
 
 

 
Abstract—Effective transcranial transmission of focused 

ultrasound is desirable for various therapeutic applications. 
Time-reversal (TR) focusing based on numerical simulations of 
ultrasound propagation can be used to correct for the aberrating 
skull layer. For weakly heterogeneous media, k-space and 
pseudospectral time domain (PSTD) methods have been shown to 
have increased accuracy and efficiency compared to the finite-
difference time domain (FDTD) methods typically used in TR. 
However, their suitability for highly heterogeneous, transcranial 
simulations is less clear. Here, this is established in terms of 
spatial and temporal sampling requirements through numerical 
testing and comparison with FDTD schemes. PSTD schemes are 
shown to give equal or better accuracy compared to FDTD 
schemes for modelling propagation through tissue-realistic 
heterogeneities, which, combined with the reduction in numerical 
dispersion obtained with k-space correction, recommends them 
for use in simulated TR.  

 
Index Terms— Error measurement, transcranial focusing, 

heterogeneous media, k-space correction, pseudospectral 
methods 

I. INTRODUCTION 

Recently there has been renewed interest in the focused 
transmission of ultrasound across the skull for the purposes of 
adapting high intensity focused ultrasound (HIFU) for use in 
the brain, ultrasonic disruption of the blood brain barrier for 
targeted drug delivery, and the novel technique of ultrasonic 
modulation and stimulation of neural tissue, which was 
recently carried out in humans for the first time [1, 2].  
 The primary obstacle to focusing ultrasound into the brain is 
the skull. Bone has a high acoustic absorption coefficient and 
a compressional sound speed over twice that of soft tissue (see 
Table 1). This leads to the attenuation and aberration of 
propagating wavefronts and a reduction in focusing quality  
[1, 3]. Acoustic time-reversal (TR) focusing, refined for use in 
transcranial focusing by Aubry et al [3], takes advantage of the 
time-invariance of the lossless wave equation, and is able to 
correct for the aberration of a propagating wavefront. In 
simulated TR, numerical simulations of the propagation of 
ultrasound from the target area to an ultrasound transducer are 
carried out using acoustic property maps of the head, which 
can be derived from CT images. The pressures predicted at the 
simulated transducer are reversed in time and used to generate 
input phase and amplitude values for a multi-element array 
source. Marquet et al. [4] demonstrated that simulated TR is 

capable of attaining 90% of the peak pressure obtained with 
gold-standard hydrophone based focusing methods when 
focusing through ex vivo skull bone. Simulated TR can enable 
millimeter scale focusing with sub-millimeter positioning 
accuracy, and has since been employed in numerous studies 
requiring the focused transcranial application of ultrasound. 
However, simulated TR for transcranial focusing remains 
subject to error and uncertainty with resultant loss in focusing 
quality. Four potential sources of error are: 

 

i. The underlying physical model, and how well it 
accounts for phenomena such as absorption, 
nonlinearity, and elastic wave propagation. 

ii. Errors due to the discretisation of the physical domain, 
including numerical dispersion, the response to 
medium heterogeneities, and the effectiveness of the 
perfectly matched absorbing boundary layer (PML).  

iii. The inputs to the model, such as the map of acoustic 
medium properties and the representation of acoustic 
transducers. 

iv. How numerical simulations are used within a larger TR 
protocol, including how phenomena that are not time-
invariant, such as absorption, are accounted for. 
 

TR simulations are often carried out using finite difference 
time-domain (FDTD) schemes, which can be limited in their 
accuracy and efficiency for large-scale problems. Recently a 
more advanced k-space corrected pseudospectral time domain 
(PSTD) scheme was examined for simulated TR and shown to 
give comparable accuracy with less restrictive sampling 
criteria [1]. In the present paper, the errors that can arise due 
to the discretisation of the domain (ii above) are examined in 
more detail. Their impact on the accuracy of PSTD schemes is 
determined via numerical testing, and the spatial and temporal 
sampling criteria required to reduce their impact to an 
acceptable level are established. 2-2 and 2-4 FDTD schemes 
are also tested for the purpose of comparison.  
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TABLE 1  
ACOUSTIC PROPERTIES OF TISSUES IN THE HEAD [9] 

Tissue Compressional 
sound speed [ms-1] 

Density  
[kgm-3] 

Absorption coefficient 
[dBcm-1MHz-1] 

Fat 1430 928 0.60 
Muscle 1580 1040 0.45 
Brain 1560 1040 0.58 
Bone 3200 1990 3.5 

 



 
 

II. SIMULATION OF ULTRASOUND PROPAGATION 

A. Finite Difference Methods and Numerical Dispersion 
FDTD methods have seen extensive use in simulated TR 

[1, 3, 4], but are subject to errors in gradient estimation that 
result in an unphysical dependence of the sound speed on 
wave frequency and the spatial and temporal discretisation 
parameters. This leads to a cumulative error in phase, termed 
numerical dispersion [5].  

