound Simulations Using the Hybrid OpenMP/MPI Decomposition Jaros, Nikl & Treeby


