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Abstract. Quantitative photoacoustic tomography is a hybrid imaging met-

hod, combining near-infrared optical and ultrasonic imaging. One of the in-

terests of the method is the reconstruction of the optical absorption coefficient
within the target. The measurement depends also on the uninteresting but

often unknown optical scattering coefficient. In this work, we apply the ap-

proximation error method for handling uncertainty related to the unknown
scattering and reconstruct the absorption only. This way the number of un-

known parameters can be reduced in the inverse problem in comparison to

the case of estimating all the unknown parameters. The approximation error
approach is evaluated with data simulated using the diffusion approximation

and Monte Carlo method. Estimates are inspected in four two-dimensional

cases with biologically relevant parameter values. Estimates obtained with the
approximation error approach are compared to estimates where both the ab-

sorption and scattering coefficient are reconstructed, as well to estimates where
the absorption is reconstructed, but the scattering is assumed (incorrect) fixed
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value. The approximation error approach is found to give better estimates
for absorption in comparison to estimates with the conventional measurement

error model using fixed scattering. When the true scattering contains stronger

variations, improvement of the approximation error method over fixed scatter-
ing assumption is more significant.

1. Introduction. Photoacoustic imaging is a technique utilizing both optics and
acoustics [41, 9]. As the surface of a target is illuminated with a short near-infrared
light pulse, it propagates through the medium while part of its energy is being
absorbed. If the light pulse is short enough, the absorbed optical energy translates
into excess pressure. The excess pressure field propagates as sound in ultrasonic
frequencies which can be measured on the boundary of the target.

The inverse problem associated with quantitative photoacoustic tomography
(QPAT) is to determine the optical properties of the target based on the surface
measurements of ultrasound. The inverse problem can be thought of as being two-
fold. First one has to reconstruct the initial pressure distribution based on the
measurements. This alone can provide useful information about the target. To get
quantitative data of the target, one has to also reconstruct the optical properties.
This can be done by treating the reconstructed initial pressure distribution as data
for the optical reconstruction.

Various methods to perform the acoustical reconstruction exist. The methods
generally fall in model based inversion methods [50, 11, 61, 56], back-projection [26,
22, 23, 57, 58, 16], eigenfunction expansion [1, 38] and time-reversal [12, 29, 55, 18].
Some of the methods are restricted to specific measurement setup, such as planar,
cylindrical and spherical setups [47, 48, 49, 21, 38, 57, 58]. Further, analytical
extensions to convex [20, 46] or closed surfaces [1, 2] have been investigated. In
addition the reconstruction methods have been studied in the case of acoustically
unknown heterogeneous media [31, 29, 18, 55, 32].

Optical reconstruction methods in QPAT often utilize the diffusion approxima-
tion (DA) of the radiative transfer equation (RTE) as the light propagation model
in the measurement model relating the optical properties to the reconstructed pres-
sure data. Although the reconstruction problem has been studied using the RTE
[4, 59, 19, 54, 43, 51], the DA can provide faster reconstruction approaches due
to its simplicity. Model based inversion is almost exclusively used. The optical
inversion is ill-posed and regularization methods are often applied to overcome the
ill-posedness [24, 25]. Further, reduction of ill-posedness can be achieved by obtain-
ing measurements with multiple illuminations [6, 52], or at multiple wavelengths
in combination with spectral models of tissue properties [17, 62, 40, 7]. Multiple
measurements are often needed as well to eliminate non-uniqueness [17, 5] of the
reconstruction problem. Additional improvements can be obtained by performing
diffuse optical tomography measurements along with photoacoustic measurements
[60, 62, 63, 42].