PSTD methods replace the finite difference calculation of 
spatial gradients with a spectral gradient calculation, in this 
case via a Fourier series. This prevents the numerical 
dispersion due to spatial discretisation, but not that due to the 
finite difference approximation of temporal gradients. 
However, the known value of the dispersion error arising from 
time stepping can be used to introduce a correction factor, 
𝜅 = sinc 𝑐!"#𝑘! ∆𝑡 2 , in the spatial frequency domain. This 
is the k-space corrected PSTD method [6, 7], and is exactly 
accurate for homogenous media up to the Nyquist limit. It 
remains highly accurate in weakly heterogeneous media, but 
the application of 𝜅  in the wavenumber domain means that 
only a single sound speed can be perfectly corrected for. This 
means that numerical dispersion dependent on temporal 
sampling will still arise in heterogeneous media. When 
𝑐!"# < 𝑐, dispersion is bounded between zero and that of the 
uncorrected PSTD scheme. For 𝑐!"# > 𝑐 dispersion is not 
bounded [7]. Formulation of any of these numerical schemes 
as a system of coupled first-order equations allows 
implementation of a split-field PML to replicate free field 
conditions [6]. The PML is intended to absorb incident waves 
before they reach the edge of the grid without reflecting any 
pressure from its surface. 

B. The Band-Limited Interpolant 
In any collocation method, it is necessary to interpolate 

between the values at the collocation points. In finite 
difference methods, polynomials are used to interpolate 
locally between neighbouring grid points. In PSTD methods, a 
Fourier series is applied globally to interpolate between the 
values at all the collocation points simultaneously. Because in 
practice only a finite number of Fourier components can be 
included, the representation is inevitably bandlimited, giving 
rise to Gibbs-type artifacts. This interpolating function, known 
as the band-limited interpolant (BLI), is shown for a 
Kronecker delta in Fig. 1 (a). In PSTD methods, it is the 
gradient of the BLI that is calculated [8]. This is not 
problematic as long as the BLI is an accurate representation of 
the variation of the discretely sampled function in between the 
collocation points. 

The BLI will affect attempts to describe discontinuous 
pressure distributions or medium properties on the grid. The 
representation of media where there are large step changes in 
medium properties between grid points has previously been 
identified as a limitation of PSTD methods [1, 6]. The 
magnitude of Gibbs’ phenomenon is related to the decay of 
the Fourier coefficients, and smoothing can be employed to 
improve the BLI representation, as shown in Fig. 1 (b) for a 
Blackman window. Although this still does not resemble the  
 

 

original delta function, the continuous BLI matches the 
implied underlying pressure distribution more closely. 

III. NUMERICAL TESTS 

A. Overview 
The impact of numerical dispersion, the effectiveness of the 

PML, and the accuracy of the representation of step-changes 
in medium properties were examined. Numerical simulation of 
ultrasound was carried out using the k-Wave toolbox [7]. A 
fluid model was used; meaning shear wave propagation was 
not considered. Spatial delta functions filtered with a 
Blackman window in the spatial frequency domain were used 
as broadband pressure sources as shown in Fig. 1 (b). Medium 
properties for both bone and brain tissue were used as defined 
in Table 1. Tests in 1D were carried out using leapfrog and k-
space corrected PSTD schemes, and using staggered-grid 2-2 
and 2-4 staggered FDTD schemes for comparison. A 4096-
point spatial grid was used, with a total length of 0.1 m. Tests 
in 2D were carried out using a k-space corrected PSTD 
scheme on a 256 × 256 spatial grid of 0.1 m × 0.1 m. Unless 
stated otherwise, all simulations used a Courant-Friedrichs-
Lewy number (CFL = 𝑐!"#Δ𝑡 Δ𝑥) of 0.3, and a 20 grid point 
PML with a peak absorption of 2 Nepers per grid point. 
Sampling criteria were calculated from acoustic frequency as 
spatial points per wavelength (PPW   =    𝑐 𝑓Δ𝑥) and temporal 
points per period (PPP   =   1 𝑓Δ𝑡). PPW were calculated 
using the wavelength of sound in brain tissue. 

