
Modeling power law absorption and dispersion in viscoelastic
solids using a split-field and the fractional Laplaciana)

Bradley E. Treebyb) and B. T. Cox
Department of Medical Physics and Biomedical Engineering, University College London, Gower Street,
London WC1E 6BT, United Kingdom

(Received 3 February 2014; revised 1 July 2014; accepted 16 August 2014)

The absorption of compressional and shear waves in many viscoelastic solids has been experimen-

tally shown to follow a frequency power law. It is now well established that this type of loss behav-

ior can be modeled using fractional derivatives. However, previous fractional constitutive

equations for viscoelastic media are based on temporal fractional derivatives. These operators are

non-local in time, which makes them difficult to compute in a memory efficient manner. Here, a

fractional Kelvin-Voigt model is derived based on the fractional Laplacian. This is obtained by

splitting the particle velocity into compressional and shear components using a dyadic wavenumber

tensor. This allows the temporal fractional derivatives in the Kelvin-Voigt model to be replaced

with spatial fractional derivatives using a lossless dispersion relation with the appropriate compres-

sional or shear wave speed. The model is discretized using the Fourier collocation spectral method,

which allows the fractional operators to be efficiently computed. The field splitting also allows the

use of a k-space corrected finite difference scheme for time integration to minimize numerical

dispersion. The absorption and dispersion behavior of the fractional Laplacian model is analyzed

for both high and low loss materials. The accuracy and utility of the model is then demonstrated

through several numerical experiments, including the transmission of focused ultrasound waves

through the skull. VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4894790]

PACS number(s): 43.20.Bi, 43.20.Jr, 43.35.Cg [ANN] Pages: 1499–1510

I. INTRODUCTION

Accurately accounting for the absorption and dispersion

of waves in lossy media is important in many branches of

acoustics, including seismology,1 geophysics,2 ultrasonics,3

photoacoustics,4 and elastography.5 Experimentally, the

acoustic absorption in a wide range of materials relevant to

these fields has been shown to follow a frequency power law

of the form a0x
y, where a0 is a proportionality coefficient, x

is the temporal frequency, and y is between 0 and 2.6 It is

now well established that this type of behavior can be mod-

eled through the use of fractional derivative operators—a

recent review is given by Holm and N€asholm.7 However,

previous constitutive equations that account for power law

absorption in solid media are based on temporal fractional

derivatives.8 These operators are non-local in time, which

means their numerical evaluation requires storing the time

history of the field variables in memory. This can have a sig-

nificant impact on the tractability of practical modeling prob-

lems. For example, Wismer used the time history of the

wavefield for the previous 20 time steps to evaluate a power

law absorption term based on the temporal fractional deriva-

tive,9 Caputo used the previous 70 time steps,10 while

Norton and Novarini used the previous 1024 time steps.11

The length of the time history required depends on the value

of the power law exponent used, with values close to y¼ 1

the most computational demanding.9 Unfortunately, this

value corresponds to many materials of interest, for example,

soft biological tissue in the MHz range where y is typically

close to 1.12 The memory required to evaluate the power law

absorption term can thus be very significant, particularly in

solid media where the field variables are represented by vec-

tors and tensors.

To overcome the large memory requirements, several

authors have discussed the construction of temporally local

or diffusive schemes for the computation of temporal frac-

tional derivatives.13,14 This approach is based on expressing

the fractional derivative in the frequency domain as an

improper integral of a rational function, which is then

approximated using a quadrature scheme.15 In the time do-

main, each term in the quadrature sum corresponds to a con-

volution with an exponential kernel. This is equivalent to

replacing the non-local problem with a series of local prob-

lems, which can be solved either as a system of first-order

differential equations at each time step,16,17 or recursively.15

The accuracy of this approach depends strongly on the quad-

rature scheme and the number of integration points used to

evaluate the integral.15

In the lossy acoustic case (where the medium is repre-

sented as a fluid rather than a viscoelastic solid), it is also

possible to directly replace the fractional time derivatives

with fractional space derivatives which are non-local in

space rather than time.18,19 If the Fourier collocation spectral

method is used to discretize the spatial gradients,20 these

operators can be computed very efficiently without needing

to access the time history of the field variables.19 Here, we
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show how this idea can be extended to modeling the propa-

gation of compressional and shear waves in viscoelastic sol-

ids with power law absorption. In Sec. II, the formulation of

the model is described, including the fractional Kelvin-Voigt

constitutive relation on which it is based. The absorption

behavior of the fractional Laplacian wave equation is also

analyzed. In Sec. III, the discretization and implementation

of the model using the k-space pseudospectral method is dis-

cussed. Several numerical examples are then given to illus-

trate the capabilities of the developed model. Summary and

discussion are presented in Sec. IV.

II. MODEL DEVELOPMENT

A. Kelvin-Voigt model

Before proceeding to a discussion of fractional constitu-

tive equations, it will be beneficial to briefly revisit the for-

mulation and behavior of the classical Kelvin-Voigt model.