In situations where the scattering coefficient is known beforehand, reconstruction
methods can assume fixed scattering and reconstruct only the absorption distribu-
tions [8, 15, 10]. The approach leads to potentially fast reconstruction methods,
especially in the case of QPAT where number of estimated parameters is typically
large due to the capability of the approach to produce high resolution images of
the optical properties. However, the fixed scattering assumption will result in sys-
tematic errors if the value of scattering is inexact. The work presented attempts
to alleviate the issue by taking into account the uncertainties caused by the fixed
scattering assumption.
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In this work the approximation error method [33, 34] is applied to the optical
inverse problem of QPAT for approximate marginalization over the unknown scat-
tering coefficient [37]. The approach was used in [37] with application in diffuse
optical tomography. In the approach the modelling error caused by using inaccu-
rate fixed scattering is modelled as an additive noise process in the measurement
model by using the approximation error method. This noise process is called the
approximation error. It depends on the unknowns and its realization is obviously
unknown. However, given the prior probability density models of the unknowns,
approximate marginalization of the likelihood model can be carried out by using
a Gaussian approximation of the joint statistics of the unknown parameters and
the approximation error [37, 35]. This way the number of unknowns in the inverse
problem is significantly reduced, while taking the uncertainties of the fixed scat-
tering approximation into account. Reconstructions with the approximation error
method are compared to reconstructions with the conventional measurement error
model where the modelling error caused by the fixed scattering assumption is ne-
glected. Previously the approximation error method has been applied e.g. in diffuse
optical tomography to compensate for errors caused by inaccurate modelling of the
boundary shape [27], to perform model reduction from dense to sparse inversion
mesh [3, 36], as well as to perform model reduction from RTE to DA [53]. Recently
applicability of the approximation error method was studied in reducing artifacts
due to scalp blood flow in brain activation imaging [28].

In this paper the DA is used in the optical inverse problem of QPAT, although the
methods presented can be utilized for other models as well, such as the RTE. It is
assumed that the acoustical reconstruction has been performed and hence the initial
pressure field is known but may be polluted by noise. Grüneisen coefficient, which
relates the initial pressure distribution and the optical absorbed energy, is assumed
to be a known constant. The data is simulated using both the DA and Monte Carlo
method. The latter model is a statistical method which has been widely accepted
to describe accurately the propagation of light in medium with scattering particles.
Monte Carlo can be regarded as a sampling approach for the distribution described
by the RTE, whereas the DA is essentially a low order deterministic approximation
of the same physical model, that assumes a simplification of the distribution of
photon propagation directions. MC is therefore a “gold standard” for simulated
data and is utilized in this work to form an idea of how good reconstructions can
be obtained using an inverse approach based on the DA applied on physically more
realistic measurement data.

The paper is organized as follows. In Section 2 the physics associated with
optical inversion of QPAT is reviewed. In Section 3 the Bayesian approach for
reconstructing the optical properties, as well as the approximate marginalization
scheme, are presented. In Section 4 description of the numerical implementation is
given. In Section 5 the numerical results are presented and in Section 6 the paper
is finalized with a recap of the results and conclusions.

2. Simulation and observation model. The photoacoustical phenomena is gen-
erated by absorption of short light pulse into the target. The absorbed energy
translates into excess pressure p0 in the tissue according to relation

(1) p0(r) = G(r)H(r),

where G is the Grüneisen coefficient related to thermodynamical properties of the
target and H is the absorbed energy density of the light pulse, both functions of
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the spatial coordinates r. The excess pressure p0 propagates through the target
as ultrasonic sound wave. Measurement of the transient ultrasonic pressure signal
on the surface makes it possible to reconstruct the initial pressure field p0. The
absorbed energy density is defined as

(2) H(r) = µa(r)Φ(r),

where µa is the optical absorption coefficient and Φ is the optical fluence. In the
rest of the paper the spatial dependence will be omitted in the notation.

For highly scattering soft-tissue the optical fluence can be described by the DA
[13, 30]

(3) −∇ · κ∇Φ + µaΦ = 0,

where κ =
(
n(µa + µ′s)

)−1
is the optical diffusion with n being the number of

spatial dimensions and µ′s is the reduced scattering coefficient. A physical boundary
conditions for the DA is

(4) γnΦ +
1

2
Aκ∇Φ · n = g

where A describes the reflectivity of the boundary, γn is related to number of spatial
dimensions with γ2 = π−1 and γ3 = 1/4, n is the boundary normal, and g describes
the spatial light source on the boundary.

