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Nomenclature

Operators
∗ Convolution operator
r2 Laplacian
r?

2 Laplacian in lateral plane
f̂ Temporal Fourier transform of f

~f Spatial Fourier transform of f
Ft{} Temporal Fourier transformation
Ft
!1{} Inverse temporal Fourier transformation

Fx{} Spatial Fourier transformation
Fx
!1{} Inverse spatial Fourier transformation

||a|| ¼a Length of a vector a

Parameters and Functions
b Exponent of attenuation power law
c Sound speed
c0 Ambient sound speed
CFL Courant–Friedrichs–Lewy number
D Number of spatial dimensions
f Frequency
f Volume density of volume force
G Green’s function
h Spatial impulse response of transducer
ĥ x; y; zð Þ Spatial propagator/point spread function
~h kx; ky; z
! "

Spectral propagator
H(t) Heaviside step function
j Imaginary unit
k¼o/c0 Wave number
k¼(kx,ky,kz) Wave vector
ℒ Lagrangian density
m Normalized compliance relaxation function
n Unit normal on a surface
O Landau order symbol
p Acoustic pressure
!p Total pressure
!!p Acoustic pressure in retarded time frame

p0 Ambient pressure
q Volume density of volume injection rate
S Source term
sinc(x) sin(x)/x
t Time coordinate
v Perturbation of particle velocity
!v Total particle velocity
v0 Stationary particle velocity
v? Normal component of particle velocity
x¼(x,y,z) Position vector
a Attenuation coefficient
a0 Coefficient of attenuation power law
b Coefficient of nonlinearity/phase coefficient
d(t) Dirac delta function
g¼aþ jb Propagation coefficient
l Wavelength
k0 Ambient compressibility
r Perturbation of density of mass
!r Total density of mass
r0 Ambient density of mass
t¼ t!z/c0 Retarded time
o Angular frequency
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2.19.1 Introduction

2.19.1.1 Purpose of Simulations

Ultrasound plays a steadily increasing role in diagnostic and
therapeutic medicine. The ability to simulate medical ultra-
sound fields serves several purposes. First, the fabrication of
prototypes of novel ultrasound transducers is expensive, and
the experimental characterization of the emitted 3-D ultra-
sound field is elaborate because this requires a tremendous
amount of hydrophone measurements in a water tank. The
development costs may be reduced when the performance of
a new transducer design can be assessed at an early stage by
doing simulations. Second, imaging modalities like harmonic
imaging and contrast imaging often employ intricate excitation
schemes and involve ultrasound fields with a number of har-
monics. To demonstrate the effectiveness of these modalities, a
preliminary simulation study with medium parameters that
mimic real tissue behavior is usually easier to perform than in
vitro and in vivo measurements. Moreover, these simulations
yield information about the ultrasound field inside the tissue,
which in practice is inaccessible. Third, each treatment that is
based on ultrasound heating or ultrasound ablation relies on a
predefined treatment plan that provides the sequence of focal
positions with corresponding insonification intensities and
durations. Diffraction due to tissue heterogeneity and the gen-
eration of harmonics caused by nonlinear propagation make it
hard to estimate the correct transmit settings for obtaining a
desired focal position and intensity. Simulations of the ultra-
sound field inside a known model of the patient may offer
considerable help in generating an accurate treatment plan.

For all of the purposes just mentioned, the ability to deal
with sufficiently realistic situations is of prime importance. For
diagnostics, the speed of the computations is relatively insig-
nificant because simulated ultrasound fields do not yet play a
role in the real-time imaging of patients. The situation may
change when wave field inversion techniques are applied for
the extraction of quantitative tissue data. These techniques
require the repeated computation of the ultrasound field in a
complex patient model. Although inversion results need not be
available in real time, the simulations should be fast enough to
be applicable in a clinical workflow. The same is already
required for simulations in the context of therapeutic treat-
ment planning.

2.19.1.2 Variety of Simulation Methods

There exist many methods for the simulation of ultrasound
fields in a medical context. One reason that explains the mul-
titude of methods is the large variation in the complexity of the
source and the medium involved in the simulations. For exam-
ple, the field of a round, single-element transducer in a homo-
geneous and lossless medium like water can be obtained by
much simpler methods compared to the field of a phased array
in a heterogeneous and attenuative medium like brain tissue.
In the first case, the symmetry of the problem reduces the
number of spatial dimensions to two, attenuation and disper-
sion need not be incorporated, and the applied method need
not be able to cope with reflections. In the second case, these
simplifications do not apply and a more advanced method is

required for the simulations. Another reason for the variety of
methods is the difference in the computation of time-domain
and frequency-domain results. Moreover, various approxima-
tions may be applied to reduce the numerical effort. When the
results need only be accurate near the axis of the ultrasound
beam, one may, for instance, apply the paraxial approxima-
tion, and when reflections are not important, forward stepping
methods may be applied. Finally, the variety is enlarged by the
difference between methods for the simulation of linear wave
fields and those for the simulation of nonlinear wave fields. In
the linear case, the principle of superposition is valid, and this
allows the straightforward use of integral transformations like
the Fourier transformation and the Laplace transformation,
and integral equation methods like Green’s function methods
and boundary element methods. In the nonlinear case, the
superposition principle no longer holds, and simulation
methods have to cope with the fact that many approaches
that apply for linear acoustics may no longer be used.

2.19.1.3 Scales Involved in Modeling and Simulation

Like all acoustic waves, ultrasound waves propagate in an
acoustic medium and consist of the collective motion of micro-
scopic particles that constitute this medium. Although the
microscopic interactions between individual particles may be
described by simple laws, it is neither feasible nor necessary to
compose an acoustic wave field from the individual particle
motions at the microscopic level. Instead, it is commonly
assumed that acoustic phenomena occur as an average behav-
ior that is observed at the macroscopic scale and that this
behavior may be described by quantities that vary (piecewise)
continuously with position. This is the so-called continuum
hypothesis. The macroscopic quantities are obtained by aver-
aging over a representative elementary domain that is small
compared to the scale on which the macroscopic quantities
will change but large enough to contain so many microscopic
particles to give (piecewise) continuously varying averages. The
huge difference between microscopic intermolecular distances
(of the order 10!10 m in fluids) and macroscopic ultrasonic
wavelengths (of the order 10!5!10!3 m in fluids) demon-
strates the plausibility of the continuum hypothesis. Averaging
the relevant microscopic quantities of the individual particles
over the volume of a representative elementary domain yields
macroscopic quantities like the particle velocity !v x; tð Þ (m s!1)
and the density of mass !r x; tð Þ (kg m!3), while the pressure
!p x; tð Þ (Pa) follows from averaging the corresponding quantity
over the surface of the elementary domain. Here, x (m) denotes
position in a fixed coordinate frame, and t (s) denotes time.
The symbols are fitted with a bar to indicate that these are
absolute or total quantities and to distinguish these from the
acoustic quantities that will be introduced later.

The relations between the macroscopic quantities follow
from the basic laws of physics, for example, the conservation
of mass and the conservation of linear momentum, applied to
an arbitrary domain having at least the size of a representative
elementary domain. In this article, it is assumed that the arbi-
trary domain has a fixed shape and does not move. This pro-
vides the Eulerian version of the equations of continuum
mechanics, and in this context, the arbitrary domain is referred
to as a control volume. The obtained equations are in the global
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form, that is, they relate the integrated versions of the quantities.
By applying Gauss’ integral theorem and considering that the
global equations must hold for any control volume, the equa-
tions can be recast into local form, that is, relating the quantities
and their derivatives at a single point. These local equations are
then combined into the basic equations of acoustics and are
presented in Sections 2.19.2.1–2.19.2.3.

The solution of the basic equations for simple situations
can be performed analytically or semianalytically, as will be
further explained in Section 2.19.3. However, most practical
situations require one of the numerical solution methods that
will be explained in Sections 2.19.4 and 2.19.5. Numerical
methods can roughly be categorized in three classes: finite-
difference (FD) methods, finite-element (FE) methods, and
integral equation (IE) methods. FD methods use the local
basic equations and replace the mathematical differentiations
by numerical finite differences. FE methods integrate a
weighted version of the local basic equations over the compu-
tational domain. This is discretized into finite volume elements
in which the quantities are approximated by simple expansion
functions. IE methods express the solution of the actual prob-
lem in terms of the analytic solution that holds in a simple
background medium. This leads to an integral equation that is
discretized by subdividing the integration domain into finite-
sized volume elements.

With any numerical method, the acoustic wave field is eval-
uated on the scale of the numerical discretization. In practice,
the numerical discretization ranges from two to several tens of
steps per spatial wavelength or temporal period, depending on
the applied numerical method. To summarize, Figure 1 shows
the entire chain of scales used to translate the behavior of
microscopic particles into the discrete numerical representation
that is used to simulate the macroscopic ultrasound field.

2.19.1.4 Acoustic Quantities

An acoustic wave consists of the propagation of a disturbance
of the macroscopic acoustic quantities from their static values.

The quantities of interest are therefore the differences between
the actual total quantities and the quantities in the absence of
the acoustic wave, that is, in the ambient condition. In view of
this, the acoustic pressure p(x,t) is defined as

p x; tð Þ ¼ !p x; tð Þ ! p0 [1]

where !p x; tð Þ is the total acoustic pressure introduced earlier
and p0 is the hydrostatic pressure in the case of fluids or the
atmospheric pressure in the case of gases. Likewise, the pertur-
bation of the density of mass is

r x; tð Þ ¼ !r x; tð Þ ! r0 [2]

In the case of the particle velocity,

v x; tð Þ ¼ !v x; tð Þ ! v0 [3]

where the static value v0 is the stationary particle velocity,
which for a medium without flow is zero. In most practical
situations, the disturbances are relatively small and are consid-
ered to be small-signal quantities.

2.19.1.5 Transformed Quantities

To aid the analysis or numerical computation, the acoustic
quantities will often be subjected to a temporal or spatial
Fourier transformation. Throughout this article, the following
conventions will be used. The temporal Fourier transformation
of a function f(t) is defined by

f̂ oð Þ ¼ Ft f tð Þf g ¼
ð1

!1
f tð Þexp !jotð Þdt [4]

where o is the temporal angular frequency. The inverse trans-
formation is

f tð Þ ¼ F!1
t f̂ oð Þ
n o

¼ 1

2p

ð1

!1
f̂ oð Þexp jotð Þdo [5]

The spatial Fourier transformation of a function f(x) is defined
by
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Figure 1 The different scales that are applied on the route from microscopic particle behavior to the discrete numerical model of the acoustic wave field.
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~f kð Þ ¼ Fx f xð Þf g ¼
ð1

!1
f xð Þexp jkxð Þdk [6]

where k is the spatial angular frequency. The inverse transfor-
mation is

f xð Þ ¼ F!1
x

~f kð Þ
n o

¼ 1

2p

ð1

!1
~f kð Þexp !jkxð Þdk [7]

These transformations can be evaluated numerically by invok-
ing fast Fourier transformation (FFT) routines from numerical
packages like MATLAB. When using these routines for evaluat-
ing the expressions from this article, one should take care that
the same convention for the sign in the exponential function
is used.

2.19.2 Basic Acoustic Equations

This section describes the basic equations of acoustic wave
propagation. These equations give the local relations that phys-
ics imposes on the basic quantities of the acoustic wave field.
Mathematically, the basic acoustic equations, together with
appropriate boundary conditions, form a complete system of
equations that may be solved by an appropriate numerical
method. The basic acoustic equations will first be presented
for a lossless, homogeneous, and source-free part of the
medium, and later on, discussion will be given on how losses,
heterogeneities, and sources may be accounted for. As men-
tioned in Section 2.19.1.3, all equations in this article will be
given in their Eulerian form. Much of the theory presented in
this section can also be found in books by authors like Pierce
(1989), De Hoop (1995), and Temkin (2001) about acoustics
in general; Hamilton and Blackstock (2008) about nonlinear
acoustics; and Cobbold (2007) about medical ultrasound.

2.19.2.1 General Equations

The following basic equations for the total quantities
!p ¼ !p x; tð Þ, !r ¼ !r x; tð Þ, and !v ¼ !v x; tð Þ serve as the foundation
for all acoustic field simulations: the continuity equation, the
equation of motion, and the state equation of the medium.
The entropy variable will be suppressed in the equations
because, in the absence of losses and for the frequencies
involved with medical ultrasound, the isentropic condition
applies, that is, the entropy stays constant (Pierce, 1989,
34–36).

The continuity equation is

@!r
@t

þ !v&r!rþ !rr&!v ¼ 0 [8]

which expresses the conservation of mass. In the lossless and
isentropic case, the equation of motion is the Euler equation:

!r
@!v

@t
þ !v&rð Þ!v

$ %
¼ !r!p [9]

This equation represents the conservation of linear momen-
tum. The state equation provides the relation between the
pressure !p and the density of mass !r and describes the behavior
of the medium. Although different formulations exist, the
Taylor expansion

!p !rð Þ ¼ p0 þ
@!p

@!r

& '

0

!r! r0ð Þ þ 1

2!

@2!p

@!r2

& '

0

!r! r0ð Þ2

þ 1

3!

@3!p

@!r3

& '

0

!r! r0ð Þ3 þ & & &
[10]

provides a general description that can capture nearly all spe-
cific forms that occur in a lossless and homogeneous medium.
The subscript ‘0’ of the partial derivatives designates that these
are evaluated at the ambient state, that is, at a static density of
mass r0 and entropy s0. The first derivative defines the ambient
isentropic sound speed c0 (m s!1) through

@!p

@!r

& '

0

¼ c20 [11]

2.19.2.2 Nonlinear Small-Signal Equations

To find the first-order differential equations for the small-
signal quantities p¼p(x,t) and v¼v(x,t), eqns [1]–[3] are
substituted into the basic eqns [8]–[10], and the terms that
only consist of static quantities are removed. Assuming that all
terms of order three and higher in the small-signal quantities
are sufficiently small to be discarded, the continuity equation,
the equation of motion, and the state equation turn into
equations that are accurate up till second order in the small-
signal quantities. Next, the state equation is combined with the
continuity equation, and terms of third and higher order in the
small-signal quantities are again neglected. The result of these
manipulations is a set of two first-order nonlinear differential
equations (cf. Chapter 2.16, eqns [21] and [22]) derived by
Aanonsen et al. (1984) and given here as

r&vþ k0
@p

@t
¼ b

r20c40

@p2

@t
þ k0

@ℒ
@t

[12]

rpþ r0
@v

@t
¼ !rℒ [13]

Here, k0¼1/(r0c0
2) (Pa!1) is the compressibility under ambi-

ent conditions, and

b ¼ 1þ B

2A
[14]

is the coefficient of nonlinearity. Moreover, ℒ denotes the
Lagrangian density:

ℒ ¼ 1

2
r0v

2 ! 1

2
k0p 2 [15]

where v ¼
ffiffiffiffiffiffi
v&v

p
is the length of the vector v. Further combina-

tion of these equations and again neglecting terms of order
three and higher in the small quantities yields the second-order
nonlinear differential equation:

r2p! 1

c20

@2p

@t2
¼ ! b

r0c40

@2p 2

@t2
! r2 þ 1

c20

@2

@t2

& '
ℒ [16]

which is the lossless nonlinear wave equation for the acoustic
pressure. From this equation, it is obvious that acoustic wave
propagation is inherently nonlinear. As explained by
Aanonsen et al. (1984), the nonlinear behavior manifests itself
in both local and global (i.e., cumulative) effects. Local non-
linear effects may usually be neglected for quasiplanar, propa-
gating waves when these are more than one wavelength away
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from the source. Fortunately, this situation arises quite often,
for instance, with the directional sound beams applied in
medical ultrasound. In this case, the Lagrangian density may
be omitted, which results in the second-order nonlinear differ-
ential equation (see Chapter 2.16, eqn [25]):

r2p! 1

c20

@2p

@t2
¼ ! b

r0c40

@2p 2

@t2
[17]

This equation is known as the lossless Westervelt (1963) equa-
tion, and it often serves as the basis for simulations of non-
linear ultrasound fields in medical applications. When the
Lagrangian density may not be neglected, for example, for
standing waves or in the case of scattering of sound by
sound, local nonlinearity might be important and the Wester-
velt equation is less appropriate.

2.19.2.3 Linear Small-Signal Equations

When the acoustic perturbations are sufficiently small, the
effects of nonlinearity become unnoticeable. In this case, the
first-order differential equations for the small-signal quantities
p¼p(x,t) and v¼v(x,t) may be simplified by neglecting the
second-order terms in eqns [12] and [13]. This yields

r&vþ k0
@p

@t
¼ 0 [18]

rpþ r0
@v

@t
¼ 0 [19]

which are the linearized first-order differential equations for
the acoustic wave field. Substitution of the time derivative of
eqn [18] into the divergence of eqn [19] gives

r2p! 1

c20

@2p

@t2
¼ 0 [20]

which is the linearized second-order wave equation for the
acoustic pressure. This equation can also be obtained by
directly linearizing eqn [16] or [17].

2.19.2.4 Attenuation and Dispersion

In practice, an acoustic wave will gradually lose energy during
propagation. This phenomenon, called attenuation or loss, is
caused by absorption and scattering. Absorption occurs
because mechanical energy that is carried by the acoustic
wave is irreversibly converted into other forms of energy like
heat. Scattering is due to the reflection of the propagating wave
in random directions by tiny particles inside the medium.
Consequently, the amplitudes of the acoustic field quantities
will be reduced in comparison with the lossless case. There
exists a vast amount of literature about the attenuation of
ultrasound in biomedical tissue. Bamber (1998, 2004) pro-
vides an extensive overview of the physical background,
the measurement principles, and the literature pertaining to
this topic.

2.19.2.4.1 Attenuation coefficient
The quantitative effect of attenuation is most easily explained
for a homogeneous medium carrying a plane wave, that is, a
wave that neither diverges nor converges and therefore does

not show a decrease or increase of its acoustic field quantities
due to geometric spreading or focusing. Consider a plane wave
that enters a fictitious slab of material of width dx with ampli-
tude P(x), as indicated in Figure 2. For a slab without attenu-
ation, the amplitude remains the same, so upon leaving the
slab, it is found that P(xþdx)¼P(x). In case of attenuation, the
amplitude will change by an amount dP when traveling
through the slab, and upon exit, it has become P(xþdx)¼
P(x)þdP. Because dP is a decrease that will be proportional
to both the initial amplitude and the width of the slab, it may
be written as

dP ¼ !aP xð Þdx [21]

The constant a (Np m!1) is called the attenuation coefficient
and represents the attenuative behavior of the medium. Often,
the attenuation coefficient is expressed in decibels per meter
instead of nepers per meter, with adB¼8.686aNp. Solving
eqn [21] then yields

P xð Þ ¼ P 0ð Þexp !axð Þ [22]

where P(0) is the amplitude imposed by the source at x¼0.
Equation [22] shows that attenuation causes an exponential
decay of the amplitude of the acoustic wave.

Below 10 MHz, in most types of biological tissue, acoustic
attenuation is dominated by the effects of absorption, with
only a small contribution from scattering. Although measure-
ments on these individual phenomena have been performed
(Nassiri and Hill, 1986), it is hard to obtain accurate coeffi-
cients for the separate absorption and scattering processes
(Bamber, 1998, 74–76; Bamber, 2004, 146–148). Because of
this difficulty, both phenomena are usually combined and
only the total attenuation is considered.