B. Numerical Dispersion 
To examine the impact of numerical dispersion on 

simulation accuracy, a broadband source was defined as an 
initial pressure distribution on the grid and the time-varying 
pressure signal recorded at a distance of 1 cm. PSTD schemes 
and a 2-4 FDTD scheme were tested. When k-space correction 
was used, 𝑐!"# was set to the sound speed in brain tissue. As 
the CFL number defines a fixed ratio between spatial and 
temporal sampling, the test was repeated with the CFL varied 
from 0.03 to 0.6 to separate dispersion effects due to each 
discretisation. The phase spectrum of the recorded pulses was 
computed via fast Fourier transform (FFT) and compared to a 
reference generated with perfect k-space correction. The error 
in phase as a function of frequency,  ∅ 𝑓 ,  was converted to a 
positional error in brain tissue per cm propagated: 

 

                                    Positional  Error 𝑓 =    𝑐!"#$%∅ 𝑓 2𝜋𝑓.             (1) 
 

Fig. 1.  Spatial delta functions and their band limited interpolants (BLIs). (a) 
Unsmoothed, and (b) frequency filtered with a Blackman window. 



 
 

Fig. 2.  (a) Reflection from and (b) transmission through the 1D PML as a 
function of spatial points per wavelength (PPW). (c) Transmission to the edge 
of the grid as a function of angled of incidence. 

 

This was used to calculate the sampling criteria required to 
reduce the positional error due to numerical dispersion below 
1 mm for a target in the deep brain, assuming 1 cm 
propagation through bone and 10 cm propagation through 
brain tissue, with an additional 20 cm propagation through 
brain tissue per reverberation. Results are shown in Table 2, 
and demonstrate the increase in accuracy obtained by spectral 
methods, and then the near-total removal of dispersive error 
that is attained with k-space correction. 

It should be noted that FDTD schemes are dependent on 
both spatial and temporal sampling making direct comparison 
with PSTD schemes difficult. For the values in Table 2, the 
temporal PPP required in the 2-4 FDTD scheme were 
calculated for a fixed CFL number of 0.3, meaning that each 
value corresponds to a distinct spatial sampling rate that also 
contributes to the dispersive error. To put this in context, with 
a CFL of 0.03, the FDTD scheme requires 5.2 PPW to obtain 
<1 mm error for the direct path, which corresponds to 
temporal sampling at >300 PPP. Values for the PSTD schemes 
are valid up to 2 PPW.  

C. The Perfectly Matched Layer 
In 1D, frequency filtered delta function initial pressure 

sources were propagated towards the PML on a homogeneous 
grid with the acoustical properties of brain tissue. PSTD 
schemes were tested against a 2-2 FDTD scheme with a CFL 
of 1, which prevents numerical dispersion arising. It should be 
noted that this FDTD formulation is not practical outside the 
homogenous 1D case due to stability constraints. Time traces 
of the incident wave and any pressure reflected from the 
surface of the PML or transmitted to the edge of the grid were 
recorded, and the amplitude spectra of the recorded traces 
were obtained via FFT. PML effectiveness as a function of 
frequency was calculated as the ratio of reflected or 
transmitted to incident amplitude in decibels. Results are 
shown in Fig. 2 (a)-(b) for k-space corrected and FDTD 
schemes only. For both schemes, transmission remains 
constant at under -70 dB until spatial sampling drops beneath 
3 PPW, below which the k-space shows varying transmission, 
and the FDTD scheme shows a reduction in transmission. For 
both schemes reflection shows a greater dependence on spatial 
sampling, rising steadily from under -120 dB for frequencies 
sampled at 4 PPW to total reflection at 2 PPW.  

The PML was also tested in two dimensions to determine its 
effectiveness as a function of the angle of incidence of 
incoming waves. A smoothed point source was placed at the 
edge of the PML on the 2D grid, and propagated into the 
PML. The pressure was recorded at the edge of the simulated 
domain to examine transmission, with each sensor position 
corresponding to a distinct angle of incidence. The peak 

pressure transmission at each angle was compared with a 
reference recording obtained with PML absorption set to zero 
to control for wave spreading, and the ratio calculated in 
decibels. A clear relationship between the attenuation of the 
transmitted wave and the angle of incidence was observed as 
shown in Fig.  2 (c).  