In this paper the acoustical reconstruction of p0 based on the boundary measure-
ments of the ultrasound wave is assumed given. Further, the Grüneisen coefficient
is assumed to be a known constant and the focus is on the discretized observation
model

(5) z = f(µa, µ
′
s) + e

where z = (z1, ..., zN )T ∈ <N are the measurements zk = H(rk) at points rk ob-
tained from the acoustical reconstruction, f(µa, µ

′
s) : <2×M → <N is the discretized

forward model (2) , µa, µ′s ∈ <M , and e ∈ <N is additive noise left by the acoustical
reconstruction.

3. Bayesian inversion and approximate marginalization.

3.1. Bayesian inversion in QPAT. Idea behind Bayesian inversion is to handle
all the parameters of the observation model (5) as random variables [33]. Given the
model (5) the conditional probability density function of z given µa, µ′s and e is

(6) π(z|µa, µ′s, e) = δ
(
z − f(µa, µ

′
s)− e

)
.

According to Bayes’ theorem

(7) π(z, µa, µ
′
s, e) = π(z|µa, µ′s, e)π(µa)π(µ′s)π(e),

where distributions π(µa), π(µ′s) and π(e) are prior probability density models of
µa, µ′s and e which have been modelled mutually uncorrelated. The uncertainty
related to the unknown but uninteresting measurement noise can be marginalized
by integrating (7) over e, leading to

(8)
π(z, µa, µ

′
s) =

∫
π(z, µa, µ

′
s, e) de

= π(µa)π(µ′s)πe

(
z − f(µa, µ

′
s)
)
,
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where the sub-index e is used to denote the probability density function of e. The
solution of the inverse problem is the posterior density

(9) π(µa, µ
′
s|z) =

π(z, µa, µ
′
s)

π(z)

representing the complete statistical model for the inverse problem, given the data,
likelihood and prior models. Inference about the solution of the problem can be
made by computing point estimates from the posterior model. One commonly used
estimate is the maximum a posteriori (MAP) estimate, which is defined as

(10)

(
µMAP
a

µ′s
MAP

)
= arg max

µa,µ′
s

π(µa, µ
′
s|z)

= arg max
µa,µ′

s

π(µa)π(µ′s)πe

(
z − f(µa, µ

′
s)
)
.

For Gaussian prior models µa ∼ N (ηµa ,Γµa), µ′s ∼ N (ηµ′
s
,Γµ′

s
) and noise statistics

e ∼ N (ηe,Γe), where η are the mean and Γ the covariances, it holds that

(11)

(
µMAP
a

µ′s
MAP

)
= arg min

µa,µ′
s

{ ∣∣∣∣∣∣Le(z − f(µa, µ
′
s)− ηe

)∣∣∣∣∣∣2
+ ||Lµa

(µa − ηµa
)||2

+ ||Lµ′
s
(µ′s − ηµ′

s
)||2

}
,

with the Cholesky decompositions

LT
e Le = Γ−1

e , LT
µa
Lµa = Γ−1

µa
, LT

µ′
s
Lµ′

s
= Γ−1

µ′
s
.

Estimates computed with (11) will be referred to as conventional error model (CEM)
estimates.

3.2. Approximate marginalization over µ′s by the approximation error
method. Consider the case that one seeks to estimate µa only, while using a fixed
realization µ′∗s for the scattering. In the approximation error method the observation
model (5) is then written as [37]

(12)

z = f(µa, µ
′
s) + e

= f(µa, µ
′
s
∗
) +

(
f(µa, µ

′
s)− f(µa, µ

′
s
∗
)
)

+ e

= f(µa, µ
′
s
∗
) + ε+ e,

where ε = f(µa, µ
′
s)−f(µa, µ

′
s
∗
) is the approximation error describing the modelling

error caused by using the fixed µ′∗s . The objective is to marginalize the likelihood
model over the unknown noise processess ε and e.