Measurements show that the acoustic attenuation in bio-
logical tissues depends on the frequency of the ultrasound
wave. The attenuation coefficient of most soft tissues satisfies
an empirical frequency power law of the form (Bamber, 1998,
74–76; Bamber, 2004, 149; Wells, 1975)

a ¼ a0 f b [23]

Here, a0 (Np m MHz!b) and b (1) are parameters that depend
on the medium under consideration, and f (MHz) is the fre-
quency. Virtually all tissues have 1'b'2, while below
10 MHz for most tissues, it is found that b is slightly larger
than unity.

Parameters for attenuation in water, blood, and some types
of human tissue are given in Table 1. More extensive data on

P(x) P(x) + dP

x x + dx

Figure 2 Change in the acoustic pressure due to attenuation in a slab of
material.
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these media may be found in Duck (1990), Bamber (1998,
2004), and Mast (2000). An extensive investigation into the
attenuation of blood has also been presented by Treeby et al.
(2011).

2.19.2.4.2 Thermoviscous approach
There are several ways to account for attenuation in the basic
acoustic equations. One common approach is to consider the
medium to be a thermoviscous fluid with shear viscosity
m (kg m!1 s!1), bulk viscosity mB (kg m!1 s!1), and thermal
conductivity K (W m!1 K!1). This approach is elaborated by
Aanonsen et al. (1984) and Hamilton and Morfey (2008).
With respect to the lossless case, this causes two changes.
First, assuming the medium to be homogeneous, eqn [9]
should be replaced by the Navier–Stokes equation for !r, !p,
and !v:

!r
@!v

@t
þ !v&rð Þ!v

$ %
¼ !r!pþ mr2!vþ mB þ

1

3
m

& '
r r&!vð Þ [24]

Second, small perturbations of the entropy and temperature
should be accounted for by the inclusion of a small-signal
entropy term in the state equation and the introduction of a
thermodynamic equation that relates small entropy and small
temperature fluctuations. As a result of these changes, eqn [16]
gains an additional diffusivity term and becomes

r2p! 1

c20

@2p

@t2
þ d
c40

@3p

@t3
¼ ! b

r0c40

@2p 2

@t2

! r2 þ 1

c20

@2

@t2

& '
ℒ [25]

with a similar term appearing in eqns [17] and [20]. The
constant

d ¼ 1

r0

4

3
mþ mB þ K

1

cv
þ 1

cp

& '$ %
[26]

is the diffusivity of sound, with cv (J kg!1 K!1) and cp
(J kg!1 K!1) being the specific heats at constant volume and
at constant pressure, respectively. Thermoviscous loss approx-
imately corresponds to power-law attenuation (see eqn [23])
with a0¼2p2d/c0

3 and b¼2 provided that a(1/l, with l¼ f/c0
being the wavelength. A drawback of the thermoviscous loss
model is that it can only describe media with quadratic (b¼2)
power-law attenuation. While water satisfies a quadratic power
law and is well described by thermoviscous loss, most soft
tissues have a near linear (b)1) power-law attenuation and
are not well captured by the thermoviscous loss model.

2.19.2.4.3 Relaxation approach
One possibility to account for more general forms of attenua-
tion, including frequency power laws with exponents 1<b'2,
is to explicitly introduce relaxation in the medium behavior.
This approach represents the underlying physics in a natural
way and can deal with a great variety of loss models. Relaxation
can be incorporated by replacing the lossless linear equa-
tion [18] by Verweij (1995) and Demi et al. (2011)

r&v x; tð Þ þ k0
@

@t
m tð Þ∗t p x; tð Þ½ + ¼ 0 [27]

The function m(t) (s!1) describes the attenuative behavior of
the medium and is called the normalized memory or compli-
ance relaxation function, and the symbol ∗t denotes a tempo-
ral convolution. The relaxation functionm(t) may be separated
according to

m tð Þ ¼ d tð Þ þ A tð Þ [28]

where the Dirac delta function d(t) represents the instanta-
neous medium behavior, and the relaxation function A(t)
represents the delayed reaction of the medium to events that
happened in the past. The former term is associated with the
lossless propagation of the wave, and the latter term represents
the occurrence of attenuation and the corresponding disper-
sion. Because of its physical role, the relaxation function A(t) is
real-valued. Moreover, it should not ‘predict the future’ and it
should not contribute to the instantaneous medium behavior.
This implies that A(t) is a causal function, that is, A(t)¼0 for
t<0, and it does not include a function d(t) or its derivatives.
In the nonlinear case, relaxation may be introduced by repla-
cing the second term in eqn [12] by the second term in
eqn [27]. The last term in eqn [12] need not be changed as
long as the attenuation is weak, that is, when introduction of
the relaxation function will only cause a small perturbation
from the lossless situation. In this case, the changes in the last
term of eqn [12] only generate third-order terms that may be
neglected.

It is usually assumed that the inertia shows negligible relax-
ation effects. For this reason, eqns [13] and [19] remain
unchanged.

The introduction of relaxation also causes the wave equa-
tions to change. In the linear case, eqn [20] is replaced by

r2p x; tð Þ ! 1

c20

@2

@t2
m tð Þ∗t p x; tð Þ½ + ¼ 0 [29]

and similar changes apply to the left-hand sides of eqns [16]
and [17].

Table 1 Medium parameters for water, blood, and different types of human tissue, obtained from Duck (1990) for frequencies below 10 MHz

Medium type c0 (m s!1) r0 (kg m!3) b (1) a0 (Np cm!1 MHz!b) b (1)

Water 1482 998 3.48 2.5,10!4 2.0
Blood 1584 1060 4.00 1.6,10!2** 1.21**
Brain 1562 1035 4.28 6.7,10!2** 1.3**
Fat 1430 928 6.14 3.4,10!1** 1.0*
Liver 1578 1050 4.38 5.2,10!2** 1.05
Muscle (skeletal) 1580 1041 4.72 6.3,10!2** 1.0*

*Assumed value.

**Mean value.
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For a medium with several distinct relaxation processes
with relaxation times ti, a suitable choice for the function
m(t) is

m tð Þ ¼ d tð Þ þH tð Þ
X

i

ki exp
!t

ti

& '
[30]

in which the Heaviside or unit step function is defined as
H tð Þ ¼ 0; 12; 1

) *
for {t<0, t¼0, t>0}. The strength of each

individual relaxation process is represented by the respective
constant ki. The time-domain series in eqn [30] may be found,
for example, in Cleveland et al. (1996), and a frequency-
domain version is presented in Pierce (1989) and Nachman
et al. (1990).

To model a medium with attenuation following a fre-
quency power law, the relaxation function m(t) may most
easily be described by its counterpart m̂ oð Þ in the frequency
domain. An appropriate choice for m̂ oð Þ is

m̂ oð Þ ¼ 1þ c0a1 joð Þb!1

cos 1
2pbð Þ

 !2

[31]

where a1¼(2p)!ba0 and 1<b'2. The relation between this
relaxation function and the attenuation coefficient follows
from its substitution into the frequency-domain counterpart
of, for instance, eqn [20]. This gives

r2p̂þ o2

c20
m̂ oð Þ p̂ ¼ 0 [32]

This equation corresponds to the Helmholtz equation:

r2p̂! g2 oð Þ p̂ ¼ 0 [33]

in which

g oð Þ ¼ a oð Þ þ jb oð Þ [34]

is the propagation coefficient of the acoustic wave at angular
frequency o. The real part of g (m!1) is the attenuation coeffi-
cient a, which describes the decay of the acoustic wave, and the
imaginary part is the phase coefficient b, which describes the
progress of the acoustic wave. Combination of eqns [31]–[34]
shows that the relaxation function in eqn [31] yields the atten-
uation coefficient

a oð Þ ¼ a1jojb [35]

and the phase coefficient

b oð Þ ¼ o
c0

þ a1 tan
1

2
pb

+ ,
ojojb!1 [36]

These are the same attenuation and phase coefficients as
obtained by Szabo (1995), who also presents the time-domain
counterpart of eqn [31]. For positive frequencies, the attenua-
tion coefficient in eqn [35] is equal to a¼a0 f b, which is exactly
the frequency power law of eqn [23]. The phase coefficient in
eqn [36] relates to the propagation or phase speed c(o) of the
acoustic wave, according to

b oð Þ ¼ o
c oð Þ [37]

From eqns [36] and [37], it may be deduced that

1

c oð Þ
¼ 1

c0
þ a1 tan

1

2
pb

+ ,
jojb!1 [38]

which implies that the wave propagation exhibits dispersion
for 1<b<2. Dispersion is the phenomenon where the phase

speed is frequency-dependent. Attenuation and dispersion are
intrinsically related (O’Donnell et al., 1981). As shown earlier,
dispersion is automatically taken into account when attenua-
tion is modeled by explicitly introducing the relaxation of the
medium. Equation [38] shows that quadratic power-law losses,
as, for example, encountered in thermoviscous fluids, are
dispersion-free.

2.19.2.5 Heterogeneous Media

Table 1 shows that different tissues in general have different
medium parameters. To simulate the propagation of ultra-
sound waves through a volume containing different types of
tissues, a heterogeneous medium must be considered.

2.19.2.5.1 Spatially dependent medium parameters
The description of heterogeneous media involves spatially
dependent parameters like the density of mass r0(x), speed of
sound c0(x), attenuation parameters a0(x) and b(x), and the
coefficient of nonlinearity b(x). Spatial changes in the medium
parameters cause phenomena like refraction and reflection of
the acoustic wave field. Especially when there are considerable
variations in the density of mass and/or the speed of sound,
these phenomena may become significant and it becomes
important to employ a simulation method that is capable of
capturing these phenomena.

2.19.2.5.2 Boundary conditions
When there is a spatial jump in one or more acoustic medium
parameters, one or more acoustic field quantities may become
mathematically discontinuous at the location of the jump. In
that case, one or more of the spatial derivatives that occur in
the basic acoustic equations may not be defined. This implies
that it is not possible to deduce the behavior of the acoustic
field at the jump from the basic acoustic equations. To remedy
this difficulty, additional boundary conditions are provided
that describe the behavior of the acoustic field quantities at a
jump in the medium parameters. Assuming that the jump
appears over a surface S with a local unit normal vector n,
the boundary conditions are the following:

• The acoustic pressure p should be continuous at S.
• The normal component v?¼(v &n)n of the particle velocity

should be continuous at S.

The first condition follows from the demand that the surface S
should only have a finite acceleration, and the second condi-
tion is imposed by the requirement that no mixing or separa-
tion of the media joining at S should occur.

Two special cases may occur when considering boundary
conditions. For a perfectly rigid boundary S, the boundary
condition is:

• The normal component v?¼(v &n)n¼0 at S,

and the pressure at the boundary should not be specified to
avoid possible ambiguity. For a perfectly compliant boundary
S, the boundary condition is:

• The acoustic pressure p¼0 at S,

and the normal velocity at the boundary must be left
unspecified.
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2.19.2.6 Sources

The features of an emitted ultrasound field depend strongly on
the actual geometry of the transducer and the motion of its
active parts. It is therefore paramount to incorporate the source
behavior into the simulation of an ultrasound field.

2.19.2.6.1 Boundary condition representations
One way to account for the source is to consider it as being a
part of the boundary of the computational domain. The action
of the source may then be included by imposing the pressure or
the normal particle velocity at the source surface as boundary
conditions on the computational domain. The subsequent
propagation of the ultrasound field is then computed with
the source-free basic acoustic equations.

2.19.2.6.2 Monopole and dipole representations
A different approach to include the source is to extend the basic
acoustic equations with source terms. An acoustic source may
bemodeled as a monopole source or a dipole source. Examples
of both source types are depicted in Figure 3. A monopole
source has the ability to displace the surrounding medium by
changing its volume, and is represented by its volume density
of volume injection rate q(x,t) (s!1). A dipole source has the
ability to move the surrounding medium by exerting a force on
it, and is represented by its volume density of volume force
f(x,t) (N m!3). The physical effect of these manifestations of
the source may easily be accounted for in the basic acoustic
equations. For example, the source-free linear eqns [18] and
[19] may be extended to

r&vþ k0
@p

@t
¼ q [39]

rpþ r0
@v

@t
¼ f [40]

and substitution of eqn [39] into eqn [40] shows that the
corresponding wave equation is

r2p! 1

c20

@2p

@t2
¼ r&f ! r0

@q

@t
[41]

In eqns [39]–[41], the nonzero right-hand sides represent the
action of the source. Similar extensions may be made to the
corresponding nonlinear equations.

When a source generates a normal velocity v?,source(x,t) on a
part A of an otherwise perfectly rigid plane, its effect may be
modeled by an infinitely thin volume injection source that
radiates in free space. Suppose that the source plane is located
at z¼0, then the appropriate source is

q x; tð Þ ¼ 2v?, source x; tð Þd zð Þ for x 2 A
0 for x =2 A

-
[42]

where d(z) is the Dirac delta function. This monopole source
will cause exactly the same acoustic wave field for z>0 as
imposing the normal velocity v?,source(x,t) on part A of
the boundary of the computational domain. Similarly, when
a source generates a pressure psource(x,t) on a part A of an
otherwise perfectly compliant plane, its effect may be modeled
by an infinitely thin force source that radiates in free space.
For a source plane that is located at z¼0, the appropriate
source is

f x; tð Þ ¼ 2psource x; tð Þd zð Þ for x 2 A
0 for x =2 A

-
[43]

This dipole source will cause exactly the same acoustic wave
field for z>0 as imposing the pressure psource(x,t) on part A of
the boundary of the computational domain.

2.19.3 Semianalytical Methods

In relatively simple situations, explicit mathematical expres-
sions may be obtained for the ultrasound field that is generated
by a transducer. For linear wave propagation in homogeneous
media, there exist integral expressions for the acoustic wave
fields emitted by sources in one-, two-, and three-dimensional
configurations. Because the expressions are integrals of analyt-
ical functions, these will be qualified as being semianalytical.
Such expressions form the basis of some semianalytical field
simulation packages. This section will deal with the semi-
analytical simulation of linear wave propagation. For non-
linear wave propagation, semianalytical expressions (in the
form of infinite series of analytical functions) only exist in
the one-dimensional case. For the semianalytical simulation
of nonlinear wave propagation, the reader is referred to the
chapter on nonlinear acoustics (see Chapter 2.16).

2.19.3.1 Green’s Function Approach

In a homogeneous medium without attenuation, the acoustic
pressure field p¼p(x,t) is described by the wave equation in
eqn [41], that is,

r2p! 1

c20

@2p

@t2
¼ !Str [44]

The action of the ultrasound transducer is represented by the
source term

q > 0 q > 0 q < 0 q < 0 q < 0 q < 0 q > 0 q > 0

¶ = 0 ¶ ¶ ¶ ¶ = 0 ¶ ¶ ¶ ¶ = 0

Example of a monopole source

Example of a dipole source

Figure 3 The operating principle of a monopole source and a dipole source.
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Str ¼ !r&f þ r0
@q

@t
[45]

which contains the source’s density of volume force f¼ f(x,t)
and its volume injection rate q¼q(x,t). To obtain a unique
solution, the wave equation must be complemented with
boundary conditions that describe how the field behaves at
the boundaries of the domain of interest. These conditions
follow from the physics of the configuration. In the case of
an infinite medium, the boundary condition is that the field
should only propagate outward towards infinity. The case of an
infinite medium is usually referred to as free space, and the
behavior of the wave towards infinity is more specifically called
a radiation condition.

The wave equation with an explicit source term may be
solved in a semianalytical way by using the Green’s function,
as will be demonstrated later. Detailed information about the
approach can be found in mathematically oriented works by
authors like Barton (1995). The approach is based on the fact
that eqn [44] has much resemblance with the equation

r2G! 1

c20

@2G

@t2
¼ !d xð Þd tð Þ [46]

which defines the Green’s function G¼G(x,t). The right-hand
side of this equation represents an impulsive point source
that acts at position x¼0 and time instant t¼0. Consequently,
G is the spatiotemporal impulse response of the linear wave
problem. For an infinite medium without attenuation, the
analytic expressions for the Green’s function in several dimen-
sions are

G x; tð Þ ¼ c0
2
H t ! xj j

c0

& '
, 1Dð Þ [47]

G x; tð Þ ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 ! jjxjj=c0ð Þ2

q H t ! xj jj j
c0

& '
, 2Dð Þ [48]

G x; tð Þ ¼ 1

4pjjxjj
d t ! xj jj j

c0

& '
3Dð Þ [49]

Recall that H(t) is the Heaviside step function and d(t) is the
Dirac delta pulse.

By virtue of the superposition theorem, both sides of
eqn [46] may be convolved with Str(x,t) over the entire space
and all times. This yields

r2 G∗x, tStrð Þ ! 1

c20

@2

@t2
G∗x, tStrð Þ ¼ ! d xð Þd tð Þ½ +∗x, tStr [50]

where ∗ x,t denotes the spatiotemporal convolution of the
adjacent functions, for instance,

G∗x, tStr ¼
ð1

!1

ððð

ℝ3
G x! x

0
, t ! t

0
+ ,

Str x
0
; t

0
+ ,

dx
0
dt

0
[51]

The convolution on the right-hand side of eqn [50] gives

d xð Þd tð Þ½ +∗x, tStr ¼
ð1

!1

ððð

ℝ3
d x! x

0
+ ,

d t! t
0

+ ,
Str x

0
; t

0
+ ,

dx
0
dt

0

¼ Str x, tð Þ [52]

Substitution of this result in eqn [50] and comparison with
eqn [44] leads to the conclusion that

p x; tð Þ ¼ G∗x, tStr [53]

Any practical source is limited in both space and time, and the
result of the convolution will not change when the integrations
are restricted to the spatial domain D occupied by the source
and the temporal interval T during which it is active. This
means that the acoustic pressure for an arbitrary source in an
infinite homogeneous medium is given by the integral
expression

p x; tð Þ ¼ G∗x, tStr

¼
ð

T

ððð

D
G x! x

0
, t ! t

0
+ ,

Str x
0
; t

0
+ ,

dx
0
dt

0
[54]

In the temporal frequency domain, a similar approach may
be used to find the frequency-domain acoustic pressure
p̂ ¼ p̂ x;oð Þ generated by a frequency-domain source Ŝtr x;oð Þ
in an infinite homogeneous medium without attenuation. In
this case, the equation that must be satisfied is

r2p̂þ k2p̂ ¼ !Ŝtr [55]

in which k¼o/c0 is the wave number. The counterparts of
eqns [47]–[49] are the frequency-domain Green’s functions:

Ĝ x;oð Þ ¼ exp !jkjxjð Þ
2jk

, 1Dð Þ [56]

Ĝ x;oð Þ ¼ ! j

4
H 2ð Þ

0 kjjxjjð Þ, 2Dð Þ [57]

Ĝ x;oð Þ ¼ exp !jkjjxjjð Þ
4pjjxjj

, 3Dð Þ [58]

where H0
(2) denotes the Hankel function of the second kind

and order zero.
Unlike the time-domain Green’s functions, the frequency-

domain Green’s functions can easily be adapted to apply to an
infinite homogeneous medium with attenuation. This is
achieved by replacing the real wave number k¼o/c0 by the
complex wave number k(o)¼! jg(o), in which g(o) is the
propagation coefficient that has been introduced in eqn [34]
(Huijssen et al., 2008).