D. Representation of Medium Heterogeneities 
To examine the error originating from the interface between 

bone and brain-tissue, sources were propagated in both 
directions across the simulated interface, defined as an 
unsmoothed step change on the grid. The incident, reflected, 
and transmitted waves were recorded and their amplitude 
spectra obtained via FFT. These spectra were then used to 
calculate simulated pressure reflection and transmission 
coefficients as a function of frequency. Percentage errors in 
the simulated coefficients compared to the analytical values 
were calculated as a function of PPW and are shown in Fig.  3. 
To obtain <1% error in reflection and transmission 
coefficients, k-space corrected PSTD schemes require 7.5 
spatial PPW, while the 2-4 FDTD scheme requires 8.3 PPW.  

To examine the effect of medium discontinuities in more 
detail, this test was repeated with a varying acoustic 
impedance ratio, ranging from 1:1 to 1:16. The effect of 
changes in density and sound speed were examined separately, 
and the percentage error in pressure transmission and 
reflection coefficients established in the same manner as with 
the bone/brain-tissue interface. Fig. 4 shows the percentage 
error in transmission coefficients as a function of impedance 
change for a frequency sampled at 10 spatial PPW. It shows 
that it is the representation of density in the PSTD scheme that 
causes a reduction in accuracy in highly heterogeneous media.  
It also shows that the k-space PSTD scheme gives comparable 

TABLE 2 
SAMPLING CRITERIA REQUIRED FOR <1 MM DISPERSIVE POSITIONAL ERROR 

Scheme Direct path 
 [PPP] 

One Reverb 
[PPP] 

Two Reverbs. 
[PPP] 

Three Reverbs. 
[PPP] 

FDTD 34 44 49 53 
PSTD 13 23 29 34 
K-space 4 4 4 4 

 



 
 

accuracy to the FDTD scheme until the ratio of the density 
change at the interface is above 1:4, much greater than the 
difference between bone and soft tissues shown in Table 1. 

IV. CONCLUSIONS 
In this paper the manifestation of errors resulting from the 
discretisation of the physical domain when performing 
simulations of transcranial ultrasound propagation with PSTD 
schemes was examined. Although the effectiveness of PSTD 
schemes in highly heterogeneous media has previously been 
identified as a key limitation of such schemes, they were 
shown to simulate reflection and transmission from changes in 
medium properties with equal or greater accuracy than 
equivalent FDTD schemes. Furthermore, Table 2 shows how 
PSTD schemes can reduce dispersive error with greater 
efficiency than equivalent FDTD schemes, especially if 
multiple reverberations within the skull cavity need to be 
simulated. Combined, these results recommend PSTD 
methods with k-space correction for use in TR for transcranial 
focusing. A dependence of PML effectiveness on spatial 
sampling was observed for both schemes, as well as a 
dependence on angle of incidence, but it is expected that the 
spatial sampling required to control other sources of error, 
combined with sensible simulation geometry, should prevent 
the PML from becoming ineffective. 
 It should be noted that this is not an exhaustive description 
of the impacts of these sources of error, and these tests are 
subject to some limitations. For instance, when reflection and 
transmission from medium step changes were tested, PSTD 
and FDTD schemes both remained dispersive. Care was taken 
to ensure that distinct incident, reflected, and transmitted 
waves were recorded, but it is possible this may have affected 
results. Furthermore, when testing the PML in 2D, a straight-
line path from the initial source to each sensor was assumed, 

enabling calculation of angle of incidence. It is possible that 
refraction of the wavefront by the absorbing PML may 
invalidate this assumption, although this was not observed. 
Finally, an additional discretisation error, staircasing, was not 
examined here. Staircasing refers to the stair-stepped 
representation of geometries on a discrete Cartesian grid in 2D 
and 3D, which can affect the source, sensor, and medium 
representation on the grid. The impact of staircasing is 
expected to depend on the particular medium geometry, and 
also to be reduced by finer spatial discretisation. 

As discussed in Section I, errors due to the discretisation of 
the physical domain are one of several potential sources of 
error in simulated TR. Future work should make use of the 
guidelines for effective sampling criteria established here to 
examine the effects of staircasing and the tolerance of 
simulated TR protocols to the additional uncertainties 
discussed in Section I, with the aim of improving the 
efficiency and focusing effectiveness of the method.  
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Fig. 3.  Percentage error in simulated reflection and transmission coefficients 
(a) brain-tissue to bone (b) bone to brain-tissue as a function of spatial points 
per wavelength (PPW). 

Fig. 4.  Error in simulated transmission coefficient of a frequency sampled 
at 10 points per wavelength, as a function of impedance change. 