To obtain an approximate but computationally efficient solution, we approximate
the density of ε by a Gaussian density. Following the approach in [37], the MAP
estimate of µa corresponding to the model (12) is obtained as

(13) µMAP
a = arg min

µa

||Lε+e(z − f(µa, µ
′∗
s )− ηε+e)||2 + ||Lµa

(µa − ηµa
)||2 ,

with

LT
ε+eLε+e = Γ−1

ε+e, Γε+e = Γε + Γe, ηε+e = ηε + ηe,
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where ηε and Γε are the mean and covariance of ε. Estimates formed using (13) will
be referred to as approximation error method (AEM) estimates,

In this paper sampling approach is used to obtain estimates for the statistics of
ε. This is achieved by fixing teaching distributions of µa and µ′s, which are used
to make random draws of the two parameters. Both distributions will be modelled
Gaussian with µa ∼ N (ηµa

,Γµa
) and µ′s ∼ N (ηµ′

s
,Γµ′

s
). Although the teaching

distributions are referred to with the same symbol for the mean and covariance as
the prior distributions in Section 3.1, they need not be the same. In this paper the
teaching distributions have different statistical parameters than the priors and the
meaning of the notation should be clear from the context. Using a set of K random

draws µ
(i)
a and µ

′(i)
s of µa and µ′s from the teaching distributions, samples ε(i) of ε

with i = 1, ...,K are computed as

(14) ε(i) = f(µ(i)
a , µ′(i)s )− f(µ(i)

a , µ′s
∗
)

and the statistics of ε are estimated as

ηε =
1

K

K∑
i=1

ε(i),(15)

Γε =
1

K − 1

K∑
i=1

(
ε(i) − ηε

)(
ε(i) − ηε

)T

.(16)

3.3. Fixed scattering assumption. In addition to estimates computed with the
CEM and AEM, estimates using the fixed scattering assumption using the con-
ventional measurement error model are computed. The estimates were computed
in order to form a reference of how much the AEM approach can improve recon-
structions over the approaches where the unknown scattering has been assumed a
fixed value, while the modelling error caused by this assumption is neglected. The
estimates are computed using an observation model

(17) z = f(µa, µ
′∗
s ) + e,

where µ′∗s is the fixed realization of the scattering coefficient. The MAP-estimate is
then found to be

(18) µMAP
a = arg min

µa

||Le(z − f(µa, µ
′∗
s )− ηe)||2 + ||Lµa

(µa − ηµa
)||2.

These estimates will be referred to as fixed scattering assumption (FSA) estimates.

4. Implementation.

4.1. Finite element model. Solution of equation (3) with boundary conditions
(4) is numerically approximated by using a finite element method (FEM). Equations
(3) and (4) are solved in computational domain Ω. The FEM is implemented with
first order linear basis functions. The fluence Φ is approximated with its discretized

representation as Φ =
∑L
j=1 Φjϕj , where Φj and ϕj are the fluence and linear basis

function at grid nodes j = 1, ..., L, where L is the number of grid nodes. The optical
parameters are approximated with the linear basis functions as well. The resulting
FEM system is

(19) (S + M + B)Φ = b,
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where Φ = (Φ1, ...,ΦL)T, the matrix elements are

Sij =

∫
Ω

κ∇ϕi · ∇ϕj dr(20)

Mij =

∫
Ω

µaϕiϕj dr(21)

Bij =

∫
∂Ω

2

A
γnϕiϕj ds,(22)

and the right hand side vector elements are

(23) bi =

∫
∂Ω

2

A
gϕi ds,

where g and A are the parameters in the boundary condition (4).