Using the appropriate Green’s function, the frequency-
domain acoustic pressure for an arbitrary source in a homoge-
neous medium is obtained as

p̂ x;oð Þ ¼ Ĝ∗xŜtr ¼
ððð

D
Ĝ x! x

0
,o

+ ,
Ŝtr x

0
;o

+ ,
dx

0
[59]

2.19.3.2 Rayleigh Integral

As an alternative to using an explicit source term Str, the action of
a transducer can also be represented by prescribing the pressure
or the normal velocity that it imposes on the boundary of
the computational domain. When this is the case, an alternative
to the Green’s function formulations in eqns [54] and [59]
exists, as will be shown later for the three-dimensional case.

The conventional derivation (Cobbold, 2007; Pierce, 1989)
starts with the equation for the frequency-domain acoustic
pressure p̂ xð Þ ¼ p̂ x;oð Þ

r2p̂ xð Þ þ k2p̂ xð Þ ¼ !Ŝtr xð Þ [60]

and the corresponding equation for the Green’s function
Ĝ x; x

0! "
¼ Ĝ x; x

0
;o

! "
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r2Ĝ x; x
0

+ ,
þ k2Ĝ x; x

0
+ ,

¼ !d x! x
0

+ ,
[61]

The notation Ĝ x; x
0! "

is generally used to indicate the field
at location x due to a point source at location x0. Note that the
transducer need not be located in free space and that the bound-
ary conditions on p̂ and Ĝ are not restricted to the radiation
condition, as was the case in Section 2.19.3.1.

Multiplication of eqn [60] by Ĝ x; x
0! "
and eqn [61] by p̂ xð Þ,

followed by subtraction of the results, yields

Ĝ x; x
0

+ ,
r2p̂ xð Þ ! p̂ xð Þr2Ĝ x; x

0
+ ,

¼ p̂ xð Þd x! x
0

+ ,
! Ĝ x; x

0
+ ,

Ŝtr xð Þ [62]

Next, the role of x and x0 is interchanged, giving

Ĝ x
0
; x

+ ,
r02

p̂ x
0

+ ,
! p̂ x

0
+ ,

r02
Ĝ x

0
; x

+ ,

¼ p̂ x
0

+ ,
d x

0 ! x
+ ,

! Ĝ x
0
; x

+ ,
Ŝtr x

0
+ ,

[63]

where r0 involves derivatives with respect to the primed coor-
dinates. Integration with respect to x0 over the domain D in
Figure 4 results in

ððð

D
Ĝ x

0
; x

+ ,
r02

p̂ x
0

+ ,
! p̂ x

0
+ ,

r02
Ĝ x

0
; x

+ ,
dx

0

¼
ððð

D
p̂ x

0
+ ,

d x
0 ! x

+ ,
! Ĝ x

0
; x

+ ,
Ŝtr x

0! "
dx

0

[64]

Using Green’s second identity, the left-hand side may be recast
into an integral over the boundary S ¼ S0 þ S1 of D. The
right-hand side may be simplified in view of the sifting prop-
erty of the Dirac delta function and the fact that Ŝtr ¼ 0 inside
D because the source is only represented by a boundary con-
dition on S. It is thus found that

p̂ xð Þ ¼ ∯S Ĝ x
0
; x

+ ,
r0

p̂ x
0

+ ,
! p̂ x

0
+ ,

r0
Ĝ x

0
; x

+ ,h i
&ndx0

[65]

where n is the outward pointing unit normal on S. The surface
S consists of the source plane S0 containing the finite source
aperture A and a hemispherical surface S1 at infinity. On S1,
the same radiation condition applies as in the free-space case. The
integration over S1 yields a zero contribution because for an
increasing radius R of the hemisphere, the integrand in eqn [65]
decreases faster than the increaseof thehemispherical surface area.

Next, it is assumed that S0 is a rigid boundary with a pre-
scribed normal surface velocity v̂&n ¼ !v̂? on A (taking v̂?

positive inward) and v̂&n ¼ 0 outside A. With the aid of
eqn [19], the boundary conditions for the normal particle veloc-
ity translate into the boundary conditions r0

p̂ x
0! ". /

&n ¼ jor0v̂?
onA and r0

p̂ x
0! ". /

&n ¼ 0 outsideA for the acoustic pressure. In
the current context, Ĝ x

0
; x

! "
must also satisfy similar boundary

conditions. As long as x 6¼x0, the Green’s function will not have
its source point on S0 and the boundary condition is that
r0

Ĝ x
0
; x

! ". /
&n ¼ 0 everywhere on S0. Here, it is important to

realize that, as far as the Green’s function is concerned, the
swapping of x and x0 implies that x0 has the role of observation
point and x has the role of source point. The condition x 6¼x0 is
satisfied as long as p(x) is not evaluated in the source plane. The
facts just mentioned make that eqn [65] turns into

p̂ xð Þ ¼ jor0

ð ð

A
Ĝ x

0
; x

+ ,
v̂? x

0
+ ,

dx
0

[66]

To find the explicit Green’s function, the swapping of x and x0 is
discarded for a while. In case of a flat, rigid boundary, the
Green’s function Ĝ x; x

0! "
with boundary condition

rĜ x; x
0! ". /

&n ¼ 0 on S0 may be obtained by adding the free-
space Green’s functions for a point source d(x!x0), and for its
mirror source d(x!x00), see Figure 5. The resulting Green’s
function is

Ĝ x; x
0

+ ,
¼

exp !jkjjx! x
0 jj

! "

4pjjx! x0 jj þ
exp !jkjjx! x

00 jj
! "

4pjjx! x00 jj [67]

When x0 is located on S0, as is the case in eqn [66], it will
happen that x0¼x00. In this case, eqn [67] yields

Ĝ x; x
0

+ ,
¼

exp !jkjjx! x
0 jj

! "

2pjjx! x0 jj [68]

which shows that as far as the actual Green’s function is con-
cerned, the swapping of x and x0 is irrelevant because
Ĝ x; x

0! "
¼ Ĝ x

0
; x

! "
. As explained by Pierce (1989, 195–199),

this is a general property of Green’s functions and is a mani-
festation of the reciprocity principle. Now, eqn [66] can be
written as

p̂ xð Þ ¼ jor0

ð ð

A

exp !jkjjx! x
0 jj

! "
v̂? x

0! "

2pjjx! x0 jj dx
0

[69]

The time-domain equivalent of this equation is found by using
the known identities for the Fourier transformation from
Section 2.19.1.5, giving

u^= 0

u^= 0

u^≠ 0

n
n

R

∞0

Figure 4 Configuration for the analysis of the acoustic pressure due
to a source with aperture A. The figure applies to the specific case
of a rigid boundary S0 with a prescribed normal velocity on A.

x

x !x "

x − x "

x − x !

S0

Figure 5 Point source and its mirror image in the plane S0. The
combined field of both sources has a zero normal velocity at S0.
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p x; tð Þ ¼ r0

ð ð

A

1

2pjjx! x0 jj
@

@t
v? x

0
, t !

x! x
000 0000 00

c0

 !

dx
0

[70]

In recognition of the first derivation of a similar result by
Rayleigh (1945, 107), this expression is called the Rayleigh
integral.

The same expression may be found in an alternative and
more direct way by combining eqn [42] with eqns [45], [49],
and [59]. In this case, the free-space Green’s function may
be used because the boundary condition in the source plane
is implied by the use of the volume source. This approach is
briefly discussed by Pierce (1989, 214).

A special case arises for nonapodized sources, that is,
sources with a normal surface velocity that is independent of
the position. Many single-element transducers belong to this
class of sources. In this case,

v? x; tð Þ ¼ v? tð Þ [71]

and eqn [70] may be written as

p x; tð Þ ¼ h x; tð Þ∗t r0
@v? tð Þ
@t

& '
[72]

where

h x; tð Þ ¼
ð ð

A

1

2pjjx! x0 jj
d t !

x! x
000 0000 00

c0

 !
dx

0
[73]

is called the spatial impulse response of the transducer (Harris,
1981; Stepanishen, 1971).

An alternative to eqns [69] and [70] exists for the case in
which S0 is a compliant boundary with a prescribed surface
pressure p̂ onA and p¼0 outsideA. Applying the proper bound-
ary conditions, a similar analysis as presented earlier yields

p̂ xð Þ ) jo
c0

ð ð

A

exp !jkjjx! x
0 jj

! "
p̂ x

0! "

2pjjx! x0 jj cos ’ð Þdx0
[74]

in which ’ is the angle between x!x0 and the normal on
the transducer surface. The approximation is valid provided
that ||x!x0||-1/k. The time-domain counterpart of eqn [74]
is

p x; tð Þ ) 1

c0

ð ð

A

1

2pjjx! x0 jj
@

@t
p x

0
, t !

x! x
000 0000 00

c0

 !
cos ’ð Þdx0

[75]

2.19.3.3 Field II

Developed in the 1990s, Field II is probably still the most
employed program for the simulation of medical ultrasound.
It can be used for tasks ranging from the computation of acous-
tic fields from simple transducers to the assessment of intricate
imaging scenarios. The theoretical background of the program
is described in Jensen and Svendsen (1992), and a description
of the structure and featuresmay be found in Jensen (2001) and
Jensen (2011). Field II assumes that the propagation medium
consists of a homogeneous, linear background with point scat-
terers, and it only provides an attenuation model with a linear
frequency dependence. Therefore, Field II is not a logical choice
for simulations involving large-scale medium heterogeneities,

general power-law attenuation, or nonlinear propagation. The
spatial impulse response in eqn [73] forms the theoretical
foundation of the program. The computations are performed
in a core program that has been written in C. The C program
communicates with MATLAB through a number of
m-functions, which perform one of the following tasks:

• Initializing the program
These functions perform the start-up and termination of

the Field II program and set parameters like the speed of
sound, attenuation, and the temporal sampling rate.

• Defining the transducer
Functions are available for defining a score of transducer

types, for example, single-element, 1-D, and 2-D arrays
(either flat or curved) and associated features like focusing,
apodization (tapering), and excitation.

• Calling for a specific type of simulation
These functions start the actual computation. General

options are calculation of the spatial impulse response,
emitted field, or pulse-echo field.

By using MATLAB as a front end, a standardized way of sending
data to and collecting data from the program has been
achieved. Moreover, the approach allows the user to employ
the features of MATLAB for preprocessing tasks such as the
generation of apodization and dynamic focusing settings or
the rendering of a distribution of point scatterers, and for
postprocessing tasks like signal processing and visualization
of the computed data.

2.19.3.3.1 Computation of spatial impulse response
The most fundamental data that Field II can compute are the
spatial impulse response h(x,t) given in eqn [73]. This expres-
sion applies to a transducer in a flat, rigid wall and is exact for
flat transducers. In case of a curved transducer, an additional
term should be added, but this term is neglected under the
assumption that the curvature is small and the transducer is
large compared to the wavelength. The original procedure for
computing h(x,t) is described in Jensen and Svendsen (1992),
and an extended version of the procedure is presented in
Jensen (1999). These procedures are based on earlier work
described in Stepanishen (1971) and Harris (1981).

To explain the original procedure for computing the
spatial impulse response as a function of t, a receive scenario
is considered first. Here, it is supposed that a point source at
x¼(x,y,z) emits an impulsive wave at t¼0. At time t, the
emitted spherical wave front with center x will have a radius
R¼ c0t. The intersection of the wave front with the transducer
surface, assumed here to be at z¼0, will be a circular arc
C Rð Þ with center of curvature xc¼(x,y,0), radius of curvature
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 ! z2

p
, and endpoints that are defined by the edges

of the transducer as shown in Figure 6. In reception,
C Rð Þ ¼ C c0tð Þ holds all the points that at time t receive the
emitted impulsive wave. It might therefore be expected that
the total signal received by the transducer depends on the
length C c0tð Þj jj j of the circular arc C c0tð Þ. This is indeed the
case, as follows from integration over the transducer surface of
the time-domain equivalent of the Green’s function Ĝ x

0
; x

! "

from eqn [68]. This gives the so-called spatial impulse response
in reception:
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sin ’ Rð Þ½ +
dR

¼ C c0tð Þj jj j
2pt sin ’ c0tð Þ½ +

[76]

In this derivation, the integration over the Cartesian coordi-
nates x0 and y0 in the first line has been replaced in the second
line by an integration over the radius r and the length l along
C Rð Þ. Moreover, ’(R) is the angle between x!x0 and the
normal on the transducer surface. As shown in Figure 6, it
might also happen that C Rð Þ consists of more than one
circular segment. In that case, C Rð Þj jj j is the total length of
all segments.

In case of transmission, C Rð Þ ¼ C c0tð Þ contains all the
points that emit pulses that at time t arrive simultaneously at
x. The total emitted wave arriving at point x due to the impul-
sive transducer again depends on the length C c0tð Þj jj j. This
follows from integration over the transducer surface of the
time-domain equivalent of Ĝ x; x

0! "
from eqn [68]. Using sim-

ilar steps as in the derivation of eqn [76], the so-called spatial
impulse response in transmission is obtained as

ht x; tð Þ ¼
ð ð

A

1

2pjjx! x0 jj d t !
x! x

000 0000 00
c0

 !

dx
0

¼
ðrmax

rmin

ð

C Rð Þ

1

2pR
d t ! R

c0

& '
dldr

¼ C c0tð Þj jj j
2pt sin ’ c0tð Þ½ +

[77]

Equations [76] and [77] show that the spatial impulse
responses of a transducer in transmission and in reception
are identical. In other words, the pressure signal received by
the transducer from an impulsive point source in some
location is equal to the pressure that arrives in the same

location when the transmitter sends an impulsive signal. This
fact is a demonstration of acoustic reciprocity and makes that
only one spatial impulse response h(x,t) needs to be defined
for a given transducer.

In general, a procedure in which the integral in eqn [73] is
replaced by a straightforward summation over discrete grid
points is not preferred because at some time instants, the
spatial impulse response will change abruptly and an ineffi-
ciently dense grid will be necessary to retain accuracy. Instead,
Field II uses a procedure based on the arc length, as outlined
earlier, for the numerical evaluation of h(x,t). To approximate
the actual geometry, the ‘physical’ elements that make up the
transducer are usually subdivided into smaller ‘mathematical’
elements. These mathematical elements may have a rectangu-
lar, triangular, or polygonal shape. For each mathematical
element, the spatial impulse response is determined analyti-
cally. For the rectangular elements, this is done under the
assumption that the element dimensions are much smaller
than the distance to the point x. In this far-field approximation,
the arcs may be replaced by straight lines, as shown in Figure 6,
and the spatial impulse response has a trapezoidal shape that
may be computed with little numerical effort. For the triangu-
lar and polygonal elements, the exact spatial impulse response
is obtained at the expense of an increased numerical effort. In
view of this, to obtain a given accuracy, it is often more efficient
to subdivide the transducer surface into many rectangular ele-
ments instead of using a few triangular or polygonal elements.
The occurrence of fast changes in the spatial impulse response
implies the occurrence of high frequencies and calls for a high
temporal sampling rate (Jensen, 2001). However, the spectrum
of the acoustic pulse and the emit and receive transfer func-
tions of the transducer usually do not contain these high
frequencies. Therefore, instead of using a high sampling rate,
it makes more sense to lower the sampling rate while preserv-
ing the total energy in the signal. This fact is employed in Field
II by computing the time-integrated spatial impulse responses
of the mathematical elements and adding the results on a
relatively coarse temporal grid. Afterward, the spatial impulse
response is obtained by simple numerical differentiation.

2.19.3.3.2 Computation of emitted field
Knowing the spatial impulse response h(x,t) of a nonapodized
transducer and the normal velocity v?(t) at its surface, the
acoustic pressure is found as (cf. eqn [72])

p x; tð Þ ¼ h x; tð Þ∗t r0
@v? tð Þ
@t

& '
[78]

2.19.3.3.3 Computation of pressure from a point scatterer
A point scatterer is an infinitely small object that causes the
same reflected field as a small volume with medium properties
that differ from the background medium. Suppose that around
xsc, there is a volume DV in which the wave speed equals c 6¼ c0.
In this case, the wave equation in the domain DV is

r2p! 1

c20

@2p

@t2
¼ ! 1

c20
! 1

c2

& '
@2p

@t2
[79]

The wave equation for the total computational domain is then

xc

x! r

C(R)

C(R)

‘Physical
element’

‘Mathematical
element’

Figure 6 A ‘physical element’ being hit by the wave front from
an impulsive point source. The intersection of the wave front with the
source plane z¼0 yields the circular arc C Rð Þ. Within the smaller
‘mathematical element,’ C Rð Þ can be approximated by a straight line.
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r2p! 1

c20

@2p

@t2
¼ !Ssc [80]

with the so-called contrast source term

Ssc ¼ Ssc x; tð Þ ¼

1

c20
! 1

c2

& '
@2p x; tð Þ

@t2
for x 2 DV,

0 for x =2 D V :

8
>>><

>>>:
[81]

Assuming that the scattering takes place in free space,
the field psc scattered by DV may formally be found by convo-
lution of Ssc with the free-space Green’s function G in
eqn [49]. However, when the dimensions of the volume DV
are much smaller than a wavelength, the same scattered field is
obtained when the Green’s function is convolved with the
point source

Ssc x; tð Þ ¼ ad x! xscð Þ @
2p xsc; tð Þ
@t2

[82]

with a¼(c0
!2! c!2)DV. It may be shown that local deviations

of the density of mass can be represented in a similar way.
Equation [82] defines a point scatterer with strength a. In Field
II, configurations with several hundred thousands of point
scatterers are used to mimic biological tissue.

The scattered acoustic pressure due to the scattering by a
point scatterer located at xsc is

psc x; tð Þ ¼ Ssc x; tð Þ∗x, tG x; tð Þ

¼ a
@2p xsc; tð Þ

@t2
∗tG x! xsc, tð Þ [83]

which, with the aid of eqn [78], can be written as

psc x; tð Þ ¼ ar0
@v? tð Þ
@t

∗t
@2h xsc; tð Þ

@t2
∗tG x! xsc, tð Þ [84]

In case of more point scatterers, the total scattered field is
computed by adding the fields of the individual point scat-
terers as obtained from eqn [84]. This implies that in eqn [82],
p is taken to be the incident field from the transducer and
multiple scattering is not taken into account. This approach is
known as the Born approximation.

2.19.3.3.4 Computation of pulse-echo signal
Suppose that an acoustic pressure wave is incident on the same
transducer as used for transmission. Indicating a point on the
surface of the transducer by x0, the received signal is

sr tð Þ ¼
ð ð

A
psc x

0
; t

+ ,
dx

0
[85]

Substitution of eqn [84] yields

sr x; tð Þ ¼ ar0
@v? tð Þ
@t

∗t
@2h xsc; tð Þ

@t2
∗t

ð ð

A
G x

0 ! xsc, t
+ ,

dx
0
[86]

However, in view of eqns [49] and [73], it follows that
ð ð

A
G x

0 ! xsc, t
+ ,

dx
0 ¼ 1

2
h xsc; tð Þ [87]

and eqn [86] may be written as

sr x; tð Þ ¼ 1

2
ar0

@v? tð Þ
@t

∗t
@2H xsc; tð Þ

@t2
[88]

with

H xsc; tð Þ ¼ h xsc; tð Þ∗th xsc; tð Þ [89]

being the pulse-echo spatial impulse response (Jensen, 1991).
In case of multiple point scatterers, the pulse-echo responses of
individual scatterers are added.