This discussion will form the basis for later analysis of more

complex material behavior. In an elastic material, the stress

and strain are related by the stiffness, which is a measure of

the material’s resistance to deformation in response to an

applied force. For a general anisotropic medium, this rela-

tionship can be written using Einstein summation notation as

rij ¼ Cijklekl; (1)

where r is the stress tensor, e is the strain tensor, and C is

the stiffness tensor. For small deformations, the strain and

the particle displacement u are related by

eij ¼
1

2

@ui

@xj
þ @uj

@xi

� �
: (2)

To account for viscoelastic behavior in which a time depend-

ent strain creep is observed in response to an applied force,

Eq. (1) is generalized by adding terms proportional to the

temporal derivatives of the stress and strain,8

1þ
XM1

m¼1

Am
ijkl

@m

@tm

" #
rij ¼ Cijkl þ

XM2

m¼1

Bm
ijkl

@m

@tm

" #
ekl: (3)

This expression accounts for the four types of classical

viscoelastic behavior (for example, the Maxwell or Zener

models) depending on the values of Am, Bm, M1, M2, and C.8

When M1¼ 0 and M2¼ 1 (where the value of the empty sum

is taken to be zero), the classical Kelvin-Voigt model is

obtained,

rij ¼ Cijklekl þ Nijkl
@

@t
ekl; (4)

where N is the viscosity tensor. If the medium is isotropic,

there are only two independent components of both the stiff-

ness and viscosity tensors. The Kelvin-Voigt stress-strain

relation can then be written in the form21

rij ¼ kdijekk þ 2leij þ vdij
@

@t
ekk þ 2g

@

@t
eij: (5)

Here k and l are the Lam�e parameters, where l is the shear

modulus (the ratio of shear stress and shear strain), and v
and g are the compressional and shear viscosity coefficients,

respectively. The Lam�e parameters are related to the shear

and compressional sound speeds, cs and cp, by

l ¼ q0c2
s ; kþ 2l ¼ q0c2

q; (6)

where q0 is the ambient mass density.

To model the propagation of elastic waves, it is neces-

sary to combine the appropriate stress-strain relation with

Newton’s second law. Written as a function of the stress and

particle velocity, where vi ¼ @ui=@t, this is given by

@vi

@t
¼ 1

q0

@rij

@xj
: (7)

This expression is a statement of the conservation of mo-

mentum, sometimes referred to as the equation of motion.

Using Eq. (2), the Kelvin-Voigt stress-strain relation can

similarly be written as a function of the stress and particle

velocity,

@rij

@t
¼ kdij

@vk

@xk
þ l

@vi

@xj
þ @vj

@xi

� �

þvdij
@2vk

@xk@t
þ n

@2vi

@xj@t
þ @2vj

@xi@t

 !
: (8)

Equations (7) and (8) describe a set of coupled partial

differential equations that account for the propagation of

compressional and shear waves in an isotropic viscoelastic

solid. These equations can also be combined into a single

elastic wave equation. Written as a function of the particle

displacement u, for a medium with homogeneous material

properties this is given by21

q0

@2ui

@t2
¼ kþlð Þ @2

@xi@xj
uj þ l

@2

@x2
j

ui

þ vþ gð Þ
@2

@xi@xj

@uj

@t
þ g

@2

@x2
j

@ui

@t
: (9)

Using vector notation, this is equivalent to

q0

@2u

@t2
¼ kþ lð Þr r � uð Þ þ lr2u

þ vþ gð Þr r � @u

@t

� �
þ gr2 @u

@t
: (10)

Expanding the vector Laplacian using r2u ¼ rðr � uÞ
�r � ðr � uÞ and replacing the Lam�e parameters with the

compressional and shear sound speeds from Eq. (6) then

gives

@2u

@t2
¼ c2

pr r � uð Þ � c2
sr� r� uð Þ

þspc2
pr r � @u

@t

� �
� ssc

2
sr� r� @u

@t

� �
; (11)
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where the parameters sp and ss are defined as

sp ¼
vþ 2g
q0c2

p

¼ vþ 2g
kþ 2l

; ss ¼
g

q0c2
s

¼ g
l
: (12)

To analyze the individual behavior of compressional

and shear waves, Eq. (11) can also be written in terms of sca-

lar and vector potentials, where u ¼ r/þr�W (this is

sometimes called the Helmholtz decomposition),

0 ¼ r @2/
@t2
� c2

pr2/� spc2
p

@

@t
r2/

� �

þr� @2W

@t2
� c2

sr2W� ssc
2
s

@

@t
r2W

� �
: (13)

Individual equations for the potentials can then be obtained

by taking the divergence or curl of Eq. (13), where r � u
¼ r2/ and r� u ¼ r2W. This results in two separate

wave equations given by equating the bracketed terms in Eq.

(13) to 0. Each of these is in the form of Stokes’ classical

viscous wave equation.22 The parameters sp and ss can thus

be interpreted as relaxation times in the Stokes’ sense. For

xs� 1, Stokes’ equation accounts for acoustic absorption

that varies with the square of frequency while the sound

speed is approximately constant (meaning there is no disper-

sion). For xs � 1, both the absorption and the sound speed

vary with the square root of frequency.22

B. Fractional Kelvin-Voigt model

In the low frequency limit where xs� 1, the classical

Kelvin-Voigt model described in Sec. II A accounts for

acoustic absorption that is proportional to x2. However, as

mentioned in Sec. I, the absorption experimentally observed

in many materials of interest is proportional to xy, where y is

between 0 and 2, and is often close to 1. To account for this

behavior, the operator equation given in Eq. (3) can be gen-

eralized by replacing the integer time derivatives with frac-

tional time derivatives,8

1þ
XM1

m¼1

Am
ijkl

@mþn�1

@tmþn�1

" #
rij ¼ Cijklþ

XM2

m¼1

Bm
ijkl

@mþn�1

@tmþn�1

" #
ekl;