4.2. Prior distributions of µa, µ
′
s and e. In this work proper, or informative,

smoothness priors are used for µa and µ′s. The prior distributions are used for the
computation of the approximation error, as well as for solving the MAP-estimates.
The prior used is described thoroughly in [3], but reviewed here as well. The prior
is based on modifying a smoothing preprior, for some discretized parameter x, into
a Gaussian distribution. The preprior has the form

(24) π(x) ∝ exp
(
− 1

2
||αDx||2

)
= exp

(
− 1

2
α2xTBx

)
where x is a vector, α is a regularization parameter, D is a differentiating matrix
and B = DTD. Typically DTD is not invertible, and hence cannot describe a
Gaussian distribution (the covariance is not defined.) The preprior can be modified
into a proper distribution by reordering x into x′ = (x′1, x

′
2)T such that for nodes x′2

some quantitative prior information of the form x′2 ∼ N (ηx′
2
,Γx′

2
) is attached. In

this paper, nodes x′2 are called the marginal nodes. Partitioning matrix B similarly

(25) B′ =

(
B11 B12

B21 B22

)
the preprior can be expressed as

(26) π(x′) ∝ exp
(
− 1

2
α2x′

T
B′x′

)
,

which is equal to π(x) since all that was done above was rearrangement of the nodes.
For conditional distribution of x′1 on condition x′2 it holds that

(27) π(x′1|x′2) ∝ exp
(
− 1

2α2
(x′1 +B−1

11 B12x
′
2)TB−1

11 (x′1 +B−1
11 B12x

′
2)
)

and for combined distribution of x′ (and thus x)

(28)
π(x′) = π(x′1, x

′
2) = π(x′1|x′2)π(x′2)

∝ exp
(
− 1

2 (x′ − ηx′)TΓ−1
x′ (x′ − ηx′)

)
,

where

(29)
ηx′ =

(
−B−1

11 B12ηx′
2

ηx′
2

)
,

Γx′ =

(
α2B11 α2B12

α2B21 α2B21B
−1
11 B12 + Γx′

2

)
.
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In two-dimensions the differentiating matrix D used in this work is defined as

(30) D =

(
Dx

Dy

)
,

whereDx andDy are matrices computing the x- and y-coordinate directional deriva-
tives at the finite element mesh. The subindex x here should not be confused with
the parameter x for which the prior is defined.

By adjusting the parameter α it is possible to tune the relative point-wise stan-
dard deviations of x′1 with respect to x′2. In this paper α is chosen such that the
marginal variances of the prior are equalized.

In assembling the informative smoothing priors for discrete µa and µ′s, constant
mean is used for the marginal nodes with covariances of the form [36]

(31) Γ = σ2
background · 1 + σ2

inclusion · I,

where 1 is a matrix of ones with the same size of the identity matrix I, and
σbackground and σinclusion are the presumed standard deviations of background vari-
ation and variation of inclusions respectively. Equation (31) (with the associated
mean η) corresponds to Γx′

2
(and ηx′

2
) in (29). In this work, the marginal nodes had

a correlation length of about 1.3 mm.
The statistics of the additive error e is modelled to be zero-mean and uncorrelated

with ηe = 0 and Γe = σ2
eI, where σe is the expected standard deviation of the

additive error.

5. Results. Use of the approximation error method for the approximate marginal-
ization was investigated in a two-dimensional square domain with spatially dis-
tributed optical properties. The DA and Monte Carlo (MC) were used to simulate
the data. MC-model that is used has been described in [53].

Estimates using CEM in equation (11), AEM in equation (13) and FSA in equa-
tion (18) are presented and compared both visually and quantitatively by computing
the relative errors of the reconstructions with respect to the true optical parameters
by using

(32) Ex = 100% · ||x− xtrue||
||xtrue||

,

where Euclidean norm is used and x and xtrue are the reconstructed and true optical
absorption or reduced scattering coefficients.

5.1. Simulation parameters. Four two-dimensional simulation cases, shown in
Figure 1 were investigated: I) square inclusions, II) smooth inclusions, III) non-
overlapping inclusions (i.e. case where µa and µ′s have different spatial struc-
ture) and IV) high contrast smooth inclusions. In each case the domain was
[−5, 5] × [−5, 5] mm. The parameter values were chosen for cases I-III such that
the background of the material parameters corresponded to adipose breast tissue
(fat) [14] and the inclusions corresponded to blood with different oxygen saturation
levels [44, 45]. Case IV was constructed based on case II by scaling the reduced
scattering coefficient of the background to a higher value.