2.19.3.3.5 Attenuation
In Field II, only attenuation with a linear frequency depen-
dency is implemented. The user can set the parameters a0, a1,
and f0 of an attenuation coefficient of the form

a fð Þ ¼ a0 þ a1 f ! f0ð Þ [90]

In Jensen et al. (1993), it is explained that two steps are used to
obtain the attenuated version of the spatial impulse response
h(x,t) in the far field. First, the frequency-dependent part
a1(f! f0) of the attenuation coefficient is combined with an
imaginary part that accounts for the corresponding dispersion.
The result is used as the argument of an exponential function
that provides a frequency-dependent attenuation/dispersion
factor. To avoid a spatial convolution, the mean distance ||
xmean|| between the points on the transducer surface and the
point x is used instead of the actual distances. The complex
attenuation/dispersion factor is subsequently multiplied by the
temporal Fourier transform of h(x,t), and the result is trans-
formed back to the time domain. Second, the intermediate
result is multiplied by the frequency-independent attenuation
factor exp(!a0||xmean||) to yield the final attenuated spatial
impulse response in the far field.

2.19.3.3.6 Apodization and focusing
Multielement sources can often be described by a normal
surface velocity that is separable into an apodization (tapering)
function A(x) and source signature function v(t). The apodiza-
tion function is used to model the tapering of the surface
excitation towards the edge of the transducer or the on–off
switching of elements. Moreover, the ultrasound beam may
be steered and focused by giving the elements of a transducer a
different time delay t(x). Both effects can be accounted for by
the introduction of a normal surface velocity

v? x; tð Þ ¼ A xð Þv t ! t xð Þ½ + [91]

Substitution into eqn [70] yields that the emitted acoustic
pressure may still be written in the form of eqn [72], but now
the spatial impulse response becomes

h x; tð Þ ¼
ð ð

A

A x
0! "

2pjjx! x0 jj d t !
x! x

000 0000 00
c0

! t x
0

+ ," #

dx
0

[92]

These changes can easily be accounted for when it is assumed
that the apodization and the time delay are constant over the
physical elements of the transducer. In that case, apodization
implies multiplication of the spatial impulse response of a
physical element, and time delay means shifting the spatial
impulse response of a physical element in time before adding
it to the spatial impulse responses of the other elements.

When transducer apodization, beam steering, and beam
focusing are dynamically controlled, it may not always be a
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good idea to recompute the spatial impulse response of a
transducer for each scanning scenario. Usually, a better option
is to first compute the pulse-echo responses for each physical
element and account for the apodization and delay later on.
This synthetic aperture strategy may save a lot of numerical
effort, particularly in the case of pulse-echo simulations involv-
ing a huge amount of static point scatterers. A discussion of this
issue is given in Jensen and Nikolov (2000).

2.19.3.4 FOCUS

FOCUS can be considered as a modern successor of Field II and
is organized and used in roughly the same way. A description
of the program may be found in the FOCUS Quick Start Guide
(2013). FOCUS is built on two different numerical techniques:
the fast near-field method (FNM) and the angular spectrum
approach (ASA). Most computations are performed in core
programs that have been written in Cþþ. These programs
communicate with MATLAB through m-functions, which can
be used to set the medium parameters, define the transducer,
or start a particular type of computation. The choice of using
the MATLAB environment brings the same benefits as men-
tioned for the Field II program. Noticeable differences between
Field II and FOCUS are the following:

• FOCUS aims at high-accuracy computations, in particular
in the near field.

• Field II can compute pulse-echo scenarios.

2.19.3.4.1 Fast near-field method
The basis of this method is derived from the exact integral
expressions for the frequency-domain versions of the spatial
impulse response of some basic transducer shapes, for exam-
ple, a rectangular, circular, or triangular piston. Although
impulse response calculations contain only single integrals
over a finite domain, their numerical evaluation is difficult
because the integrand typically has a singularity on the inte-
gration interval. As demonstrated in McGough (2004),
McGough et al. (2004), and Kelly and McGough (2006), the
FNM uses one or more of the following techniques to improve
the numerical evaluation of the pressure:

• Rewriting the integrals in another form that does not
involve a singular integrand

• Combining integrals that share the same integrands

• Evaluating the integrals using Gauss quadrature

• Adapting the number of abscissas to the local need (grid
sectoring)

• Avoiding repeated computation of the same quantities

• Representing functions with a mixed space–time argument,
for example, v(t!z/c0), by a sum of terms fn(t)gn(z/c0) that
consist of a temporal function multiplied by a spatial func-
tion (time–space decomposition)

In this way, the pressure may be obtained with less effort and/
or with increased accuracy as compared to a straightforward
evaluation of the classical expressions. Because no far-field
approximations are made, the results are also much more
accurate in the near field.

2.19.3.4.2 Angular spectrum approach
This general approach is used to propagate the frequency-
domain field in the transducer plane towards other parallel
planes. This axial propagation is performed in the so-called
angular spectrum domain, which is arrived at after applying a
transformation with respect to the lateral coordinates. The
approach may be found in, for example, Christopher and
Parker (1991b), Zemp et al. (2003), Varslot and Taraldsen
(2005), and Varslot and Mås"y (2006). In the context of
FOCUS, the evaluation of the ASA by Zeng and McGough
(2008) is relevant.

In FOCUS, the starting field in the transducer plane is
obtained by the FNM. Suppose that in the transducer plane
z¼0, the normal surface velocity v̂? x; y;0ð Þ ¼ v̂? x; y; 0;oð Þ is
given. This field may be used in eqn [70] to obtain

p̂ x; y; zð Þ ¼ jor0 v̂? x; y;0ð Þ∗x, yĥ x; y; zð Þ [93]

where

ĥ x; y; zð Þ ¼ ĥ xð Þ ¼ exp !jkjjxjjð Þ
2pjjxjj [94]

is the so-called spatial propagator.
Application of the two-dimensional Fourier transformation

with respect to x and y yields the angular spectral domain
alternative to eqn [93]:

~p kx; ky; z
! "

¼ jor0~v? kx; ky;0
! "~h kx; ky; z

! "
[95]

Here, kx and ky are the lateral spatial frequencies, and the tilde
has been used to indicate quantities in the spatial frequency
domain. The function

~h kx; ky; z
! "

¼

exp !jz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 ! k2x ! k2y

q+ ,

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 ! k2x ! k2y

q for k2x ! k2y ' k2,

exp !z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 ! k2x ! k2y

q+ ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 ! k2x ! k2y

q for k2x ! k2y > k2,

8
>>>>>>><

>>>>>>>:

[96]

is called the spectral propagator. The first line indicates the
undecaying motion of propagating plane wave components
with lateral spectral frequencies that satisfy kx

2!ky
2'k2, and

the second line represents the exponential decay of evanescent
plane wave components with kx

2!ky
2>k2. The spectral propa-

gator approach can be numerically implemented by using two-
dimensional FFTs. However, care should be taken to avoid
aliasing and wraparound errors. These difficulties can be over-
come by applying spectral filtering and zero-padding tech-
niques, as will be further explained in Section 2.19.5.3.

2.19.4 Numerical Methods for Linear Ultrasound
Fields

2.19.4.1 Background and Common Numerical Methods

In many practical cases, the equations governing the propaga-
tion of ultrasound waves do not have an analytical or semi-
analytical solution. For example, the acoustic medium may
have a spatially varying sound speed, or the acoustic
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absorption may be governed by a particular spatial distribution
of relaxation processes. For these cases, numerical methods
must instead be used. The solution of partial differential equa-
tions by numerical calculations is now commonplace, both in
academia and in industry. This ubiquity can be attributed to
the continued expansion of low-cost computer systems over
the last two decades. Large-scale, tissue-realistic ultrasound
simulations that are possible using desktop machines today
would have been very difficult 10 years ago and almost
unthinkable 20 years ago!

The general idea behind the numerical solution of partial
differential equations is to take a continuous system, which has
an infinite number of degrees of freedom, and approximate
this by a discrete system that can be analyzed using a computer.
Some of the most commonly encountered techniques for dis-
cretizing differential equations in space are the finite difference
(FD) method, the pseudospectral method, the finite element
(FE) method, the boundary element method, and the integral
equation (IE) method. For time-dependent problems, the time
derivatives must also be discretized. This is commonly
achieved using an FD approach. The different methods will
be briefly discussed here before giving a more detailed (and
gentle) introduction to the FD and pseudospectral methods in
Sections 2.19.4.2 and 2.19.4.3.

Throughout this section, the numerical methods will be
presented in the context of simulating linear ultrasound prop-
agation. However, most methods can be easily adapted to also
deal with nonlinear ultrasound.

2.19.4.1.1 Finite difference method
In the FD method, the region of interest is first divided up into
an evenly distributed mesh of grid points as illustrated in
Figure 7(a). The grid points represent the discrete positions
in space at which the solution values are obtained. The contin-
uous derivatives in the governing equations are then replaced
with FD approximations. These are obtained by interpolating
between the discrete values of the function over a small neigh-
borhood of grid points using a series of overlapping polyno-
mials. The derivative of the function at each grid point can then
be computed using the derivative of the polynomials. The FD
method is frequently used in acoustics and ultrasound, as it is
well suited to broadband and time-domain problems and
is relatively simple to formulate and implement.

2.19.4.1.2 Pseudospectral method
In the pseudospectral method, instead of approximating deriv-
atives locally using the function values at a small number of
neighboring grid points, the complete field is decomposed into
a finite sum of basis functions that vary globally over the grid.
For wave problems, the most common choice is to use a
Fourier basis. After the basis function weights are calculated
(e.g., using the Fourier transform), derivatives can then be
computed using a weighted sum of the derivatives of the
chosen basis functions. Compared to the FD method, the
pseudospectral method can significantly reduce the number
of grid points per wavelength needed for accurate simulations.
This makes it well suited to modeling wave propagation in
large domains.

2.19.4.1.3 Finite element method
In the FE method, the region of interest is also divided into a
mesh of grid points. However, in contrast to the FD method,
the grid is usually unstructured, which allows fine geometric
details to be resolved (an example is given in Figure 7(b)).
Before discretization, the governing equations are rewritten as
an integral equation (called the weak formulation), which is
then solved numerically. The variation of the unknown field
variables (like the acoustic pressure and particle velocity) is
described by a set of nonoverlapping polynomials that vary
locally over each element. To model time-domain problems,
the calculation of spatial derivatives using the FE method is
normally combined with the calculation of temporal deriva-
tives using the FD method. One advantage of the FE method is
that the solution can be obtained by minimizing an error
function. This means the mesh can be adaptively refined in
order to control the accuracy of the solution. The method has
found particular use in modeling piezoelectric ultrasound
transducers, and there are currently several commercial pack-
ages available, including PZFlex, LMS SYSNOISE, and COM-
SOL Multiphysics. However, a disadvantage of the FE method
is that it becomes inefficient for solving many time-domain
problems, particularly when the ultrasound signals are
broadband.

2.19.4.1.4 Boundary element method
In the boundary element method, the discretization of the
complete region of interest is replaced by a discretization of

Finite element Boundary elementFinite difference (c)(b)(a)

Figure 7 Examples of the computational grids used by different numerical methods for calculating the acoustic scattering from a rigid cylinder in 2-D.
(a) The finite-difference method uses a structured mesh. (b) The finite-element method uses an unstructured mesh. (c) The boundary element method
uses a boundary discretization rather than a volume discretization.
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the boundaries within the domain (see Figure 7(c)). The
resulting integral equation is then solved numerically, where
the variation of both the field variables and the boundary
geometry over each boundary element is described by shape
functions. The solution is obtained in two steps, first by com-
puting the acoustic pressure on the boundary surface and then
by using this to compute the pressure field elsewhere in
the domain. The main advantage of this approach is that
only the boundary surfaces need to be discretized, which
reduces the dimensionality of the problem. This also alleviates
the need to truncate the computational grid in the far field. The
method is particularly useful for modeling acoustic scattering
problems in otherwise homogeneous media. For example,
Gélat et al. (2011) used the boundary element method to
study the aberration of a therapeutic ultrasound beam by the
rib cage, where the ribs were modeled as rigid scatterers. The
main disadvantage of the boundary element method is that it is
restricted to piecewise homogeneous media and cannot easily
account for the power-law acoustic attenuation behavior that is
observed in biological tissue.

2.19.4.1.5 Integral equation method
The IE method is based on the concept of a so-called back-
ground medium for which the Green’s function is known in
analytical form. The deviations of the actual medium from the
(necessarily simple) background medium are accounted for by
contrast sources. Such deviations can occur in one or more
medium parameters. In the backgroundmedium, two different
acoustic wave fields are formally distinguished: the incident
field that is directly caused by the transducer and the scattered
field that is caused by the contrast sources. The scattered field
can be written as a convolution of the background Green’s
function and the contrast sources. When both fields are
added, this results in an integral equation, whichmay be solved
by various iterative methods (Kleinman and Van den Berg,
1991). Each iteration step involves a convolution over space
and time, which can be performed efficiently by transforming
to the spatial and temporal frequency domain. This approach
enables the application of a spatiotemporal grid with only two
points per wavelength and period (Verweij and Huijssen,
2009). Another benefit of IE methods is that domain trunca-
tion is in general not necessary. An extensive discussion of the
IEmethod for linear acoustics is given by Fokkema and Van den
Berg (1993). In Section 2.19.5.4, a more detailed presentation
of the IE method is given in the context of nonlinear acoustics.

2.19.4.2 Finite Difference Methods

2.19.4.2.1 Finite difference schemes and Taylor series
Of all the numerical methods used to model ultrasound
waves, FD methods are probably encountered the most often.
Before considering how these methods can be used to derive
numerical solutions to the acoustic equations discussed in
Section 2.19.2, it will be constructive to discuss more generally
how they can be used to calculate derivatives of discretely
sampled functions, that is, functions whose values are known
only at a particular set of points. For most of this section,
the analysis will be restricted to functions that vary in one or
two space dimensions. However, analogous results for other
dimensions easily follow.

Consider a function of two space variables f(x,y). Provided
this function is sufficiently smooth, the variation at some point
(xþDx, y) can be written as a sum of derivatives at (x,y) using a
Taylor series, where

f xþ Dx, yð Þ ¼ f x; yð Þ þ D x
@f x; yð Þ

@x
þ Dx2

2!

@2f x; yð Þ
@x2

þDx3

3!

@3f x; yð Þ
@x3

þ & & & [97]

Dividing this expansion by Dx and only retaining the first two
terms in the series then yields an expression for the partial
derivative of f(x,y) in the x-direction using the value of the
function at two points separated by Dx:

@f x; yð Þ
@x

¼ f xþ Dx, yð Þ ! f x; yð Þ
Dx

þ Ο Dxð Þ [98]

This expression is a simple example of an FD formula. It is
called a forward difference approximation as the derivative at
(x,y) is found with the help of the function values at (xþDx, y),
that is, offset in the forward or positive x-direction. This par-
ticular expression can be traced back to Newton, and the
limit as Dx!0 is often seen in the formal definition of
the derivative.

The symbolΟ in eqn [98] is the Landau symbol. It is used to
describe the error in the expansion that is introduced from the
truncation of the Taylor series to a finite number of terms. The
notation Ο(Dxn) (sometimes called the big-O notation) states
that the error in the FD approximation as Dx!0 is bounded by
a constant value multiplied by (Dx)n. For eqn [98], because the
error is proportional to Dx (where n¼1), the FD scheme is
referred to as first-order accurate or simply first-order. Practi-
cally, this means that if the grid spacing Dx is reduced by a
factor of 2, the truncation error will also approximately reduce
by a factor of 2. Note, the Landau symbol describes the error
introduced from a single application of the FD formula. It does
not account for the cumulative or total error if the formula is
applied several times in succession. This is discussed in more
detail in Section 2.19.4.2.5.

When dealing with discrete functions rather than continu-
ous ones, it is common to write FD formulas using subscript
notation, where the function value at a particular grid point
(i, j) in two dimensions is denoted fi, j. The grid points represent
the discrete set of spatial points where the values of the input
function are known. In most cases, these points will be distrib-
uted uniformly such that xi¼ iDx and yj¼ jDy where i¼0,1, . . .,
Nx!1 and j¼0,1, . . .,Ny!1, and the function values will be
stored as a matrix. An example of a uniform mesh in 2-D is
given in Figure 7(a). Using subscript notation, the first-order
forward difference approximation given in eqn [98] can be
written in the form

@f

@x

0000
i, j

¼
fiþ1, j ! fi, j

Dx
þ Ο Dxð Þ [99]

Computationally, this can be implemented by looping over
the complete set of grid points. The derivative at each position
is then calculated using the function values at the neighboring
points. The pattern that is formed by connecting the grid
neighbors required to calculate the derivative at any
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particular position is called the FD stencil. A discussion of how
to deal with the edges of the domain is postponed until
Section 2.19.4.2.6.

Following the same procedure used earlier, the variation of
a function at a point (x!Dx,y) offset in the negative or back-
ward direction can also be expanded as a sum of derivatives at
(x,y) using a Taylor series:

f x! Dx, yð Þ ¼ f x; yð Þ

! Dx
@f x; yð Þ

@x
þ Dx2

2!

@2f x; yð Þ
@x2

! Dx3

3!

@3f x; yð Þ
@x3

þ & & &

[100]

Again, this leads to an FD formula, in this case a first-order
accurate backward difference approximation:

@f

@x

0000
i, j

¼
fi, j ! fi!1, j

Dx
þ Ο Dxð Þ [101]

The expansions for forward and backward differences can also
be combined to give a central difference formula, where the
function values on either side of the point of interest are used.
Subtracting eqn [100] from eqn [97] and dividing by the grid
spacing yields

@f

@x

0000
i, j

¼
fiþ1, j ! fi!1, j

2Dx
þ Ο Dx2

! "
[102]

As the @2/@x2 terms and other even-order derivatives in the two
Taylor series expansions cancel, the truncation error is reduced,
giving second-order accuracy. Practically, this can be signifi-
cant, as reducing the grid spacing by a factor of 2 will now
reduce the truncation error by approximately a factor of 4.
A visualization of the backward, forward, and central FD
schemes in one-dimension is shown in Figure 8. In the partic-
ular example shown, it is clear that the central difference
approximation gives a closer estimate of the derivative at fi.

By combining the Taylor series expansions for different
points in different ways, it is possible to derive a complete
library of FD schemes with varying accuracy and for different
order derivatives. For example, the Taylor series expansions for
f(x.Dx, y) and f(x.2Dx, y) can be combined in such a way that
the @3/@x3 terms and even-order derivatives cancel. This yields
a fourth-order accurate central difference approximation:

@f

@x

0000
i, j

¼
fi!2, j ! 8fi!1, j þ 8fiþ1, j ! fiþ2, j

12Dx
þ Ο Dx4

! "
[103]

Similarly, summing eqns [97] and [100] such that the @/@x
terms cancel gives a second-order accurate central difference
approximation for the second derivative:

@2f

@x2

0000
i, j

¼
fiþ1, j ! 2fi, j þ fi!1, j

Dx2
þ Ο Dx2

! "
[104]

Other approximations can be formed in a similar fashion.
A comprehensive list of FD weights for different accuracy and
derivative orders is given by Fornberg (1988, 1996).