(14)

where n 2 ð0; 1� is a non-integer power. Again, depending

on the values of M1 and M2, this expression accounts for

fractional generalizations of the four types of classical visco-

elastic behavior, including the fractional Maxwell, Kelvin-

Voigt, and Zener models.23,24 Physically, the introduction of

the fractional derivative can be understood to change the

shape of the strain creep and stress relaxation responses cap-

tured by the model.8

For M1¼ 0, M2¼ 1, and n¼ y � 1, Eq. (14) leads to the

fractional Kelvin-Voigt model

rij ¼ Cijklekl þ Nijkl
@y�1

@ty�1
ekl: (15)

This particular stress-strain relation has been widely used

to describe the behavior of viscoelastic materials in

geomechanics.25,26 In the isotropic case, the fractional

Kelvin-Voigt model can be written in the form

rij ¼ kdijekk þ 2leij þ vdij
@y�1

@ty�1
ekk þ 2g

@y�1

@ty�1
eij: (16)

Following the same steps used in Sec. II A to manipulate the

classical Kelvin-Voigt model, this expression can also be

written as a wave equation dependent on the scalar and vec-

tor potentials,

0 ¼ r @2/
@t2
� c2

pr2/� spc2
p

@y�1

@ty�1
r2/

� �

þr� @2W

@t2
� c2

sr2W� ssc
2
s

@y�1

@ty�1
r2W

� �
: (17)

In this case, the equations for the individual potentials are

now both in the form of the Caputo fractional wave equa-

tion.9,26 Written in terms of the scalar potential /, this is

given by

1

c2
0

@2

@t2
/�r2/� s

@y�1

@ty�1
r2/ ¼ 0: (18)

In the low frequency limit where xs� 1, this equation

encapsulates power-law acoustic absorption of the form23,27

a � � s cos py=2ð Þ
2c0

xy; (19)

where a is the absorption coefficient in Np m–1. Using the

relaxation times defined in Eq. (12), when xsp � 1 and

xss� 1, the absorption of compressional and shear waves is

thus governed by

ap ��
vþ 2gð Þcos py=2ð Þ

2q0c3
p

xy; as ��
g cos py=2ð Þ

2q0c3
s

xy:

(20)

Correspondingly, to account for absorption of the form

a¼ a0x
y in the low frequency limit, the viscosity coeffi-

cients in the fractional Kelvin-Voigt model should be chosen

such that

g ¼ � 2q0c3
s

cos py=2ð Þ a0;s; v ¼ �
2q0c3

p

cos py=2ð Þ a0;p � 2g:

(21)

Here a0,s and a0,p are the desired absorption coefficient pre-

factors in Np (rad/s)�y m�1 for shear and compressional

waves, respectively, and y is the desired power law

dependence.

C. From temporal to spatial fractional derivatives

As discussed in Sec. I, the use of fractional time deriva-

tives in the stress-strain relation introduces a challenging

computational problem. This arises because the temporal

fractional operators are non-local in time, and thus their
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numerical evaluation requires storing the time history of the

field variables (unless a diffusive scheme is used). Under

certain conditions, it is possible to replace fractional time

derivatives with fractional space derivatives that are non-

local in space, rather than time.19 For explicit time-stepping

methods, this has a significant computational benefit, as the

wavefield at other spatial positions for each time step is al-

ready known.

To illustrate how this replacement arises, consider the

Fourier transform of the fractional temporal derivative of a

function g(x, t),

F x;t
@yg x; tð Þ
@ty

� �
¼ �ixð ÞyG k;xð Þ: (22)

Here k and x are the spatial and temporal frequencies,

respectively, and F x;t {���} denotes the Fourier transform

over x and t. The first part of this expression can be expanded

using (�i)y¼ cos(py/2) � i sin(py/2) to give

ð�ixÞy ¼ cosðpy=2Þxy þ ð�ixÞ sinðpy=2Þxy�1: (23)

For many applications, acoustic absorption only has a second

order effect on wave propagation, i.e., xs� 1. This means

that the temporal frequency terms in Eq. (23) (which corre-

spond to temporal derivatives) can be replaced by spatial fre-

quency terms (which correspond to spatial derivatives) using

the dispersion relation for the lossless wave equation

x¼ c0k. This is based on the premise that the substitution of

first-order relations into second-order terms will result in

third-order errors, which can be neglected.28 Equation (23)

then becomes

ð�ixÞy � cosðpy=2Þkycy
0 þ ð�ixÞ sinðpy=2Þky�1cy�1

0 :

(24)

Using the definition of the fractional Laplacian18

F x;tfð�r2Þygðx; tÞg ¼ k2yGðk;xÞ; (25)

and taking the inverse Fourier transform of Eq. (24) then

yields

@y

@ty
� cy

0 cos py=2ð Þ �r2ð Þy=2

þcy�1
0 sin py=2ð Þ �r2ð Þ y�1ð Þ=2 @

@t
: (26)

Similarly for a fractional power of y� 1,

@y�1

@ty�1
� cy�1

0 sin py=2ð Þ �r2ð Þ y�1ð Þ=2

�cy�2
0 cos py=2ð Þ �r2ð Þ y�2ð Þ=2 @

@t
: (27)

Thus, fractional temporal derivatives can be replaced with

fractional spatial derivatives without modifying the original

absorption behavior, provided the effect of absorption on the

wavefield is small.

To illustrate the utility of this relation, combining Eq.