For each test case, four measurements were simulated in a dense triangular mesh,
composed of 7820 triangular elements and 3747 grid nodes. The four measurements
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were computed with illuminations g = g1, ..., g4 in (4) corresponding to incident
light coming from left, bottom, right and top of the simulation domain defined as

(33)

g1(x, y) =

{
1, x = −5, y ∈ [−5, 5]
0, otherwise,

g2(x, y) =

{
1, y = −5, x ∈ [−5, 5]
0, otherwise,

g3(x, y) =

{
1, x = 5, y ∈ [−5, 5]
0, otherwise,

g4(x, y) =

{
1, y = 5, x ∈ [−5, 5]
0, otherwise.

For the MC-simulations Henyey-Greenstein scattering anisotropy parameter of zero,
corresponding to value of the scattering coefficient of µs = µ′s was used.

The simulated data were interpolated into a sparser inversion mesh. The inver-
sion mesh was composed of 5022 triangular elements and 2598 grid nodes. After the
interpolation, zero-mean Gaussian random noise was added to the simulated data to
form noisy measurements. The standard deviation σe of the noise was defined such
that 3σe limits of the noise equaled to 1% of the peak amplitude of the simulated
(noiseless) data.

Figure 1. The absorption µa (top row) and the reduced scattering
coefficient µ′s (bottom row) used in the simulation cases. From left
to right: simulation cases I-IV. The units of the colorbars are in
mm−1.

Inverse Problems and Imaging Volume 8, No. 3 (2014), 811–829
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Table 1. Values used for the reconstruction priors and the teach-
ing distributions of µa and µ′s. η is the mean, σbackground and
σinclusion are the standard deviations for the variation of back-
ground level and the inclusions. Shown are also the range in which
95% of the samples fall in.

Reconstruction µa (mm−1) µ′s (mm−1)

η 0.3212 0.8725

σbackground 0.0142 0.0238

σinclusion 0.1424 0.2376

Range [0.0350, 0.6075] [0.3950, 1.3500]

Teaching µa (mm−1) µ′s (mm−1)

η 0.2542 0.8505

σbackground 0.0032 0.0023

σinclusion 0.0317 0.0231

Range [0.1905, 0.3180] [0.8040, 0.8970]

5.2. Reconstruction parameters. The mean and covariance of the noise e were
set as ηe = 0 and Γe = σ2

eI in the inversions. This choice corresponds to the case
that the statistics of the measurement noise e were known.

Parameters used for the reconstruction priors and the teaching distributions
are shown in Table 1. For the standard deviations of the background, value of
σbackground = 0.1 · σinclusion was used. The teaching distributions were otherwise
similar to reconstruction priors, except that they were narrower and had lower
mean value.

The fixed scattering values µ′∗s used in AEM and FSA was chosen to be the mean
of the teaching distribution of µ′s, i.e. µ′∗s = ηµ′

s
.

All the MAP-estimates were computed by using Gauss-Newton method with a
line-search algorithm.

5.3. Reconstructions using DA-data. Reconstructions of µa when using DA-
simulated data are shown in Figure 2. CEM reconstruction of µ′s is shown in Figure
3. Reconstructions of µa show that the absorption coefficient is generally well
reconstructed, while larger errors are clearly visible in the reconstructions of µ′s.
Improvement of AEM reconstruction over FSA are clearly visible in the simulation
case IV, where the true µ′s has a high contrast.

Table 2 shows the relative errors of the estimates. The benefit of approximate
marginalization is evident when comparing AEM reconstructions to FSA as the
relative errors are smaller in the approximation error approach in all the simulation
cases. Notice also that the relative errors of the AEM are only slightly larger than
the errors of CEM reconstructions for the simulation cases I-III. For the simulation
case IV there is a larger discrepancy between the approaches, with AEM approach
giving significantly better estimates than FSA.