2.19.4.2.2 Finite difference schemes and polynomials
In the previous section, the derivation of FD formulas is con-
sidered using the machinery of the Taylor series. This approach
is particularly instructive as the accuracy of different approxi-
mations can be directly extracted via the truncation error. It is
also possible to derive equivalent FD schemes by fitting poly-
nomials of a given degree to the discrete function values. For
example, consider a linear polynomial P(x) that interpolates
between the values of the discrete function f at the neighboring
points xi and xiþ1. The equation for this polynomial may be
written in general form as

Pj xð Þ ¼ x! xi
Dx

& '
fiþ1, j !

x! xiþ1

Dx

& '
fi, j where xi ' x ' xiþ1 [105]

The derivative of the function f can then be approximated by
using the derivative of the interpolating polynomial, that is,

@f

@x

0000
i, j

)
@Pj xð Þ
@x

¼
fiþ1, j ! fi, j

Dx
[106]

This formula is equivalent to the first-order forward difference
approximation given in eqn [99] derived using a Taylor series.
For central differences, a general formula for the FD scheme of
order 2M can be written as (Hesthaven et al., 2007)

@f

@x

0000
i, j

)
XM

m¼1

aMm
fiþm, j ! fi!m, j

2mDx

& '
[107]

where

aMm ¼ !2 !1ð Þm M!ð Þ2

M!mð Þ! Mþmð Þ!
[108]

Other schemes can similarly be derived by fitting the appropri-
ate interpolating polynomial to the discrete function values at
more grid points (Fornberg, 1988). The derivative of the func-
tion (and consequently the FD scheme) can then be obtained
using the derivative of the polynomial.

There are several benefits to considering the relationship
between FD schemes and their corresponding interpolating
polynomials. In particular, it is clear using this formulation
that FD approximations will give exact results if the variation
of the underlying function between the grid points follows
a polynomial of the same degree as that used in the numerical
scheme. For example, if there is a quadratic variation between
three grid nodes, then a second-order FD will calculate the
derivative exactly. In all other cases, the expressions are
approximate.

Backward Forward
ƒi+1

i − 1 i + 1i

ƒi − 1

ƒi

Central

Figure 8 Illustration of forward, backward, and centered finite
difference schemes used to numerically compute the derivative of a one-
dimensional function from its discrete values (shown with filled circles).
The slope of dashed lines indicate the value of the calculated derivatives.
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2.19.4.2.3 Solution of the linearized acoustic equations
Now that the basic components of the FD method have been
introduced, these can be used to derive a numerical solution to
the acoustic equations described in Section 2.19.2. First, con-
sider the homogeneous wave equation for the acoustic pressure
in eqn [20]. This can be written in the form

@2p

@t2
¼ c20r

2p [109]

The general approach to solving partial differential equa-
tions of this kind is to replace the continuous derivatives
with discrete FD approximations. In this case, there are both
temporal and spatial derivatives that must be discretized. As
discussed in Sections 2.19.4.2.1 and 2.19.4.2.2, there are a
large number of possible approximations that may be used.
Perhaps, the simplest approach is to use a second-order
accurate central difference approximation for both the tem-
poral and the spatial derivatives. In two dimensions, this
leads to

pnþ1
i, j !2pni, j þ pn!1

i, j
Dt2

¼ c20
pniþ1, j þ pni, jþ1!4pni, jþ pni!1, j þ pni, j!1

Dx2
[110]

(recall that in 2-D, r2¼@2/@x2þ@2/@y2). Here, n corresponds
to the temporal index, where pi, j

n!1, pi, j
n , and pi, j

nþ1 signify the
acoustic pressure values at the previous, current, and next time
points, respectively, and the grid is assumed to be evenly
spaced, where Dx¼Dy. Rearranging this expression gives an
explicit update equation that may be used to calculate the
evolution of the pressure field at each grid point in a time-
stepping fashion:

pnþ1
i, j ¼ 2pni, j ! pn!1

i, j

þDt2c20
pniþ1, j þ pni, jþ1 ! 4pni, j þ pni!1, j þ pni, j!1

Dx2
[111]

A similar formula can easily be developed using a second-order
accurate central difference for the temporal derivative and a
fourth-order accurate central difference for the spatial deriva-
tive (sometimes called a 2–4 scheme) (Strikwerda, 2004). This
formulation is widely used in practice as discussed in
Section 2.19.4.2.7.

Notice that in eqn [111], the calculation of the pressure
field at the next time step requires the values at two previous
time steps. To allow this scheme to get started, initial condi-
tions for the pressure field and its temporal derivative at t¼0
are required, where

p0i, j ¼ fi, j [112]

@p0i, j
@t

¼ ci, j [113]

Using the second-order accurate central difference formula
from eqn [102], the second initial condition can be rewritten
as pi, j

!1¼pi, j
1 þ2Dtci, j. Substituting this and eqn [112] into

eqn [111] then gives an expression for pi, j
1 based on the initial

conditions fi, j and ci, j.
In addition to solving the wave equation, it is also possible

to use the FD method to directly solve the linearized acoustic
equations written as a set of coupled first-order partial differ-
ential equations. The coupled equations [18] and [19] for the

acoustic pressure p and the acoustic particle velocity v can be
written as

@v

@t
¼ ! 1

r0
rp [114]

@p

@t
¼ ! 1

k0
r&v [115]

To derive an equivalent second-order accurate FD scheme, the
spatial and temporal derivatives must now be discretized using
the second-order accurate central difference scheme for the first
derivative given in eqn [102]. Considering for a moment the
one-dimensional case and assuming the velocity is updated
first followed by the pressure, this leads to the following set
of discrete equations:

vnþ1
i ! vn!1

i

2Dt
¼ ! 1

r0

pniþ1 ! pni!1

2Dx
[116]

pnþ2
i ! pni
2Dt

¼ ! 1

k0

vnþ1
iþ1 ! vnþ1

i!1

2Dx
[117]

An interesting pattern appears if the progression of this scheme
is mapped out as shown in Figure 9(a). First, the pressure and
the velocity are only evaluated at alternating time points. Sec-
ond, two independent simulations will progress (shown with
the white and black markers) without any interaction. If only
one of these is retained, and the temporal and spatial grid
spacing are halved (which reduces the truncation error by a
factor of 4), the discrete equations can be rewritten as

vnþ1=2
iþ1=2 ! vn!1=2

iþ1=2

Dt
¼ ! 1

r0

pniþ1 ! pni
Dx

[118]

0
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Figure 9 (a) Pattern that arises from the application of second-order
accurate central differences to solve the acoustic equations expressed as
first-order partial differential equations. The dashed lines show the
connections between the grid points used to calculate the spatial
derivatives. (b) Equivalent staggered grid scheme.
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pnþ1
i ! pni

Dt
¼ ! 1

k0

vnþ1=2
iþ1=2 ! vnþ1=2

i!1=2

Dx
[119]

Using this scheme, the acoustic particle velocity is now com-
puted on a staggered spatial and temporal grid as shown in
Figure 9(b). This particular scheme was first proposed by Yee
(1966) for solving the electromagnetic equations. The main
advantage of using a staggered grid scheme compared to a
nonstaggered scheme with forward or backward differences is
that additional accuracy can be obtained without increasing
the number of grid points in the domain or the FD stencil
width. Again, two initial conditions are required to get the
scheme started (one for the pressure and one for the particle
velocity).

If the particle velocity is eliminated from the discrete equa-
tions given in eqns [118] and [119], the second-order accurate
scheme for the wave equation given in eqn [111] is obtained.
Thus, the two schemes can be considered equivalent. One
advantage of solving coupled equations for the pressure and
particle velocity is that a split-field perfectly matched layer
(PML) can be used to absorb the waves at the edge of the
domain. This is discussed in more detail in Section 2.19.4.2.6.
There are also differences in the amount of computer memory
required to implement the schemes. Solving the wave equation
directly requires three matrices the size of the computational
domain to store three time levels of p. In comparison, solving
the coupled equations requires 1þD matrices (where D is the
number of spatial dimensions in the simulation) to store the
acoustic pressure and the Cartesian components of the particle
velocity vector.

The discrete equations given in eqn [111] and eqns [118]
and [119] are both examples of explicit FD schemes. This
means the field variables at the next time step are calculated
directly from values at the previous time steps, and the simu-
lation proceeds in a time-stepping fashion. An alternative
approach is to use implicit FD schemes, where the approxima-
tions for the spatial derivatives also use values of the field
variables at the next time step, which are not yet known. In
this case, the complete solution must be written as a system of
linear equations and solved using matrix inversion methods.
In comparison, implicit methods often have better stability
properties than explicit methods. However, for large problems,
they are computationally less efficient. It is for this reason they
are not often used for modeling ultrasound fields in higher
dimensions, where the number of grid points can become very
large.

There are many other aspects of the FD method that have
not been touched on here, for example, compact schemes
(where higher-order accuracy is achieved using a smaller FD
stencil) and multistage or Runge–Kutta schemes (where
higher-order accuracy is achieved by introducing intermediate
stages into each time step). For further details, the interested
reader is directed to one of the many available books on FD
methods, for example, Thomas (2010) or Strikwerda (2004).

2.19.4.2.4 Consistency, convergence, and stability
In Section 2.19.4.2.3, different explicit FD models are con-
structed from the partial differential equations describing the
propagation of ultrasound waves. Here, the conditions under
which these numerical models provide the correct solution to

the governing equations are considered. This is assessed using
three related concepts: consistency, convergence, and stability.
A numerical model is consistent if it mathematically reduces to
the continuous governing equations in the limit that the spatial
and temporal steps reduce to zero, in the same way that
[f(xþDx)! f(x)]/Dx!@f/@x as Dx!0. This is straightforward
to show, and provided that the appropriate FD approximations
have been used when discretizing the equations, the models
will be consistent. A numerical model is convergent if the
numerical solution approaches the exact solution as the size
of the discrete spatial and temporal steps used in the model is
reduced. Similarly, a numerical model is stable if the errors in
the numerical solution are bounded, that is, they do not grow
as the simulation progresses. Convergence is normally difficult
to prove via direct analysis of the discrete equations. However,
a consistent and stable numerical scheme can be proved to be
convergent (this is known as the Lax equivalence theorem).
Thus, if a model is known to be consistent, it is sufficient to
show it is convergent by proving that it is stable.

To examine the stability of an FD scheme, a von Neumann
stability analysis can be performed (Charney et al., 1950).
This begins by assuming that the solution for a 1-D problem
can be written in the form pm

n ¼lnexp(!jkmDx). Here, m has
been used as the spatial grid index to avoid any confusion
with the imaginary unit. The factor l accounts for the time
dependence of the solution and is sometimes called the ampli-
fication factor. The exponential term accounts for the spatial
dependence, where k is the spatial frequency or wave number.
Choosing a solution of this form can be motivated by consid-
ering the acoustic wave field as a superposition of plane waves
or Fourier modes, where the overall behavior under linear
conditions can be determined by examining the behavior of
a single mode. Provided the true solution to the partial differ-
ential equation is not growing, the FD scheme will be stable if
|l|'1 for all possible values of k.

To illustrate how the analysis is performed, consider the
second-order accurate central difference scheme constructed in
Section 2.19.4.2.3. In 1-D, this can be written as

pnþ1
m ! 2pnm þ pn!1

m

Dt2
¼ c20

pnmþ1 ! 2pnm þ pnm!1

Dx2
[120]

Substituting the solution pm
n ¼lnexp(!jkmDx) and dividing by

lnexp(!jkmDx) then gives

l! 2þ l!1 ¼ c0Dt
Dx

+ ,2
exp !jkDxð Þ ! 2þ exp jkDxð Þ½ +

) lþ l!1 ¼ 2þ 2 c0Dt
Dx

+ ,2
cos kDxð Þ ! 1½ +

[121]

Denoting the right-hand side of the second equation as a and
then multiplying by the amplification factor l yields the char-
acteristic quadratic equation l2!alþ1¼0, for which the solu-
tion is l ¼ a.

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 ! 4

p+ ,
=2. The requirement that |l|'1 is

satisfied when !2'a'2, that is, when

!2 ' 2þ 2
c0Dt
Dx

& '2

cos kDxð Þ ! 1½ + ' 2 [122]

As the sound speed and spatial and temporal step sizes are
positive quantities and the cos(kDx)!1 term is bounded
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between !2 and 0, the right condition is always satisfied. The
remaining stability condition can then be reduced to

c0Dt
Dx

' 1 [123]

This condition can be used to select an appropriate time step
given the spatial step and sound speed in the medium. The
number c0Dt/Dx is called the Courant–Friedrichs–Lewy (CFL)
number (Courant et al., 1967). In the acoustic case, this can be
interpreted as the distance a wave can travel in a single time
step relative to the spatial grid spacing. The stability condition
is often given as a restriction on the CFL number. For example,
the stability condition in eqn [123] can also be written as
CFL'1.

A simple example of the effect of the time step (or CFL
number) on the stability of a numerical simulation is shown
in Figure 10. Here, the propagation of a Gaussian initial pres-
sure distribution is modeled using the second-order accurate
central difference scheme given in eqn [120]. The time step is
chosen to be Dt¼CFL Dx/c0. When the stability condition is
met, two identical waves propagate across the domain in oppo-
site directions as expected. When the stability condition is not
met, errors in the numerical solution start to appear and con-
tinue to grow until the solution is completely corrupted.

In general, the stability condition will depend on both
the accuracy of the FD scheme and the dimensionality of the
problem. For example, in 2-D and 3-D, the stability condition
for the second-order accurate central difference scheme
becomes CFL ' 1=

ffiffiffiffi
D

p
, where D is the number of spatial

dimensions. For an FD scheme that is second-order accurate
in time, and fourth-order accurate in space, the CFL condition
is instead CFL '

ffiffiffiffiffiffiffiffiffiffiffiffi
3=4D

p
. More generally, when the wave

equation is solved using centered FDs, the stability condition
is given by CFL '

ffiffiffiffiffiffiffiffiffiffiffiffi
a1=a2

p
, where a1 and a2 are the sum of the

absolute values of the FD coefficients used to calculate @2/@t2

and r2, respectively (Lines et al., 1999).

2.19.4.2.5 Accuracy and numerical dispersion
In the previous section, the concepts of consistency, conver-
gence, and stability are introduced. The effect of truncation
errors in the FD approximations on the overall accuracy of the
numerical solution must now also be considered. Consider the
discretization of the one-dimensional wave equation using
the second-order accurate central difference scheme given in
eqn [120]. The exact solutions to the corresponding continuous
wave equation subject to the initial condition p(x,0)¼exp(!jkx)
are waves traveling to the left and the right that are given by
p(x,t)¼exp[!jk(x. c0t)]. Taking the forward traveling wave
p(x,t)¼exp[!jk(x! c0t)] and substituting this into the FD
approximation for the spatial derivative leads to

@2

@x2
p x; tð Þ ) exp !jkDxð Þ ! 2þ exp jkDxð Þ

Dx2
exp ½!jkðx! c0tÞ+

¼ !sinc2 kDx=2ð Þk2 exp ½!jkðx! c0tÞ+
[124]

In comparison, the analytical value of the derivative is given by

@2

@x2
p x; tð Þ ¼ !k2 exp !jk x! c0tð Þ½ + [125]

Thus, the FD approximation can be seen to introduce an error
of sinc2(kDx/2) into the value of the derivative compared to the
exact solution. Similarly, if a second-order accurate central
difference scheme is used to discretize the temporal derivative,
an error of sinc2(c0kDt/2) is introduced. Combining these
results, the continuous equation that is exactly solved by the
FD scheme can be written as

@2p

@t2
¼ c kð Þ2 @

2p

@x2
where c kð Þ ¼ sinc kDx=2ð Þ

sinc c0kDt=2ð Þ c0 [126]

Notice the sound speed in the numerical model is now depen-
dent on the wave number k. This illustrates that the FD approx-
imations used to calculate the continuous derivatives introduce
phase error or numerical dispersion into the solution.
(Dispersion can be both physical and numerical and refers
to a dependence of the phase velocity or sound speed on fre-
quency.) Practically, this means that waves will become increas-
ingly distorted compared to the true solution as they propagate
across the computational grid. The error in the sound speed
introduced by the FD approximation of the spatial derivative
against normalized wave number is illustrated in Figure 11.

It is interesting to note from eqn [126], if Dx¼ c0Dt (i.e., the
CFL is set to 1), the phase errors introduced by the temporal
and spatial FD schemes will exactly cancel. In this case, the
numerical solution will be exact for all frequencies up to
the Nyquist limit of two grid points per wavelength (this is
the minimum number of discrete points per wavelength that
can be used to sample a sinusoidal signal without ambiguity in
the frequency). Unfortunately, in higher dimensions, stability
dictates a maximum CFL value of less than 1, and thus, the
introduction of numerical dispersion cannot be avoided. The
practical implication of this is a restriction on the number of

Initial pressure distribution

Propagating pressure field

CFL = 1

CFL = 1.3

Instability

Figure 10 Example of instability in the propagation of Gaussian
pressure pulse in 1-D using the FD scheme from eqn [120]. The jagged
region in the pressure profile for a Courant–Friedrichs–Lewy number
of 1.3 illustrates the instability. This error will continue to grow until the
solution is completely corrupted.
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grid points per wavelength that must be used at the maximum
frequency of interest. From Figure 11, it is clear that at the
Nyquist limit of two points per wavelength (where kDx¼p),
even the higher-order schemes introduce a significant phase
error. However, at kDx¼p/4 (which corresponds to eight
points per wavelength), the error in the sound speed for the
fourth- and sixth-order schemes is less than 1%. Considering
the phase error introduced by both the temporal and the
spatial FD schemes, a common choice is typically between
10 and 20 grid points per acoustic wavelength at the maximum
frequency of interest. However, this strongly depends on the
size of the computational domain and the order of accuracy
used. For lower-order schemes and large domains, a finer dis-
cretization is required to avoid the accumulation of phase
errors. A good approach to check the accuracy of a simulation
is to continue to halve the size of both the spatial and the time
steps until the numerical solution reaches a steady value.

2.19.4.2.6 Free-space propagation using a perfectly
matched layer
Up to now, strategies to deal with the edges of the computa-
tional grid have not been discussed. From an implementation
perspective, if centered differences are used to compute the
spatial derivatives, these can be replaced with the appropriate
forward and backward difference schemes of the same order
near the boundaries. Both Neumann (sound-hard or rigid) and
Dirichlet (sound-soft or compliant) boundary conditions can
then be enforced at the edges of the grid by setting the appro-
priate values to zero. However, in most practical cases, it is
advantageous to choose the size of the computational grid
based on a particular region of interest within physical space,
not based on the location of physical boundaries within the
domain (which are unlikely to be rectangular in any case).
Thus, a method to simulate free-field conditions in which
acoustic waves are able to exit from the computational grid
without being reflected is required.