(27) with Eqs. (18)–(19) directly leads to the fractional
Laplacian wave equation7,18,19,29

1

c2
0

@2/
@t2
�r2/� s1 �r2ð Þy=2 @

@t
/� s2 �r2ð Þ yþ1ð Þ=2

/¼ 0:

(28)

Here the two proportionality coefficients are given by s1

¼ �2a0cy�1
0 and s2 ¼ 2a0cy

0 tanðpy=2Þ. If the Fourier collo-

cation spectral method is used to compute the spatial gra-

dients, the fractional Laplacian terms become simple to

compute, where

ð�r2Þygðx; tÞ ¼ F�1
x fk2yF xfgðx; tÞgg: (29)

This is the absorption model used in the open-source

k-Wave toolbox for simulating the propagation of acoustic

waves in fluid media with power law absorption.30,31

D. Absorption behavior of the fractional Laplacian
wave equation

The fractional Laplacian wave equation given in Eq.

(28) arises from a modification of the fractional term in the

Caputo (or fractional Kelvin-Voigt) wave equation under the

assumption that xs� 1. It is therefore of interest to investi-

gate how the fractional Laplacian wave equation behaves

when this condition is not met. This behavior can be

extracted from the dispersion relation between k and x,

which is obtained by taking the Fourier transform of Eq. (28)

over x and t (Ref. 29),

k2 � x2

c2
0

� 2ia0cy�1
0 kyx� 2a0cy

0 tan py=2ð Þkyþ1 ¼ 0:

(30)

The conventional approach for studying the absorption and

dispersion of equations in this form is to let x 2 R and k
2C, where k¼ krþ iki. The absorption can then be extracted

by solving for ki.
22 However, for Eq. (30), the fractional

powers of k prevent a solution from being easily obtained,

except in the low frequency limit.19 Alternatively, the

absorption can be studied by letting k 2 R and x 2 C,

where x¼xr � ixi.
32 This is motivated by considering the

absorption of a traveling plane wave which can be specified

using either a complex spatial frequency, or a complex tem-

poral frequency, i.e.,

eiðkx�xtÞ ¼ eiðkrx�xtÞe�kix where k ¼ kr þ iki

eiðkx�xtÞ ¼ eiðkx�xr tÞe�xit where x ¼ xr � ixi:

(31)

Considering the decay in amplitude of a plane wave after

traveling a distance x in time t, the spatial and temporal

absorption can be related by

xi ¼
x

t
ki ¼ cdki; (32)
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where cd is the dispersive sound speed, i.e., the sound speed

for a particular x-k pair.

Returning to Eq. (30) and solving for x using the quad-

ratic formula leads to

x ¼ �ia0cyþ1
0 ky6c0k

ffiffiffiffiffiffiffiffiffiffiffi
1� f

p
; (33)

where

f ¼ a2
0c2y

0 k2y�2 þ 2a0cy
0 tanðpy=2Þky�1: (34)

Interestingly, Eqs. (33) and (34) illustrate there is a threshold

value of k where f> 1 and thus the solution for x becomes

completely imaginary (this corresponds to the poles of the

corresponding Green’s function lying on the imaginary

axis29). In this regime, the waves experience exponential

decay without any temporal oscillations, analogous to evan-

escent waves.33 Solving for the real and imaginary parts of

x 2C in Eq. (33) then leads to

xr ¼
6c0k

ffiffiffiffiffiffiffiffiffiffiffi
1� f
p

if f < 1

0 if f > 1;

(

xi ¼
a0cyþ1

0 ky if f < 1

a0cyþ1
0 ky7c0k

ffiffiffiffiffiffiffiffiffiffiffi
f� 1
p

if f > 1:

(
(35)

When f< 1, the fractional Laplacian wave equation exactly

encapsulates power law absorption as a function of spatial
frequency. The corresponding sound speed dispersion cd is

given by

cd ¼
xr

k
¼ c0

ffiffiffiffiffiffiffiffiffiffiffi
1� f
p

if f < 1

0 if f > 1:

�
(36)

This illustrates that the propagating part of the wave has a fi-

nite sound speed for all k.

The value of f along with the real and imaginary parts

of x and the dispersive sound speed cd are plotted as a func-

tion of k in Fig. 1 using the ultrasonic properties of breast tis-

sue in the MHz frequency range.34 For these particular

material properties, the value of k at the threshold f¼ 1 is

5.6� 109 rad/m. Using the first-order relationship x¼ c0k,

this corresponds to a temporal frequency of 1.3 GHz. This is

several orders of magnitude higher than the range of fre-

quencies for which the absorption parameters are valid. A

similar conclusion can be drawn using the absorption param-

eters and frequency range relevant to other applications.

Consequently, the high wavenumber limit where xr¼ 0 is

unlikely to play a role in most practical modeling scenarios,

particularly as any numerical solution will always be band-

limited by the chosen discretization.

To calculate the corresponding absorption as a function

of temporal frequency, which is how most experimental

measurements are obtained, an explicit mapping can be

made from ðx 2C; k 2 R) to ðx 2 R; k 2 C) as defined in

Eq. (31). Starting with the expression for xi when f< 1 in

Eq. (35) and substituting xi¼ cdki from Eq. (32) into the left

hand side and k¼xr/cd from Eq. (36) into the right hand

side, and then replacing xr with x leads to

ki ¼
a0cyþ1

0 xy

cyþ1
d

: (37)

Next, an expression for cd as a function of x can be obtained

by substituting the first-order relation x¼ c0k into Eq. (36)

which gives

cd � c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

0c2
0x

2y�2 � 2a0c0 tan py=2ð Þxy�1

q
: (38)

Combining these equations then yields the absorption behav-

ior of the fractional Laplacian wave equation as a function

of temporal frequency

ki �
a0xy

1� a2
0c2

0x
2y�2 � 2a0c0 tan py=2ð Þxy�1

� � yþ1ð Þ=2
:

(39)

FIG. 1. Behavior of the fractional Laplacian wave equation as a function of

k using the ultrasonic properties of compressional waves in breast tissue in

the MHz range, where a0¼ 0.75 dB/(MHzy cm), y¼ 1.5, and c0¼ 1510 m/s

(Ref. 34). For xr and xi, the positive square root is displayed. The vertical

dashed lines indicate the threshold wavenumber where f¼ 1. Above this

threshold, xr and cd are zero and the waves experience exponential decay

without any temporal oscillations.
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When xs � 1, the absorption terms in the denominator are

much less than 1, leaving ki � a0x
y as expected.19 At inter-

mediate values of xs relevant to wave propagation in highly

absorbing media,23 the a2
0 term can be neglected and the de-

nominator can be expanded using the first two terms of a bi-

nomial series, leaving

ki �
a0xy

1� yþ 1ð Þa0c0 tan py=2ð Þxy�1
: (40)

Examining Eq. (40), when 1< y< 2, tan(py/2) will be

negative, meaning the denominator of Eq. (40) will be

greater than one. Consequently, the power law absorption

encapsulated by the fractional Laplacian wave equation for

highly absorbing media will be smaller than that predicted

by the low frequency asymptote of a0x
y. An example of this

is given in Fig. 2 using the shear wave properties of skull

bone in the MHz frequency range from Table I. The solid

line illustrates the experimentally determined power law

behavior a0,expx
yexp (see discussion in Sec. III B), while the

dashed line shows the absorption behavior of the fractional

Laplacian wave equation calculated using Eq. (40) with the

same power law parameters. To force the model to match

the desired behavior over a specified frequency range, the

appropriate power law absorption parameters a0,model and

ymodel to use in the fractional Laplacian wave equation can

be obtained by solving a simple optimization problem, e.g.,

argmin
a0;model;ymodel

kkiða0;model;ymodelÞ � a0; exp xyexp k2; (41)

where ki is the absorption behavior from Eq. (39) or (40).

This minimization can be performed using any standard opti-

mization tools, e.g., fminsearch in MATLAB. An example of

this fitting procedure is given in Fig. 2, where the crosses

illustrate the absorption behavior of the fractional Laplacian

wave equation using the optimized parameters.

For completeness, the corresponding absorption behav-

ior when xs� 1 and f> 1 is given by

ki � sin p=2yð Þ x

2a0cyþ1
0

� �1=y

: (42)

When y¼ 2, this reduces to ki � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x= a0c3

0

� �q
as expected

for Stokes’ equation when xs� 1.22

E. Field-splitting in k-space

As discussed in Sec. II D, the fractional Laplacian wave

equation can be used to describe power law absorption over

a wide range of frequencies and absorption values. However,

in the elastic case, the compressional and shear waves travel

at two different sound speeds. This means the lossless dis-

persion relation x¼ c0k cannot be used with Eq. (23) to con-

vert temporal fractional derivatives to spatial fractional

derivatives. Here, an approach to overcome this restriction

by splitting the particle velocity field into shear and com-

pressional components is described.

Considering first the lossless case and following Ref.

35, the wave equation given in Eq. (11) can be written in the

spatial frequency domain as

@2U

@t2
¼ c2

pik ðik � UÞ � c2
s ik� ðik� UÞ; (43)

where F xfrg¼ ik and F x{u}¼U. The first term on the

right hand side of this expression can be expanded using the

substitution k(k � U)¼ (kk) � U, where kk is the dyadic ten-

sor formed by the outer product of k with itself. Similarly,

the second term can be expanded using the triple vector

product a� (b� c)¼ b (a � c)� c (a � b). This leads to

k� (k�U)¼ (kk� k2
I) � U, where k2	 k � k and I is the

identity matrix. Using these expansions, Eq. (43) can then be

written in the form

@2U

@t2
¼ �k2 c2

p k̂k̂ð Þ þ c2
s I� k̂k̂ð Þ

	 

� U; (44)

where k̂ ¼ k=k is the normalized wavenumber vector.

The dyadic operators ðk̂k̂Þ and ðI� k̂k̂Þ in Eq. (44) act

to split the vector particle displacement into compressional

and shear components, i.e.,

Up ¼ ðk̂k̂Þ � U; Us ¼ ðI� k̂k̂Þ � U; (45)

FIG. 2. Absorption behavior of the fractional Laplacian wave equation. For

highly absorbing media, the encapsulated absorption (dashed line) will be

smaller than a frequency power law calculated using the same pre-factor

and exponent (solid line). However, using a simple fitting procedure, it is

straightforward to select power law parameters that give the desired behav-

ior (crosses).

TABLE I. Material properties for skull bone based on the experimental data

in White et al. (Ref. 40). Here q0 is the mass density in kg/m3, c0 is the

sound speed in m/s, a0 is the power law absorption pre-factor in dB/(MHzy

cm), and y is the power law exponent. The values for a0,exp and yexp were

obtained by fitting a power law to the experimental data as shown in Fig. 5,

while a0,model and ymodel are the corresponding power law parameters that

should be specified in the fractional Laplacian equation to observe this

behavior numerically. Parameters marked with a * are the same for both

compressional and shear waves.

Compression Shear

q0 1732 *

c0 2820 1500

a0,exp 7.75 16.7

yexp 1.37 *

a0,model 8.83 19.5

ymodel 1.43 *
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where U¼U
pþU

s. Written using Einstein summation nota-

tion, this is equivalent to

Up
i ¼ k̂ ik̂ jUj; Us

i ¼ ðdij � k̂ ik̂ jÞUj: (46)

Using the same approach to split the particle velocity, the

fractional Kelvin-Voigt stress-strain relation can be split into

two equations which separately describe the compressional

and shear components of the wavefield. Written in x-t space,

this gives

@rp;s
ij

@t
¼ k dij

@

@xk
vp;s

k

� �
þ l

@

@xj
vp;s

i þ
@

@xi
vp;s

j

� �

þv dij
@

@xk

@y�1

@ty�1
vp;s

k

� �

þg
@

@xj

@y�1

@ty�1
vp;s

i þ
@

@xi

@y�1

@ty�1
vp;s

j

 !
; (47)

where the total stress field is rij ¼ rp
ij þ rs

ij. Because the field

is split, the fractional temporal derivatives can then be

replaced with fractional spatial derivatives using Eq. (27),

where c0 is chosen to be the appropriate shear or compres-

sional sound speed (this can be either homogeneous or

heterogeneous).

Note, the definition of n 2 (0, 1] in Eq. (14) suggests

that in the low frequency limit, the absorption power law de-

pendence of the fractional Kelvin-Voigt model is restricted

to y 2 (1, 2]. However, in the case of the fractional

Laplacian wave equation, there is no fundamental reason for

this restriction, and the appropriate power law behavior can

be observed both mathematically and numerically with y
2 (0, 2] and y 6¼ 1. Numerically, the split-field Kelvin-Voigt

stress-strain relation also allows the possibility for the frac-

tional power law exponent y to be defined separately for

compressional and shear waves. However, this means the

two wave types are no longer both governed by the constitu-

tive equation given in Eq. (15), which only contains a single

fractional operator. In most cases, choosing different power

law exponents also causes the numerical model to become

unstable. In light of this, the model discussed in Sec. III is re-

stricted to a single value of y.

III. NUMERICAL MODEL

A. The k-space pseudospectral time domain solution

A computationally efficient model for elastic wave

propagation in absorbing media can now be constructed

using the split-field fractional Kelvin-Voigt model given in

Eq. (47) along with the equation of motion given in Eq. (7).

Here, these are solved as coupled partial differential equa-

tions using an explicit k-space pseudospectral method in

which the Fourier collocation spectral method is used to

compute spatial gradients,20 and a k-space corrected finite

difference scheme is used to integrate forward in time.35–37

The discrete equations given below are written in compact

notation, where theþ and � symbols in the left superscript

denote the field values at the next and current time steps, the

p and s symbols denote the compressional and shear

components of the field, the regular script i denotes the

imaginary unit, terms including y in the right superscript

indicate powers, and the i, j, l symbols in the right subscript

denote Einstein summation indices, where a repeated index

signifies a summation over all values of that index. The field

variables are then updated in a time stepping fashion as

follows:

(1) Update the Cartesian components of the particle velocity

using both the compressional and shear parts of the stress

tensor

þvi ¼ �vi þ
Dt

q0

F�1 ikjj
pF �rp

ij

n o
þ ikjj

sF �rs
ij

� �n o
:

(48)

Here ki represents the discrete set of wavenumbers in each

Cartesian direction, k is the scalar wavenumber given by

k2¼ kiki, F{} is understood to be the spatial Fourier trans-

form over all Cartesian dimensions, and j is the k-space

operator which corrects for the phase error introduced by

the finite difference discretization of the time derivative,

where jp,s¼ sincðcp;s
ref kDt=2Þ and cp;s

ref is a reference sound

speed chosen to be cp,s in a homogeneous medium (further

discussion of the origin and behavior of the k-space opera-

tor can be found in Refs. 31, 35, 37, and 38).

(2) Split the Cartesian components of the particle velocity

into compressional and shear parts using the k-space

dyadic

Vp
i ¼ k̂ ik̂ jFfþvjg;

Vs
i ¼ ðdij � k̂ ik̂ jÞFfþvjg; (49)

where k̂ i ¼ ki=k is the normalized wavenumber.

(3) Calculate the fractional Laplacian power law absorption

terms defined in Eq. (27)

Lp;s
i ¼ Ffðcy�1

p;s sinðpy=2ÞÞF�1fky�1Vp;s
i g

�ðcy�2
p;s cosðpy=2ÞÞF�1fky�2@tV

p;s
i gg: (50)

Here, to avoid needing to explicitly calculate the tempo-

ral gradient of the particle velocity using a finite differ-

ence scheme, the @tV
p;s
i terms are calculated from the

spatial gradients of the split stress field using the equa-

tion of motion from Eq. (7).

(4) Update the compressional and shear parts of the stress

tensor using the corresponding components of the split

velocity field

þrp;s
ij ¼�rp;s

ij þkDtF�1fdijiklj
p;sVp;s

l g
þlDtF�1fikjj

p;sVp;s
i þ ikij

p;sVp;s
j g

þvDtF�1fdijiklL
p;s
l gþ gDtF�1fikjL

p;s
i þ ikiL

p;s
j g ;
(51)

where the Lam�e parameters and viscosity coefficients

are calculated from the material properties using Eq. (6)

and Eq. (21).
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To improve accuracy for simulations in heterogeneous

media, a spatially staggered grid scheme is also used as

shown in Fig. 3. In this case, translating the field quantities

between the staggered grid points is achieved using the shift

property of the Fourier transform.35 The order of the update

equations also means the stress and velocity quantities are

temporally staggered. This is significant for the calculation

of the Lp;s
i terms in Eq. (50), as these require a combination

of the staggered velocity and stress fields which are offset by

Dt/2. The temporal grid staggering thus introduces a small

phase error, which manifests as an error in the absorption

and dispersion captured by the model. However, this error is

typically small and can be controlled by modifying the size

of the time step.19

In the general case of an absorbing and heterogeneous

medium, it is difficult to derive a compact expression that

describes the stability of the derived numerical model.