The simplest way to model free-field conditions is to
increase the size of the grid such that the waves never reach
the boundaries. However, this carries an obvious computa-
tional penalty. A more apposite approach is to use a PML.
This is a thin absorbing layer that encloses the region of interest
and is governed by a nonphysical set of equations that cause
anisotropic absorption (see Figure 12). The properties of the
layer are chosen based on two requirements: (1) only compo-
nents of the wave field traveling within the PML and normal to
the boundary are absorbed and (2) reflections from the interface
between the interior of the domain and the matching layer are
minimized. There are several different forms of the PML based
on two distinct ideologies. The split-field PML and related var-
iants are based on solving a different set of governing equations
within the absorbing layer (Bérenger, 1994). The uniaxial PML
is instead based on solving the original equations everywhere
but with anisotropic absorbing medium properties within the
PML (Sacks et al., 1995). Both approaches introduce additional
complexity; the split-field PML requires the pressure to be
artificially split into Cartesian components based on derivatives
of the particle velocity, while the uniaxial PML requires the
introduction of auxiliary variables (Bérenger, 2007).
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Figure 11 Numerical dispersion introduced by centered FD
approximations of @2p/@x2 against normalized wave number. The
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Figure 12 A perfectly matched layer (PML) can be used to simulate free-field conditions using a finite-sized grid by absorbing the waves within a thin
layer that terminates the computational domain. (a) Physical domain in the free field. (b) Computational domain truncated by a PML.
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The split-field PML, originally formulated for the electro-
magnetic equations (Bérenger, 1994), works by splitting
the acoustic pressure into Cartesian components, where
p¼pxþpyþpz. The field splitting is based on the derivatives of
the vector particle velocity. Consequently, this particular PML
can only be applied to the acoustic equations expressed as a
coupled system of first-order partial differential equations. In
two dimensions, the coupled equations for the acoustic pres-
sure and particle velocity given in eqns [114] and [115] includ-
ing a PML are written as (Qi and Geers, 1998)

@vx
@t

¼ ! 1

r0

@

@x
px þ py
! "

! axvx [127]

@vy
@t

¼ ! 1

r0

@

@y
px þ py
! "

! ayvy [128]

@px
@t

¼ ! 1

k0
@vx
@x

! axpx [129]

@py
@t

¼ ! 1

k0
@vy
@y

! aypy [130]

The parameters ax and ay specify the PML absorption in units of
nepers per second. Both ax and ay are zero outside the PML, ax
is nonzero within the PML that terminates the computational
domain in the x-direction, and ay is nonzero within the PML
that terminates the domain in the y-direction. To allow for
stronger PML absorption values without introducing instabil-
ity, these equations are sometimes reformulated as (Yuan et al.,
1999)

@

@t
þ a

& '
f þQ ! @

@t
exp atð Þfð Þ þ exp atð ÞQ [131]

An example of the equations that result from the reformulation
of eqns [127]–[130] using eqn [131] is given by Tabei et al.
(2002).

In the continuous case, it would seem intuitive to maximize
the absorption values within the PML so the size of the layer
can be minimized. However, when the equations are discre-
tized, a sharp change in absorption at the interface between the
matching layer and the rest of the domain will cause undesired
acoustic reflections. To overcome this, a variable absorption
parameter is normally used that gradually increases inside the
PML. A common choice is

am ¼ amax
m

M

+ ,b
[132]

where m is the relative grid point index inside the PML given
by m¼1,2, . . .,M, M is the thickness of the PML in grid
points, amax is the maximum value of absorption within the
PML, and b is a shaping parameter normally chosen to be
between 2 and 4.

2.19.4.2.7 Application of finite difference methods to
ultrasound simulation
There are many studies in the literature that apply the FD
techniques described here to different problems in biomedical
ultrasound. To give just a small number of examples, Manry
and Broschat (1996) used a second-order in time and fourth-
order in space discretization of the coupled acoustic equations
in 2-D to investigate the effect of fat lobes in the breast on the
shape of an ultrasound beam. Mast et al. (1997) used a two-
step MacCormack scheme of the same order accuracy to study

the aberration of ultrasound pulses by the abdominal wall.
Huang et al. (2005) used a similar model to investigate the
propagation of photoacoustic waves in the breast. Aubry et al.
(2003) used an FD discretization of the second-order acoustic
wave equation for a heterogeneous and absorbing medium in
3-D to model aberration and adaptive focusing of ultrasound
waves through the skull. Pinton et al. (2009) used a second-
order in time and fourth-order in space discretization of the
wave equation to simulate beam patterns and B-mode ultra-
sound images. Finally, Karamalis et al. (2010) used a similar
model accelerated using a graphical processing unit to simulate
B-mode images from synthetic scattering phantoms.

2.19.4.3 Pseudospectral Methods

2.19.4.3.1 Spectral collocation methods
InSection 2.19.4.2, numerical solutionsof thewave equation are
obtainedby discretizing thederivative operators using FDs. Recall
the general principle of the FDmethod is that for each grid point,
an interpolating polynomial is fitted to the function values across
a chosennumber of neighboring grid points. The derivative of the
function is then estimated using the derivative of the polynomial.
This can be considered as a local approximation of the derivative,
as the calculation only uses the function values at a small number
of neighboring grid points. To reduce the phase error introduced
by the FD approximation, higher-order schemes can be used,
where polynomials of higher degree are fitted to a greater number
of grid neighbors. Spectralmethods take this idea to the limit and
approximate the function at all of the grid points simultaneously
using a finite sum of basis functions. This decomposition can be
written in the form

f xð Þ )
XN

k¼1

akFk xð Þ [133]

where Fk(x) are the basis functions and ak are the basis func-
tion weights. Once the basis function weights are known, the
derivative of the function can be calculated using the derivative
of the basis functions.

The primary advantage of spectral methods compared to
FDs is their exponential error convergence. This can be under-
stood by considering an equivalent FD scheme that uses all of
the grid points within the domain. As the number of grid
points in the domain is increased, the order of the FD scheme
using all the points must also be increased, while the distance
between the points is reduced. The truncation error will thus
scale as Ο(N!N), where N is the number of grid points in the
domain. The practical significanceof this is that spectralmethods
are memory-minimizing. That is, they will afford the coarsest
possible grid spacing for a given level of accuracy. This can have
a significant impact on the tractability of many large-scale
problems.

For wave problems, the most common choice of basis
function is trigonometric polynomials (in this case, a Fourier
series), where the function is expanded as a sum of complex
exponentials:

f xð Þ )
XNx=2

k¼!Nx=2

ak exp !jkxð Þ [134]
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This expansion can again be motivated by considering the
decomposition of the wave field into a sum of plane waves.
The derivative of each basis function exp(!jkx) is simply
!jk exp(!jkx), and the basis function weights ak can be com-
puted efficiently using the FFT. This leads to the spectral for-
mula for the spatial derivative

@n

@xn
f xð Þ ) Fx

!1 !jkxð ÞnFx f xð Þf gf g [135]

where Fx{} and Fx
!1{} denote the forward and inverse Fourier

transforms over the x dimension. Assuming the number of grid
points is an even number, the discrete set of wave numbers kx is
given by

kx ¼ ! p
Dx

, ! p
Dx

þ 2p
DxNx

, ! p
Dx

þ 4p
DxNx

, . . . ,

p
Dx

! 2p
DxNx

[136]

The expression given in eqn [135] is known as the Fourier
collocation spectral method or the Fourier pseudospectral
method. The term collocation refers to the fact that the trun-
cated sum of basis functions agrees with the discrete function
values exactly at each point on the grid (known as the colloca-
tion points). It is also possible to determine the basis function
weights using tau and Galerkin methods (Boyd, 2001). How-
ever, the collocation approach is considerably simpler and
benefits from increased computational efficiency.

To derive a solution to the acoustic equations, the spectral
calculation of spatial derivatives must still be combined with
the FD calculation of temporal derivatives. This approach is
often referred to as the pseudospectral time-domain (PSTD)
method. Using a second-order accurate central difference
approximation for the temporal derivative, the resulting dis-
cretization of the 2-D wave equation given in eqn [109] can
now be written as

pnþ1 ! 2pn þ pn!1

Dt2
¼ c20F

!1
x, y !k2Fx, y pnf g

) *
[137]

where k2¼k &k¼kx
2þky

2. Compared to eqn [110], the usual grid
point subscripts i, j have been omitted as the derivative at all of
the grid points is calculated simultaneously. Following a sim-
ilar analysis to that given in Section 2.19.4.2.4, this scheme
can be shown to be stable for CFL ' 2= p

ffiffiffiffi
D

p! "
.

The benefit of the PSTD method compared to the FD
method is that the phase error introduced by the approximation
of the spatial derivative is eliminated. Again, considering the
solution to the 1-D wave equation p(x,t)¼exp[!jk(x! c0t)]
introduced in Section 2.19.4.2.5, it is clear from eqn [135]
that the pseudospectral derivative calculation will give the cor-
rect solution for all spatial frequencies up to the Nyquist limit.
The continuous equation that is solved exactly by eqn [137] can
thus be written as

@2p

@t2
¼ c kð Þ2 @

2p

@x2
where c kð Þ ¼ c0

sinc ckDt=2ð Þ [138]

Compared to eqn [126], the numerical dispersion is now only
dependent on the FD approximation of the temporal
derivative.

The PSTD method can similarly be used to discretize the
linearized continuum equations written as a set of coupled
first-order partial differential equations. Using a second-order

accurate central difference approximation for the temporal
derivative in conjunction with the staggered grid scheme dis-
cussed in Section 2.19.4.2.3, the discrete equations in 2-D can
be written as

vnþ1=2
x ! vn!1=2

x

Dt
¼ ! 1

r0
F!1
x !jkx exp !jkxDx=2ð ÞFx pnf gf g [139]

vnþ1=2
y ! vn!1=2

y

Dt
¼ ! 1

r0
F!1
y !jky exp !jkyDy=2

! "
Fy pnf g

) *
[140]

pnþ1
i ! pni

Dt
¼ ! 1

k0
F!1
x !jkx exp jkxDx=2ð ÞFx vnþ1=2

x

n on o+

þF!1
y !jky exp jkyDy=2

! "
Fy vnþ1=2

y

n on o, [141]

The exponential terms exp(.jkxDx/2) and exp(.jkyDy/2) that
appear within the spatial derivative calculations are spatial
shift operators that translate the results by half the grid point
spacing for use with the staggered grid. Again, the primary
advantage of solving the acoustic equations in this form is
the ability to implement a split-field PML as discussed in
Section 2.19.4.2.6. A similar PSTD formulation is used in the
commercial package SPFlex (Wojcik et al., 1997).

It is useful to note that spectral methods using other poly-
nomial basis functions are also possible. A common choice
for nonperiodic problems is to use Chebyshev polynomials.
However, a significant disadvantage of the Chebyshev pseu-
dospectral method for solving wave problems using explicit
methods is that the time step required for stability scales with
N!2, where N is the number of grid points in each Cartesian
direction given a fixed domain size (Gottlieb and Hesthaven,
2001). In comparison, the time step for the Fourier spectral
method scales with N!1, which is significantly cheaper, partic-
ularly for large-scale problems. The Chebyshev spectral
method also requires the grid points to be clustered closer
together near the boundaries to avoid the Runge phenomenon
(Boyd, 2001). This means, for the same maximum grid point
spacing, a larger number of grid points is needed. For example,
a common choice when using a Chebyshev basis is cosine-
spaced points. Compared to using equispaced points, this
requires (p/2)D more grid points for a simulation in D spatial
dimensions. For 3-D simulations, this increases the memory
consumption by almost four times.

2.19.4.3.2 The k-space pseudospectral method
The use of the Fourier pseudospectral method to solve the
acoustic equations eliminates the phase error introduced by
the FD approximation of the spatial derivatives. However,
unwanted numerical dispersion is still introduced in the tem-
poral domain as shown in eqn [138]. Fortunately, as the form
of the numerical dispersion introduced by the second-order
accurate central difference scheme is known, it is possible to
counteract it by introducing a correction to the pseudospectral
calculation of the spatial derivative. For the wave equation, this
leads to the following discretization:

pnþ1 ! 2pn þ pn!1

Dt2
¼ c20F

!1
x, y !k2sinc2 c0kDt=2ð ÞFx, y pnf g

) *

[142]
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This approach is known as the k-space pseudospectral method,
or simply the k-space method, and was first introduced for
acoustics by Bojarski (1982, 1985). In the case of a homoge-
neous medium, this scheme completely eliminates
the unwanted phase error introduced by the discretization
of both the spatial and the temporal derivatives and thus
solves the wave equation exactly without the introduction of
numerical dispersion. This is similar to the case discussed in
Section 2.19.4.2.5 where the phase error introduced by the
spatial and temporal FD schemes in 1-D can bemade to exactly
cancel by using a CFL of 1.

The k-space approach can similarly be used to discretize the
linearized continuum equations written as a set of coupled
first-order partial differential equations. Using the staggered
grid scheme shown in eqns [139]–[141], the phase error intro-
duced by the FD approximation of the temporal derivative is
given by sinc(c0kDt/2)/#. The corresponding k-space pseu-
dospectral discretization including a correction term can thus
be written as

v
nþ1=2
x ! v

n!1=2
x

Dt
¼ ! 1

r0
F!1
x, y !jkx# exp !jkxDx=2ð ÞFx, y pnf g

) *
[143]

vnþ1=2
y ! vn!1=2

y

Dt
¼ ! 1

r0
F!1
x, y !jky# exp !jkyDy=2

! "
Fx, y pnf g

) *
[144]

pnþ1
i ! pni

Dt
¼ ! 1

k0
F!1
x, y !jkx# exp jkxDx=2ð ÞFx, y vnþ1=2

x

n on o+

þF!1
x, y !jky# exp jkyDy=2

! "
Fx, y vnþ1=2

y

n on o, [145]

For homogeneous media, the k-space schemes given in
eqns [142]–[145] are equivalent and can be shown to be
unconditionally stable (Tabei et al., 2002).

The main advantage of using the k-space pseudospectral
method compared to conventional FD and pseudospectral

methods is that numerical dispersion is eliminated (or signif-
icantly reduced as discussed later). This is critical for many
problems in ultrasound where the acoustic waves must travel
over large distances. Figure 13(a) illustrates the effect of
numerical dispersion on the shape of a monopolar wave in a
homogeneous medium after propagating a distance of 200
wavelengths. The temporal input pulse is defined as

s tð Þ ¼ sin3 2pfstð Þ for 0 ' t ' 1= 2fsð Þ
0 otherwise

-
[146]

with the medium discretized using 20 grid points per wave-
length at fs. Even using a CFL of 0.05, the shape of the pulse
when using the FD method is severely distorted. When the
pseudospectral scheme is used, the accuracy with which spatial
derivatives are computed is significantly improved, and thus,
the dispersion is reduced. However, as the domain size is
increased, small CFL numbers must still be used to counteract
the accumulation of phase errors introduced by the FD time
step. In comparison, when the k-space pseudospectral method
is used, no dispersion is introduced regardless of the CFL
number.

It is important to note that when the sound speed is spa-
tially varying, the k-space pseudospectral method is no longer
exact, and the phase correction term will no longer completely
eliminate numerical dispersion (Treeby et al., 2012b). This
is because the correction term is applied in the spatial fre-
quency domain, which means the value of the sound speed
used in the correction must be scalar, that is, a single constant
value. Consequently, in a heterogeneous medium, there
will be regions where the local value of the sound speed in
the medium does not match the sound speed used within
the phase correction term, and numerical dispersion will
still be introduced into the solution. However, for weakly
heterogeneous media like soft biological tissue, the difference
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Figure 13 (a) Effect of numerical dispersion on the propagation of a monopolar pulse using different finite-difference time-domain (FDTD),
pseudospectral time-domain (PSTD), and k-space PSTD schemes. (b) Modeled reflection and transmission coefficients for a 10% step increase in
sound speed and density using different numerical schemes. The exact values are shown with the dashed lines.
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in sound speeds is generally small, and thus, the k-space
approach can still significantly reduce numerical dispersion
(Treeby et al., 2012b).

For a homogeneous medium, the k-space and pseudospec-
tral methods allow spatial derivatives to be computed exactly
down to the Nyquist limit of two grid points per wavelength.
They also allow a reduction in the number of points per
wavelength required to accurately account for the effect of
heterogeneous interfaces. This is illustrated in Figure 13(b),
which shows the computed reflection and transmission coeffi-
cients for a plane wave traveling through a 10% step increase in
sound speed and density. Compared to the FD method, the
k-space and PSTD methods allow a considerable reduction in
the number of required points per wavelength for accurate
solutions.

2.19.4.3.3 The k-Wave toolbox
The k-space pseudospectral method described in the previous
section is implemented in k-Wave, an open source acoustics
toolbox written for MATLAB and Cþþ. The simulation func-
tions in k-Wave use the k-space method to solve an extended
version of the first-order continuum equations discussed in
this article (Treeby and Cox, 2010a; Treeby et al., 2012a,b).
In particular, power-law acoustic attenuation is accounted
for using a linear integrodifferential operator based on the
fractional Laplacian (Treeby and Cox, 2010b). The simulation
functions are implemented in 1-D, 2-D, and 3-D and allow for
an arbitrary distribution of heterogeneous material parameters
(sound speed, density, nonlinearity, and attenuation). The
functions include the ability to model pressure and velocity
sources, photoacoustic sources, and diagnostic and therapeutic
ultrasound transducers. They also allow arbitrary detection
surfaces to be specified, with options to record acoustic pres-
sure, particle velocity, and acoustic intensity. Further details are
given in the k-Wave manual (Treeby et al., 2012a).

2.19.5 Numerical Methods for Nonlinear Ultrasound
Fields

2.19.5.1 Background and Common Numerical Methods

Because medical ultrasound fields from practical transducers
vary in more than one direction, their nonlinear propagation
cannot be simulated by direct application of one of the semi-
analytical approaches from Chapter 2.16. As a consequence,
realistic nonlinear ultrasound fields can only be simulated by
numerical methods.

A difficulty encountered with the development of these
simulation methods is that in the nonlinear regime, the super-
position principle cannot be used. Consequently, the idea of
solving the entire wave propagation problem in the frequency
domain and finally transforming the result back to the time
domain does not work here. Another consequence is that
the Green’s function of a nonlinear propagation problem is
a useless concept, and this fact inhibits the straightforward use
of volume and boundary integral equations. As will be shown
later, integral transformations and Green’s functions are used
in nonlinear simulation methods but only in steps that in
themselves are linear. A numerical aspect is that the creation
of higher harmonics asks for a much finer sampling in space

and time as compared to the linear case in which these har-
monics remain absent.

Although in this section methods will be presented in the
context of nonlinear ultrasound, most methods are also useful
in case of linear ultrasound propagation.

2.19.5.1.1 Time- and frequency-domain methods
There is a clear distinction between nonlinear time-domain
and nonlinear frequency-domain methods. Time-domain
methods are more suitable for the simulation of short propa-
gating pulses or bursts, that is, fields with a dense frequency
spectrum. On the other hand, frequency-domain methods
perform better for periodic waves with only a few frequency
components, that is, a sparse frequency spectrum. Although
frequency-domain methods may be applied when a periodic
repetition of pulses is used for mimicking single pulse propa-
gation (Baker and Humphrey, 1992), the necessity of comput-
ing many frequency components forms a drawback of this
approach.

2.19.5.1.2 Split-step and KZK methods
Another distinction between nonlinear methods is whether
assumptions about directional behavior of the acoustic wave
field are employed. If an ultrasound field propagates mainly in
a direction perpendicular to the transducer surface and reflec-
tions are unimportant, the directionality of the field enables
the use of forward stepping methods. The general principle of
these methods is that they start with a given field at the source
plane, for example, at z¼0, and propagate this field forward
over a succession of parallel planes that are separated by a
distance Dz; see Figure 14. The forward stepping approach is
computationally efficient because it is not bound to the
Nyquist criterion and yields accurate results even with step
sizes Dz that are much larger than half the wavelength.

There exist many forward stepping methods, each having
their own particular approach in performing the steps. In
general, the propagating ultrasound field undergoes changes
due to diffraction, attenuation, and nonlinear distortion. If the
steps Dz are small enough, these changes may be computed
in succession. This approach is used in split-step methods.
For highly directive ultrasound fields like narrow beams, the
Westervelt equation may be subjected to a parabolic

Source
plane

z 0 z 1 z 2 z 3

∆ z∆ z∆ z

Figure 14 Schematic representation of a forward stepping method.
Starting in the source plane, the field is stepped forward with
increments Dz.
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approximation before performing any numerical steps. The
resulting Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation
is again solved using the split-step approach. Because split-step
methods and KZKmethods are often used for the simulation of
nonlinear ultrasound, these will be presented in
Sections 2.19.5.2 and 2.19.5.3, respectively.

2.19.5.1.3 Omnidirectional methods
Amethod that can simulate ultrasound fields independently of
their direction relative to the computational domain is called
omnidirectional. Such methods are relevant when reflections
are important or when fields have quite different directions, for
example, when an array emits a main and a grating lobe.

One way of getting omnidirectional methods for solving
nonlinear acoustic wave problems is to take the first-order
basic acoustic equations or theWestervelt equation and numer-
ically solve these by FD, FE, or pseudospectral methods. Exam-
ples of nonlinear FD methods may be found in Sparrow and
Raspet (1991), Yano and Inoue (1996), Hallaj and Cleveland
(1999), and Pinton et al. (2009). A description of a nonlinear
FE method is given by Hoffelner et al. (2001). FD and FE
methods usually operate directly in the space–time domain
and compute the spatial acoustic field distribution at successive
time steps. With these methods, the temporal and spatial steps
will be chosen much smaller than the step sizes prescribed by
the Nyquist criterion, that is, much smaller than half the period
and half the wavelength of the highest occurring frequency.
Typically, over 20 points per period and per wavelength are
required to get accurate results and in particular to battle
numerical dispersion. Especially when multiple higher har-
monics must be taken into account, these dense grids soon
lead to a large storage demand. Numerical stability problems
may be prevented by the introduction of (artificial) damping
(Ginter et al., 2002; Sparrow and Raspet, 1991). Numerical
dispersion and storage problems can be significantly relieved
by solving the problem in the spatial frequency domain by
means of a Fourier pseudospectral method. Pseudospectral
methods for simulating nonlinear ultrasound are, for
example, described by Wojcik et al. (1997) and Treeby et al.
(2012b). These methods allow a reduction of the spatial grid to
only two points per wavelength as demanded by the Nyquist
criterion. The temporal grid still needs to be rather dense.
Because FD, FE, and pseudospectral methods have been
described extensively in Section 2.19.4, these will not be trea-
ted in more detail here.

Another way to arrive at omnidirectional methods for com-
puting nonlinear acoustic propagation is to use the IE method.
An example of this is the iterative nonlinear contrast source
(INCS) method described by Huijssen and Verweij (2010),
which will be described in Section 2.19.5.4. The IE approach
enables the application of a spatiotemporal grid with only two
points per wavelength and period.

A comparison between two omnidirectional methods, the
INCS method and a nonlinear version of the k-space method,
will be presented in Section 2.19.5.5.

2.19.5.2 Split-Step Methods

If a directional ultrasound field is stepped forward with suffi-
ciently small steps Dz, the effects of diffraction, attenuation,
and nonlinear distortion need not be computed in one

simultaneous process, but may be accounted for in successive
substeps. This is the principle behind split-step methods. The
mathematical foundation of this method is described by
Varslot and Taraldsen (2005). The split-step approach is an
approximation that is based on operator splitting. If the dif-
fraction, attenuation, and nonlinearity substeps are applied
over the same step Dz, as depicted in Figure 15(a), the
obtained method is order O(Dz) accurate. However, if the
attenuation and nonlinearity substeps over Dz are preceded
and followed by ‘half’ diffraction substeps over Dz/2, as
shown in Figure 15(b), the resulting method is order O(Dz2)
accurate (Tavakkoli et al., 1998). Each substep may be per-
formed in the time domain, the temporal frequency domain,
and sometimes also the spatial frequency domain. Moreover,
each substep may be performed for either the acoustic pressure
or the particle velocity. Another distinction is whether normal
time or retarded time is applied. Because this gives rise to many
possible combinations of substeps, there are also many differ-
ent split-step methods. Some substeps will be presented later,
and some more substeps will be discussed as part of a KZK
method.

(a)
z k z k+1

∆ z

∆ z/2 ∆ z/2

Diffraction

Attenuation

Nonlinearity

(b)
z k z k+1

Diffraction

Attenuation

Nonlinearity

Diffraction

Figure 15 Schematic representation of a single step in the split-step
method. (a) When the diffraction, attenuation, and nonlinearity
substeps are all performed over the same interval Dz, the method has
order O(Dz) accuracy. (b) When the attenuation and nonlinearity
substeps are preceded and followed by diffraction substeps over Dz/2,
the method has order O(Dz2) accuracy.
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2.19.5.2.1 Diffraction substep
If no further assumptions on the directionality of the acoustic
wave field aremade, the diffraction substepmay be based on the
time-domain lossless linear wave equation of eqn [20] or on its
frequency-domain counterpart. A third alternative is to apply a
spatial Hankel transformation with respect to the radial lateral
coordinate r (Christopher and Parker, 1991a,b) in the case of
circularly symmetric fields, or spatial Fourier transformations
with respect to the Cartesian lateral coordinates x and y
(Varslot and Mås"y, 2006; Zemp et al., 2003) in less symmetric
cases. This results in the angular spectrum approach, which, for
example, is used for the diffraction substep in the simulation
package Abersim (Frijlink et al., 2008).

Subjecting eqn [20] to Fourier transformations with respect
to time and with respect to the lateral coordinates x and y leads
to the angular spectrum representation:

@2~p

@z2
þ k2z ~p ¼ 0 [147]

where the tilde has been used to indicate angular spectrum
domain quantities. Further,

kz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 ! k2x ! k2y

q
for k2x þ k2y ' k2

!j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y ! k2

q
for k2x þ k2y > k2

8
<

: [148]

is the axial propagation coefficient, where kx and ky are the
lateral spatial frequencies. The first line of eqn [148] is associ-
ated with propagating waves and the second line is related with
evanescent waves. As before, k¼o/c0 is the wave number. The
diffraction substep is most easily performed in the angular
spectrum domain. The solutions of eqn [147] are of the form
exp(.jkzz), where the positive sign applies to waves in the
negative z-direction, and vice versa. Stepping ~p over a positive
distance Dz is therefore achieved by

~p kx, ky, zþ Dz,o
! "

¼ ~h kx, ky,Dz,o
! "

~p kx; ky; z;o
! "

[149]

in which

~h kx, ky,Dz,o
! "

¼ exp !jkzDzð Þ [150]

is called the spectral operator or spatial frequency transfer
function.

In the frequency domain, the diffraction substep is
obtained by computing (Zemp et al., 2003)

p̂ x, y, zþ Dz,oð Þ ¼
ð ð

A
ĥ x! x

0
, y ! y

0
,Dz,o

+ ,

, p̂ x
0
; y

0
; z;o

+ ,
dx

0
dy

0
[151]

where ĥ x, y,Dz,oð Þ is the counterpart of ~h kx; ky;Dz;o
! "

. This is
a convolution of the so-called point spread function ĥ and the
pressure p̂ over the lateral plane. The integration domain A
should span the area where p̂ is significant. The point spread
function is

ĥ x, y,Dz,oð Þ ¼ Dzexp !jkRð Þ
2pR2

1

R
þ jk

& '
[152]

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ Dz2

p
. After application of a Fourier or

Hankel transformation with respect to the lateral coordinates,
the convolution can be performed as a multiplication in the
relevant transform domain.

The time-domain version of eqn [151] is

p x, y, zþ Dz, tð Þ ¼
ð1

!1

ð ð

A
h x! x

0
, y ! y

0
,Dz, t ! t

0
+ ,

,p x
0
; y

0
; z; t

0
+ ,

dx
0
dy

0
dt

0
[153]

with

h x, y,Dz, tð Þ ¼ Dz
2pR2

1

c0

@

@t
þ 1

R

& '
d t ! R=c0ð Þ [154]

which is the time domain counterpart of eqn [152]. The
equations presented here for the acoustic pressure may
equally well be used for the forward stepping of the normal
component of the particle velocity. For narrow beams,
approximations are possible. This is further discussed in
Section 2.19.5.3.

2.19.5.2.2 Attenuation substep
The attenuation substep is most easily performed in the fre-
quency domain. For a given attenuation coefficient a(o) and
corresponding phase coefficient b(o), the attenuation substep
is

p̂ x, y, zþ Dz,oð Þ ¼ p̂ x; y; z;oð Þg Dz,oð Þ [155]

with

ĝ Dz,oð Þ ¼ exp ! a oð Þ þ jb oð Þ ! jk½ +Dzð Þ [156]

The term jk is subtracted because lossless propagation has
already been accounted for in the diffraction substep.
Sometimes, the frequency-domain attenuation substep is com-
bined with the diffraction substep in eqns [151]–[152].

The time-domain version of the procedure mentioned ear-
lier is described in Tavakkoli et al. (1998). In this case, the
attenuation substep is

p x, y, zþ Dz, tð Þ ¼
ð1

!1
g Dz, t ! t

0
+ ,

p x; y; z; t
0

+ ,
dt

0
[157]

where g(Dz, t) is the time-domain counterpart of ĝ Dz;oð Þ. This
substep may be combined with the diffraction substep in
eqns [153] and [154].

2.19.5.2.3 Nonlinear substep
In the time domain, the nonlinear substep is usually obtained
by first transforming the field p(x,y,z,t) into the comoving field
!!p x; y; z; tð Þ, where t¼ t!z/c0 is retarded time, and then numer-
ically solving the lossless version of the Burgers equation (see
Chapter 2.16, eqn [58]):

@!!p

@z
¼ b!!p

r0c30

@!!p

@t
[158]

Equation [64] of the same chapter shows that !!p zð Þ can be
stepped forward over Dz by using

!!p zþ Dz, tð Þ ¼ !!p z, tþ b!!p z; tð Þ
r0c30

Dz
$ %

[159]

This equation shows that the nonlinear substep can be
implemented as a deformation of the retarded time axis. The
most frequently used algorithm to numerically solve eqn [158]
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is based on this idea and may be found in Cleveland et al.
(1996) and Ginsberg and Hamilton (2008). It can be derived
as follows. Equation [159] is rewritten as

!!p zþ Dz, t! b!!p z; tð Þ
r0c30

Dz
$ %

¼ !!p z; tð Þ [160]

Suppose that for a spatial distance zk (k being the space index)
and a number of retarded times tik (i being the time index), the
pressure values !!p zk; tki

! "
are known. Note that successive ti

k need
not differ by a constant time interval. According to eqn [160],
the pressure at the spatial distance zkþ1¼zkþDz satisfies

!!p zkþ1, tki !
b!!p zk; tki

! "

r0c30
Dz

$ %
¼ !!p zk; tki

! "
[161]

Introduction of a new set of retarded times

tkþ1
i ¼ tki !

b!!p zk; tki
! "

r0c30
Dz [162]

makes it possible to write eqn [161] as

!!p zkþ1; tkþ1
i

! "
¼ !!p zk; tki

! "
[163]

This implies that the pressure values at zkþ1 may easily be
found by taking the pressure values at zk and assigning these
to new retarded time instants ti

kþ1. Equation [162] defines the
required time base transformation. To ensure causality,
the spatial step must be chosen sufficiently small to avoid
the time instants ‘crossing over each other’ during the defor-
mation of the time axis, that is, to ensure that always
tiþ1
kþ1>tikþ1. The described algorithm appears in virtually all
time-domain split-step methods for the simulation of non-
linear ultrasound.

There exists also a frequency-domain equivalent of the non-
linear substep that is based on the Burgers equation.
A derivation of this may be found in Ginsberg and Hamilton
(2008). In this case, it is assumed that the pressure that is to be
stepped forward may be approximated by

!!p x; y; z; tð Þ ¼ 1

2

XM

n¼!M

Pn x; y; zð Þ exp jno0tð Þ

with P0 x; y; zð Þ ¼ 0 [164]

Substitution into eqn [158] gives, after several manipulations,

@Pn
@z

¼ jbo0

2c20

Xn!1

i¼1

iPiPn!i þ
XM

i¼nþ1

nPiP
∗
i!n

 !

[165]

where the asterisk indicates the complex conjugate. This equa-
tion is integrated over Dz by approximating the differentiation
at the left-hand side by an FD and reordering terms. This yields

Pn zþ Dzð Þ ¼ Pn zð Þ

þDz
jbo0

2c20

Xn!1

i¼1

iPi zð ÞPn!i zð Þ þ
XM

i¼nþ1

nPi zð ÞP∗
i!n zð Þ

" #

[166]

2.19.5.3 KZK Methods

For a relatively narrow beam of quasiplanar waves, the omni-
directional Westervelt equation may be approximated by the
directional KZK equation. The derivation of this equation is

given in Hamilton and Morfey (2008) and goes in two steps.
First, the retarded time coordinate t¼ t!z/c0 is used to replace
the ordinary time coordinate t. Here, the positive z-axis is
assumed to be the predominant direction of propagation,
that is, the beam axis. In the retarded time frame, the acoustic
pressure is indicated by !!p x; y; z; tð Þ. Because the acoustic pres-
sure does not change when transforming from one time
frame to another, the pressure in the retarded time frame
should equal the pressure in the normal time frame, so
!!p x; y; z; tð Þ ¼ p x; y; z; tð Þ. These substitutions turn the Westervelt
equation with thermoviscous losses (eqn [25] withℒ ¼ 0) into

r2!!p! 2

c0

@2!!p

@z@t
þ d
c40

@3!!p

@t3
¼ ! b

r0c40

@2!!p
2

@t2
[167]

Second, it is recognized that in the retarded time frame, the
second derivative of !!p with respect to the axial coordinate z is
much smaller than the second derivatives with respect to the
lateral coordinates x and y. This leads to the paraxial
approximation

r2!!p ¼ @2!!p

@x2
þ @2!!p

@y2
þ @2!!p

@z2
) @2!!p

@x2
þ @2!!p

@y2
¼ r2

?
!!p [168]

where r?
2 is the Laplacian in the lateral plane. Using this in

eqn [167] and multiplying all terms with!c0/2, it is found that
a narrow beam may be described by

@2!!p

@z@t
! c0

2
r2

?
!!p! d

2c30

@3!!p

@t3
¼ b

2r0c30

@2!!p
2

@t2
[169]

This is the KZK equation. The second term at the left-hand
side of this equation represents the diffraction of the beam,
and the term at the right-hand side represents its nonlinear
propagation. The parabolic equation is only accurate for
waves that propagate in directions close to the z-direction.
Consequently, the KZK equation is not valid near the source
(where the field is not yet directed) and for propagation
directions that deviate more than 200 from the z-direction
(Lee and Pierce, 1995).

Usually, coordinate transformations are used to improve
the performance in the far field or for specific types of focused
beams. This will result in alternatives of the KZK equation.
Because equations like [169] are used to describe the propaga-
tion of a beam away from the transducer, these are collectively
called beam equations (also known as progressive or evolution
equations). For example, the nonlinear spheroidal beam
equation described by Kamakura et al. (2000) uses oblate
spheroidal coordinates to specifically deal with spherical or
elliptical transducers with a wide opening angle. As another
example, Fox et al. (2005) have applied coordinate rotations to
match the preferred direction of the KZK equation with the
direction of a steered narrow beam.

2.19.5.3.1 Texas code
The Texas code (Cleveland et al., 1996; Lee and Hamilton,
1995) is intended for generating solutions of the KZK equation
in the time domain. It is based on the equation that is obtained
by integrating eqn [169] with respect to t:

@!!p

@z
¼ c0

2

ðt

!1
r2

?
!!p t

0
+ ,

dt
0 þ d

2c30

@2!!p

@t2
þ b!!p
r0c30

@!!p

@t
[170]
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The code solves this equation using the split-step approach as
indicated in Figure 15(a).

In the first substep, the diffraction over Dz is computed. The
input of this substep is !!pd zð Þ ¼ !!p zð Þ, where !!p zð Þ is the known
pressure distribution that needs to be stepped forward. At
the start of the scheme, this is the given pressure distribution
in the transducer plane, and when the scheme is running, this
is the pressure distribution resulting from the previous step.
The output of the diffraction substep is !!pd zþ Dzð Þ, which is
obtained by numerically solving the diffraction part from
eqn [170]:

@!pd
@z

¼ c0
2

ðt

!1
r2

?!pd t
0

+ ,
dt

0
[171]

Application of the first-order FD approximation of the deriva-
tive yields

!pd zþ Dz, tð Þ ¼ !pd z; tð Þ þ Dz
c0
2

ðt

!1
r2

?!pd z; t
0

+ ,
dt

0
[172]

The integral is computed using the trapezoidal rule, and the
second-order spatial derivatives due to the r?

2 operator are
evaluated using FDs.

The second substep over Dz concerns the computation of
the attenuation. The input of this substep is !!pa zð Þ ¼ !!pd zþ Dzð Þ
and the output is !!pa zþ Dzð Þ. This is obtained by numerically
solving the attenuation part from eqn [170]:

@!!pa
@z

¼ d
2c30

@2!!pa
@t2

[173]

The same approach as for the diffraction substep now yields

!!pa zþ Dz, tð Þ ¼ !!pa z; tð Þ þ Dz
d
2c30

@2!!pa z; tð Þ
@t2

[174]

The second-order temporal derivative at the right-hand side is
computed using FDs.

To focus on the basics of the applied approach, the diffrac-
tion and attenuation substeps have been described here in their
simplest form. In actual implementations of the Texas code,
these steps are more elaborate. Commonly, coordinate trans-
formations and normalization of quantities are employed. In
one particular version, eqn [173] is supplemented by a number
of equations that represent separate relaxation processes
(Cleveland et al., 1996). Moreover, to reduce numerical oscil-
lations in the near field of the transducer, in this zone,
eqns [171] and [173] are usually solved using an implicit
backward FD scheme, and to allow for larger steps Dz, outside
the near field, a Crank–Nicolson scheme is commonly applied
(Lee and Hamilton, 1995). Sometimes, an alternating direc-
tion implicit scheme is used for the integration of eqn [171]
(Yang and Cleveland, 2005). Also, the step size Dz is often
chosen in an adaptive way.

In the third substep, the nonlinear distortion over Dz is
computed. The input of this substep is !!pn zð Þ ¼ !!pa zþ Dzð Þ and
the output is !!pn zþ Dzð Þ, which follows from numerically solv-
ing the nonlinear part from eqn [170]:

@!!pn
@z

¼ b!!pn
r0c30

@!!pn
@t

[175]

This is performed with the time base transformation described
in Section 2.19.5.2.3. The output !!pn zþ Dz, tð Þ ¼ !!p zþ Dz, tð Þ is
the final result of the forward stepping over Dz.