However, the stability can also be determined numerically

by re-writing Eqs. (48)–(51) into an update equation of the

form þ
f¼A

–
f, where f is a vector containing the individual

components of the particle velocity vector and stress tensor,

and A is a update matrix that maps the values of the field

variables from the current time step to the next. For a given

set of material and grid parameters, the model will be stable

if the absolute values of the eigenvalues of A do not exceed

1.39 In general, the inclusion of the k-space correction term

improves both the stability and the accuracy of the model.35

B. Numerical simulations

The model equations given in Sec. III A were imple-

mented in MATLAB as an extension to the open-source k-

Wave toolbox.30 To demonstrate the ability of the model to

accurately account for power law absorption and dispersion

in solid media, several numerical experiments were per-

formed using material properties relevant to biomedical

ultrasound. First, to illustrate the effect of the k-space correc-

tion term on the accumulation of numerical phase error, a

broadband unipolar plane wave pulse was propagated

through a homogeneous and lossless medium. The grid size

was set to be 32� 512 grid points (9.375 mm� 150 mm) and

the medium properties were set to be those of skull bone

from Table I. The source was defined as a line-shaped initial

particle velocity distribution with a magnitude of 0.1 m/s,

which was smoothed using a frequency domain Blackman

window to minimize the visual impact of the underlying

band-limited interpolant.29 This distribution was assigned to

both vx and vy to simultaneously excite compressional and

shear plane waves in the medium.

Figure 4 illustrates the particle velocity traces recorded

10 mm and 60 mm from the source, respectively, using a

Courant-Friedrichs-Lewy (CFL) number of 0.3, where

Dt¼CFLDx/cmax. The upper panel shows the compressional

wave and the lower panel the shear wave, where the split

components of the wavefield were extracted using Eq. (49).

The dashed lines illustrate the recorded signals when the k-

space correction is used, and the solid lines when j in Eqs.

(48) and (51) is set to 1, corresponding to a leapfrog pseudo-

spectral time domain (PSTD) model. For a homogeneous

medium, the inclusion of the k-space operator completely

eliminates the phase error. In contrast, when the PSTD

model is used, the accumulation of phase error is significant,

even over the small domain size used in this example. This

error can be controlled by reducing the size of the time step,

or using a higher order scheme for the time integration. In

the lossless case, as well as eliminating phase errors, the

FIG. 3. Position of the field quantities and their derivatives on the staggered

grid in three dimensions. The derivatives @i@tvj (etc.) are staggered the same

way as the @ivj. terms.

FIG. 4. Accumulation of phase error in the propagation of a unipolar plane

wave pulse in a homogeneous medium with (dashed lines) and without

(solid lines) the k-space correction term, where the latter is equivalent to a

leapfrog pseudospectral time domain (PSTD) model. The two panels illus-

trate recorded time traces at positions x1¼ 10 mm and x2¼ 60 mm from the

source for both (a) compressional and (b) shear waves.

1506 J. Acoust. Soc. Am., Vol. 136, No. 4, October 2014 B. E. Treeby and B. T. Cox: Modeling power law absorption in solids



inclusion of the k-space correction makes the model uncon-

ditionally stable.35,37 Further discussion on the effect of

the k-space operator for heterogeneous media is given in

Ref. 31.

Next, to study the accuracy of the absorption and disper-

sion behavior captured by the numerical model, the same

simulation was repeated for a lossy medium. The power law

absorption parameters for skull bone were derived from the

experimental data given by White et al.40 The fits were

obtained by simultaneously minimizing the L2 error between

the power law expressions a0,px
y and a0,sx

y and the experi-

mental data. The data and fits are shown in Fig. 5, and the

derived parameters are given in Table I. To obtain the corre-

sponding power law parameters to use in the numerical

model (a0,model and ymodel in Table I), the fitting procedure

described in Sec. II D and Eq. (41) was used.

Figure 6 illustrates the absorption and dispersion behav-

ior captured by the model. The model values were numeri-

cally extracted from the time traces recorded at 5 mm and

10 mm from the source using the expressions given in Eq.

(34) in Ref. 19. The recorded traces for the compressional

and shear wave are shown in Fig. 6(a), with the correspond-

ing absorption and dispersion shown in Fig. 6(b) and Fig.

6(c). The open circles illustrate the absorption and dispersion

behavior extracted from the model, while the solid lines

illustrate the analytical values for comparison. There is a

very close agreement, illustrating that the desired power law

behavior is correctly captured by the model.

A final numerical example is shown in Fig. 7 to demon-

strate the utility of the model for studying problems of prac-

tical interest. This example simulates the transmission of

ultrasound from a focused transducer through the human

skull. A similar setup was recently used experimentally by

Legon et al.,41 to demonstrate the feasibility of using trans-

cranial focused ultrasound to non-invasively stimulate neural

cells in the brain. The simulation was performed using a grid

size of 576� 768 grid points, a grid point spacing of

167 lm, a time step of 11.25 ns, and a total simulation time

of 45 ls. The properties for the background medium were set

to lossless water, where cp¼ 1481 ms�1, cs¼ 0 ms�1, and

q0¼ 998 kg m�3, while the layer of skull bone was assigned

the properties given in Table I. The skull was defined as a

circular disk with an outer radius of 8.75 cm and a thickness

of 6.5 mm, and was smoothed using a frequency domain

Blackman window.30 The source was defined as a 30 mm

line source with a 30 mm focal length (defined using elec-

tronic delays). The source signal was a three cycle tone burst

centered at 0.5 MHz and was injected as a velocity source in

the y-direction.