2.19.5.3.2 Bergen code
The Bergen code (Aanonsen et al., 1984; Baker et al., 1995)
provides solutions of the KZK equation in the frequency
domain. It is based on a finite Fourier sum that approximates
the ultrasound field of a periodic source with frequency o0 by

!!p x; y; z; tð Þ ¼
XM

n¼1

an x; y; zð Þ sin no0tð Þ þ bn x; y; zð Þ cos no0tð Þ

[176]

in which the coefficients an and bn represent the local ampli-
tudes of the harmonics. Substitution of eqn [176] into
eqn [169] provides a system of coupled differential equations
that relate an and bn through

@an
@z

¼ A1, nan þD1, nr?bn

þN1, n
1

2

Xn!1

p¼1

apan!p ! bpbn!p

! "
!
XM

p¼nþ1

ap!nap ! bp!nbp
! "

" #

[177]

@bn
@z

¼ A2, nbn þD2, nr?an

þN2, n
1

2

Xn!1

p¼1

bpan!p ! apbn!p

! "
!
XM

p¼nþ1

bp!nap ! ap!nbp
! "

" #

[178]

Here, the terms with constants A account for the attenuation, the
terms with constants D represent the diffraction, and the terms
with constantsN include the nonlinear propagation. The system
of equations is efficiently solved by employing an implicit back-
ward FD scheme in the near field of the transducer and an
alternating direction implicit scheme outside this zone.

2.19.5.4 INCS Method

The INCS method is an omnidirectional method for the sim-
ulation of nonlinear, pulsed ultrasound fields in media with
realistic tissue attenuation and heterogeneity. It has been for-
mulated in its original form by Huijssen (2008) and Huijssen
and Verweij (2010), and later, extensions have been described
by Demi et al. (2011), Demi (2013), and Verweij et al. (2013).
The method is based on the IE for a nonlinear contrast source
problem. In doing so, it avoids the limitations that are posed
by the use of the 1-D Burgers equation. By filtering the relevant
quantities in space and time, the numerical solution of the IE
can be performed at a discretization that is close to two points
per spatial wavelength and temporal period. Because of the
coarse grid, simulations involving a computational domain
that measures hundreds of wavelengths and periods of the
maximum frequency of interest are nowadays possible on a
moderate computer cluster. In view of the medical diagnostic
application, the focus is on weak to moderate nonlinearity.
First, the lossless and homogeneous case will be presented, and
later, the inclusion of losses and inhomogeneities will be dis-
cussed. At that stage, it will also become clear that in the
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absence of nonlinearity, the INCS method turns into an IE
method for the simulation of linear ultrasound waves.

2.19.5.4.1 Contrast source formulation and iterative
solution
The INCS method is based on the Westervelt equation. For the
lossless and homogeneous case, this is given by eqn [17], and
when the action of the transducer is explicitly taken into
account, one obtains

r2p! 1

c20

@2p

@t2
¼ !Str !

b
r0c40

@2p 2

@t2
[179]

The basic idea behind the INCS method is that the nonlinear
term at the right-hand side of this equation is considered as a
distributed contrast source

Snl pð Þ ¼ b
r0c40

@2p 2

@t2
[180]

In view of this, eqn [179] is rewritten as

r2p! 1

c20

@2p

@t2
¼ !Str ! Snl pð Þ [181]

Note that the terms on the left-hand side of this equation form
the wave operator of a linear medium with wave speed c0.
Along the same line of thought, the terms on the right-hand
side can be considered as two separate sources that generate
waves in this linear ‘background’ medium. The primary source
Str causes the linear acoustic field contribution

p 0ð Þ x; tð Þ ¼ Str x; tð Þ∗x, tG x; tð Þ [182]

that is also present in the absence of nonlinearity, that is, if
Snl(p)¼0. Here, G(x,t) is the 3-D Green’s function defined in
eqn [49]. The contrast source Snl(p) causes a contribution

dp x; tð Þ ¼ Snl p x; tð Þ½ +∗x, tG x; tð Þ [183]

which accounts for the nonlinear distortion of the acoustic
field. The total field is

p x; tð Þ ¼ p 0ð Þ x; tð Þ þ dp x; tð Þ
¼ p 0ð Þ x; tð Þ þ Snl p x; tð Þ½ +∗x, tG x; tð Þ [184]

Because p(x,t) appears on the left-hand side as well as on the
right-hand side, this is an IE that needs to be solved for p(x,t).
A simple iterative scheme to do so is as follows:

1. Compute p(0)(x,t)¼Str(x,t)∗ x,tG(x,t).
2. Set j¼1.
3. Define S(j)(x,t)¼Snl[p

(j!1)(x,t)].
4. Compute p(j)(x,t)¼p(0)(x,t)þS(j)(x,t)∗ x,tG(x,t).
5. If the answer is not accurate enough, set j¼ jþ1 and go to

step 3, otherwise stop.

This scheme is known as the Neumann iterative solution. It can
be interpreted as a perturbation scheme, where p(1)(x,t) is
identified as the quasilinear solution (Ginsberg, 2008). With
increasing j, this quasilinear solution is iteratively improved
towards the full nonlinear wave field.

The convergence of the scheme is illustrated in Figure 16 for
a nonlinearly propagating pulsed plane wave in water. The
iterations p(j) are compared to the solution of the Burgers
equation, which serves as a benchmark. The convergence of

the Neumann iterative solution is very fast. As a rule of thumb,
to obtain a relative error in the order of a percent in the
simulation of the hth harmonic, it is sufficient to compute
iteration j¼hþ1 in the case of weak to moderate nonlinear
distortion as encountered in medical diagnostics.

2.19.5.4.2 Discretization and evaluation of the convolution
integral
Even in very simple situations, the convolution S(j)(x,t)∗ x,t

G(x,t) that appears in step 4 of the Neumann scheme
mentioned earlier must be evaluated numerically. Because
S(j)(x,t) and G(x,t) are distributed over the entire spatial and
temporal computational domain, the convolution integrals
also run over this entire domain. For domains with realistically
large dimensions, efficient computation and storage requires a
grid that is as coarse as possible, preferably with only two
points per shortest wavelength and period as demanded by
the Nyquist criterion. This is achieved by using the filtered
convolution method (Verweij and Huijssen, 2009).

For simplicity, the filtered convolution method is first
explained for the one-dimensional temporal convolution
integral:

F tð Þ ¼ G tð Þ∗tS tð Þ ¼
ð1

!1
G t ! t

0
+ ,

S t
0

+ ,
dt

0
[185]

This integral may be approximated by the convolution sum:

Fn ¼ Gn∗nSn ¼ Dt
X

m

Gn!mSm [186]

where Gn¼G(nDt) and Sn¼S(nDt) are samples of G(t) and
S(t), Fn approximates F(nDt), and Dt is the applied sampling
interval. For numerical computations, the number of samples
must be limited. This corresponds to windowing of the func-
tions in eqn [185]. When it is sufficient to consider Sn for n2
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Figure 16 Frequency spectra of iterations p(j) as obtained by the
iterative nonlinear contrast source (INCS) method for a plane acoustic
wave showing nonlinear propagation. The iterations for j¼0 to j¼6
(thin colored lines) are compared to the solution of the Burgers equation
(thick black line), which is considered as a benchmark. The medium
is water, and the excitation pulse has an amplitude of 500 kPa, a
center frequency of 1 MHz and a Gaussian envelope with a width of
2s¼2.12 ms. The point of observation is at x¼100 mm. Each
successive iteration p(j) gives a better estimate for increasingly
higher harmonics.

Simulation of Ultrasound Fields 495 

Comprehensive Biomedical Physics, (2014), vol. 2, pp. 465-500 

 

 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



[0,N!1] and Fn is needed on that same interval, then Gn may
be restricted to the interval n2 [!Nþ1,N!1] without
influencing the desired values of Fn. The convolution sum
in eqn [186] is efficiently evaluated by using FFTs. Because
this requires each function to have the same number of
samples, for n2 [!Nþ1,!1] extra samples Sn¼0 are added
to the existing sequence. This zero-padding also cures the fact
that by using FFTs, one actually performs a circular convolu-
tion that might spoil the desired Fn. The length of the
involved FFTs is 2N, which results in a computational effort
per convolution in the order of 2N log(2N). The main differ-
ence between the approximate Fn and the exact F(nDt) usually
arises from the sampling of the involved functions. If no
further precautions are taken, accurate results may necessitate
a sampling with many (10 or more) points per period of the
highest frequency that is expected in F(t). In particular for
higher-dimensional convolutions, this may lead impractically
large grid sizes.

However, it may be assumed that there is a maximum
angular frequency of interest F such that all the relevant com-
ponents of F(t) have angular frequencies |o|'F and all the
components with |o|>F may be discarded. This fact will now
be employed to reduce the number of points per wavelength
without risking large sampling errors. First, G(t) and S(t) are
subjected to an ideal low-pass filter with an angular cutoff
frequency O1F. The cutoff frequency may be chosen larger
than the maximum frequency of interest to keep in some more
frequencies ‘for safety.’ Because F(t) is the convolution of these
functions, the filtering will not remove any components of
interest. Next, G(t) and S(t) are sampled using a sampling
interval Dt¼p/O. Since this yields at least two points per period
for all frequencies that have remained after the filtering, the
Nyquist criterion is satisfied and aliasing will not occur. Sub-
sequently, the numerical convolution is performed using FFTs.
Due to the absence of aliasing, the resulting Fn will in fact be
equal to the samples of the filtered version of the exact F(t). In
other words, the only approximation error that will be made is
due to the applied filtering, and this will only affect compo-
nents that have been considered to be of no interest. By dis-
carding the components with frequencies |o|>O, the
procedure mentioned earlier avoids aliasing errors to occur in
the components with frequencies |o|'O.

From the explanation mentioned earlier, it follows that the
1-D filtered convolution method consists of the following
steps:

1. Filter G(t) and S(t) with an ideal low-pass filter with
an angular cutoff frequency O1F, and apply a window
that contains 2N sampling points with mutual distance
Dt¼p/O. The number of sampling points determines the
window width 2T¼(2N!1)p/O, which must be long
enough to contain the significant parts of the functions
involved.

2. Sample the filtered and windowed versions of G(t) and S(t)
with a sampling distance Dt¼p/O, to obtain Gn and Sn.
Apply zero-padding to extend the sequence Sn. For both
functions, this yields 2N sampling points with index n2
[!N,N!1].

3. Apply 2N-point FFTs to Gn and Sn.
4. Multiply the obtained transforms and perform a 2N-point

inverse FFT.

The numerical computation of the convolution integral
S(j)(x,t)∗ x,tG(x,t) in step 4 of the Neumann scheme requires
that the filtered convolution method is applied to each of
the four coordinates involved. Besides a maximum temporal
angular frequency F, also a maximal spatial angular fre-
quency F/c0 is introduced. The latter implies that only
wave components with spatial angular frequencies

jjkjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
' F=c0 are considered to be interest-

ing. In the first step of the filtered convolution method,
G(x,t) and S(j)(x,t) are filtered and windowed. In the time
domain, all frequencies |o|>O are removed, where O is
chosen equal or larger than F. In the space domain, all
spatial frequencies ||k||>K¼O/c0 are filtered out. Next, the
functions G(x,t) and S(j)(x,t) are sampled using a sampling
distance Dt¼p/O for the time coordinate and Dx¼p/K for
the space coordinates. In this way, the sampling occurs with
at least two points per wavelength and period for all fre-
quencies involved, and no temporal or spatial aliasing will
occur. Subsequently, the four-dimensional numerical convo-
lution is performed using FFTs.

Because the contrast source S(j)(x,t) contains the square of
the pressure p(j!1)(x,t), the temporal and spatial spectra of the
contrast source in step j of the Neumann scheme are twice as
wide as the corresponding spectra of the acoustic pressure field
obtained at step j!1. This doubling of the spectra for each step
of the scheme means that the temporal and spatial spectra of
the acoustic pressure field reach their limits O and K, respec-
tively, after only a few steps of the scheme. At the next step of
the scheme, the spectra of the contrast source would pass the
limitsO and K, and aliasing would occur if no precautions were
taken. This is why the INCS method consequently applies the
filtered convolution for each step of the scheme and in doing
so limits the spectra of a newly computed contrast source
before the numerical convolution is performed. Further details
of the filtering of the contrast source are given in Verweij and
Huijssen (2009).

2.19.5.4.3 Inclusion of attenuation and heterogeneity
With the INCS method, attenuation and heterogeneity of the
speed of sound and the density of mass can easily be accounted
for by additional contrast sources.

Attenuation is introduced by giving the medium a certain
relaxation behavior, which may also depend on position
(Demi et al., 2011). In this way, very realistic biomedical loss
models can be employed. The relaxation function is written as
(cf. eqn [28])

m x; tð Þ ¼ d tð Þ þ A x; tð Þ [187]

Substitution into eqn [29] yields

r2p x; tð Þ ! 1

c20

@2p x; tð Þ
@t2

¼ !Sat p x; tð Þ½ + [188]

with

Sat p x; tð Þ½ + ¼ ! 1

c20

@2

@t2
A x; tð Þ∗tp x; tð Þ½ + [189]

This is a contrast source that will account for the attenuation of
the ultrasound wave.

Heterogeneity of the speed of sound and the density of
mass is introduced by replacing c0 by c0(x) and r0 by r0(x).
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These changes are applied to eqns [180] and [189] in a straight-
forwardmanner. Further consequences for the right-hand side of
eqn [179] may be assessed by making corresponding changes to
eqns [18] and [19]. The equivalent of eqn [20] then becomes

r2p! 1

c20

@2p

@t2
¼ !Sss p x; tð Þ½ + ! Sdm p x; tð Þ½ + [190]

with

Sss p x; tð Þ½ + ¼ 1

c20
! 1

c20 xð Þ

& '
@2p x; tð Þ

@t2
[191]

Sdm p x; tð Þ½ + ¼ !rr xð Þ&rp x; tð Þ
r xð Þ

[192]

These are the contrast sources that will account for the hetero-
geneity of the speed of sound and the density of mass.

The appearance of new contrast sources does not make the
INCSmethodmore complex because all contrast terms can just
be added to form a total contrast source:

Scs p x; tð Þ½ + ¼ Snl p x; tð Þ½ + þ Sat p x; tð Þ½ + þ Sss p x; tð Þ½ +
þ Sdm p x; tð Þ½ + [193]

which may replace the original nonlinear contrast source.
However, the extra terms can influence the convergence of
the Neumann iterative solution.

2.19.5.5 Comparison between INCS and the k-Space
Pseudospectral Method

It has been stated earlier that methods described in
Section 2.19.4 can, with some extensions, be used to compute
nonlinear ultrasound fields. Moreover, methods from
Section 2.19.5 may, with some simplifications, be applied to
simulate linear acoustic propagation. As a demonstration of
the first statement, here, the k-space method and the IE method
are both used to simulate nonlinear ultrasound fields. The
applied methods are the k-space method as implemented in
the k-Wave toolbox and applied to nonlinear propagation
(Treeby et al., 2012b) and the INCS method (Demi et al.,
2011). Both methods, although being quite different, use no
approximations apart from those related to the discretization
of the problem. In particular, both methods are able to com-
pute in an omnidirectional manner the nonlinear ultrasound
field in a heterogeneous medium with frequency-dependent
attenuation. These facts allow for accurate comparisons
between both methods.

Two numerical comparisons between the INCS method
and k-Wave are shown in Figures 17 and 18. The plots in
both panels (a) are based on the maximum of the computed
total time-domain signal for a given location. The plots in each
of the panels (b), (c), and (d) show the maxima of the time-
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Figure 17 Comparison between INCS and k-Wave for a simulation in a homogeneous, nonlinear, and attenuating medium. (a) Maximum pressure
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domain signals related to the separate harmonics that are
present at a certain position. These harmonics are extracted
from the computed total time-domain signal by applying
numerical band-pass filters. The simulations were done in
such a way that five harmonics could be extracted. This is,
for instance, required when dealing with superharmonic
imaging (Van Neer et al., 2011). In both simulations and
for both methods, the computational domain was set to
160,160,600 grid points with a grid point spacing (i.e.,
sampling interval) in each Cartesian direction of 114 mm. At
the Nyquist limit of two grid points per wavelength, this cor-
responds to a maximum supported frequency of 6.5 MHz for a
medium with a speed of sound c0¼1482 ms!1 as mostly used
in the comparisons. The source was defined as a volume injec-
tion source in the shape of a square piston facing in the
z-direction and covering 87,87 grid points. The source signal
was defined as a Gaussian-modulated tone burst:

psource ¼ P0 exp ! 2t

tw

& '2
" #

sin 2pf0tð Þ [194]

with a source amplitude P0¼750 kPa, source frequency
f0¼1 MHz, and tone-burst length of tw¼3/f0.

For the first comparison, shown in Figure 17, a homoge-
neous, attenuative, and nonlinear medium was considered
with a speed of sound c0¼1482 m s!1, density of mass

r0¼1000 kg m!3, nonlinearity parameter B/A¼4.96 (equal
to a coefficient of nonlinearity b¼3.48), and power-law
attenuation of the form a¼a0f b with parameters a0¼0.75dB
MHz!b cm!1 and b¼1.5. For the INCS method, a comoving
time window of 399 points was applied with two grid points
per period at 6.5 MHz (implying a CFL¼1), and the Neumann
scheme was used with six iterations to compute the numerical
solution. For the k-Wave simulation, a comoving time window
is not used (only the current time step is stored in memory),
and a CFL¼0.25 was applied. Figure 17 shows that there is
excellent qualitative and quantitative agreement between the
two methods, and the maximum difference in the total field
shown in Figure 17(a) is on the order of 0.8dB.

For the second comparison, presented in Figure 18, two
objects with contrasting material properties were included in
the previously described medium. These objects are a hollow
cylinder and a sphere and are indicated in Figure 18 by
dashed circles. The contrasting property of the hollow cylinder
was its speed of sound of 1540 ms!1, while the ball had a
nonlinearity parameter of B/A¼0 (equal to a coefficient of
nonlinearity of b¼1) and power-law attenuation parameters
of a0¼1.50dB MHz!b cm!1 and b¼1.5. Other parameters
were matched to the background medium parameters used in
the first comparison. For the INCS method, a comoving time
window of 709 points was used with an implied CFL¼1, and
the Neumann scheme was used with 13 iterations to compute
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the numerical solution. For the k-Wave simulation, a
CFL¼0.25 was again applied. Figure 18 shows that there is
again excellent qualitative and quantitative agreement between
the two methods.

Both comparisons show that the applied methods are quite
able to simulate nonlinear ultrasound propagation in media
with tissue-realistic attenuation and, as demonstrated by the
second comparison, that both methods can do so for media
having heterogeneous medium parameters. Moreover, numer-
ical confidence in both methods is established from the obser-
vation that although the methods are computationally quite
different, the results are in excellent agreement.

In conclusion, the current availability of computer power
and advanced simulation methods have already brought great
possibilities for simulating ultrasound wave fields in realistic
biological media. On the other hand, there are many aspects
that are not yet fully addressed (shear waves in bone, media
with contrast bubbles, multiphase media, etc.) and that open
up opportunities for further research in the field of numerical
simulation of medical ultrasound.
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