Three snapshots of the evolution of the wavefield are

shown in Fig. 7(a)–7(c), with the position of the skull layer

outlined with the dashed lines. The temporal maximum of

the particle velocity magnitude recorded at each grid point

during the simulation is shown in Fig. 7(d). For comparison,

the equivalent result calculated using a lossless elastic wave

model is shown in Fig. 7(e). When absorption is included,

the magnitude of the particle velocity in the focus (shown

with the black crosses) is reduced by 30%. This is particu-

larly important in the context of neurostimulation, as the am-

plitude of the ultrasound waves is closely related to the

observed neurological response.42 Studying the magnitude

and distribution of ultrasound within the skull under

FIG. 5. Experimental data for the attenuation of ultrasound in skull bone

from White et al. (Ref. 40) along with power law fits to the data.

FIG. 6. Power law absorption and dispersion of compressional and shear

waves in a viscoelastic solid given by the properties of bone. (a) Shape of

the compressional and shear waves recorded at positions x1¼ 5 mm and

x2¼ 10 mm from the source. (b) Absorption behavior captured by the model

(open circles) compared with the analytical values (solid line). (c)

Dispersion behavior captured by the model (open circles) compared with the

analytical values (solid line).
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different sonication conditions is one potential future appli-

cation of the model.

Regarding computational efficiency, using double preci-

sion arithmetic, the total compute time for the lossy elastic

simulation was 39 min 49 s, while the corresponding com-

pute time for the lossless elastic simulation was 16 min 17 s.

The difference for the lossless case is almost entirely due to

the reduction in the number of forward and inverse FFTs

required per time step. In two-dimensions, the lossy elastic

model uses 70 2D-FFTs per time step, while the lossless

model uses only 28. The additional FFTs are required to

compute the absorption terms given in Eq. (50). In compari-

son, using a lossy fluid model (kspaceFirstOrder2D from the

k-Wave toolbox), the compute time for an equivalent simu-

lation was 7 min 45 s, where only 11 2D-FFTs are needed

per time step. Note, in terms of the absolute compute times,

using Cþþ instead of MATLAB and performing computations in

single precision can increase the performance of the k-space

model by a factor of 
15.43

Compared to a non-split implementation, the use of the

field-splitting approach approximately doubles the amount

of memory and the number of compute operations needed

per time step. However, this is a relatively small penalty

compared to models based on temporal fractional derivatives

which require storing the time history of the particle velocity

at each grid point, in addition to evaluating a time convolu-

tion for each time step. The use of field-splitting also allows

the inclusion of the k-space correction term. This minimizes

the phase error introduced by the finite difference

discretization of the temporal gradients, which in turn allows

larger time steps to be used for the same degree of

accuracy.35

IV. SUMMARY

A computationally efficient model that accounts for

power law absorption and dispersion in viscoelastic solids is

derived. This is based on a fractional Kelvin-Voigt constitu-

tive equation which is split into compressional and shear

wave components using a dyadic wavenumber tensor. The

field-splitting allows the temporal fractional derivatives in

the Kelvin-Voigt model to be replaced with spatial fractional

derivatives using the lossless dispersion relation x¼ c0k,

where c0 is the appropriate compressional or shear wave

speed. This replacement is significant, as the absorption term

can then be efficiently evaluated using standard numerical

techniques, without the need to store the time history of the

wavefield. Here, the derived governing equations are discre-

tized using the k-space pseudospectral method which allows

the fractional operators to be easily computed in the spatial

frequency domain. The field splitting approach also allows a

k-space corrected finite difference scheme to be used for

time integration, which minimizes the accumulation of phase

errors.

The fractional Laplacian wave equation is shown to ex-

hibit two distinct modes of behavior depending on the value

of the spatial wavenumber relative to a high-wavenumber

threshold. Above the threshold, the waves no longer

FIG. 7. (Color online) Simulation of the transmission of ultrasound waves generated by a focused transducer through a layer of skull bone. The upper three

panels show snapshots of the normal stress after (a) 7 ls, (b) 15 ls, and (c) 25 ls. The position of the skull layer is denoted using the dashed lines. The lower

two panels illustrate the temporal maximum value of the particle velocity magnitude recorded at each grid point over the duration of the simulation both (d)

with, and (e) without absorption. The black crosses indicate the position of the focus inside the skull. When absorption is included, the magnitude at the focus

is reduced by 30%.
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propagate and are subject to exponential decay without any

temporal oscillations. However, in practice, the very high

value of the threshold means this behavior is unlikely to con-

tribute to most modeling scenarios. Below the threshold, the

model exactly accounts for power law absorption as a func-

tion of spatial frequency. When xs � 1, this equates to

power law absorption as a function of temporal frequency as

expected. At intermediate values of xs, the absorption as a

function of temporal frequency is smaller than the corre-

sponding power law. However, using a simple fitting proce-

dure, it is straightforward to select model parameters to give

the desired behavior. Consequently, the fractional Laplacian

Kelvin-Voigt model can be used to model wave propagation

in a wide variety of materials with both low and high absorp-

tion values.
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