Inverse Problems and Imaging Volume 8, No. 3 (2014), 811–829



Approximate marginalization in QPAT 821

Figure 2. Reconstructions of absorption coefficient µa with DA-
simulated data. From top to bottom: true µa followed by CEM,
AEM and FSA reconstructions of µa. From left to right: the re-
constructions of cases I-IV. The units of the colorbar are in mm−1.

Figure 4 shows the relative error of AEM estimates when the mean ηµ′
s

of the
teaching distribution of µ′s has been varied for the cases II and IV. The estimates
were computed with three different covariances of the teaching distributions: a wide
distribution with twice the standard deviations, the same standard deviations, and
a narrow distribution with half the standard deviations compared to the values in
Table 1. The figure also shows the relative error of the FSA estimates with the fixed
reduced scattering µ′∗s set to the same value as in the AEM teaching distribution,

Inverse Problems and Imaging Volume 8, No. 3 (2014), 811–829
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Figure 3. Reconstructions of reduced scattering coefficient µ′s
with DA-simulated data. Top row shows the true µ′s and bot-
tom row shows the CEM reconstruction of µ′s. From left to right:
the reconstructions of cases I-IV. The units of the colorbar are in
mm−1.

Table 2. Relative error E in percentage of the reconstructions for
the simulation cases with data simulated with DA. Relative errors
of µa shown for CEM, AEM and FSA reconstructions and of µ′s for
CEM reconstruction.

Case I Case II Case III Case IV

ECEM
µa

1.5 1.0 1.0 2.3

ECEM
µ′
s

7.3 7.1 7.4 4.5

EAEM
µa

1.8 1.6 1.4 14.4

EFSA
µa

3.8 4.0 1.7 64.7

i.e. µ′∗s = ηµ′
s
. As evident the relative errors of AEM estimates are similar regardless

of the standard deviation of the teaching distributions, especially when ηµ′
s

is close
to the range of true scattering. The level of the relative error increases clearly
when the mean of the teaching distribution is taken far away from the range of true
scattering values. However, improvement of the AEM over the FSA estimates is
found throughout the whole range of values of ηµ′

s
in case II, whereas in case IV

FSA gives slightly better estimates than the AEM at high values of ηµ′
s
.
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Figure 4. Relative error of µa using the AEM-approach, when the
mean of the scattering ηµ′

s
of the teaching prior has been varied for

the case II (top) and for the case IV (bottom.) Data is shown for
a teaching distribution with a wide distribution with double stan-
dard deviations (dash dotted black line), a distribution with the
same standard deviations (solid black line), and for a narrow dis-
tribution with half standard deviations as in Table 1 (dashed black
line). Thick grey line shows the relative error of FSA estimates
with µ′∗s = ηµ′

s
. The horizontal line denotes the mean ± stan-

dard deviation limits of the true scattering coefficient and circles
denote the minimum and maximum values of the true scattering
coefficient.
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Table 3. Relative error E of the reconstructions for simulation
cases with measurements computed with MC in percentage. Rel-
ative errors of µa shown for CEM, AEM and FSA reconstructions
and of µ′s for CEM reconstruction.

Case I Case II Case III Case IV

ECEM
µa

13.2 12.9 13.2 12.5

ECEM
µ′
s

11.6 12.0 12.6 10.9

EAEM
µa

11.8 11.9 10.4 15.9

EFSA
µa

14.2 13.7 9.0 71.5

5.4. Reconstructions using MC-data. Reconstructions of µa when using MC-
data are shown in Figure 5. Figure 6 shows the CEM reconstructions of µ′s. Overall
the reconstructed µa has the correct shape but it fails to match in absolute values,
which is especially evident from the brightness of the inclusions in the simulation
cases I and III. This is partially explained by the differences in the physics of the
DA-model used in the reconstructions and the MC-model used to generate the
measurements. Issues might also be caused by the size of the simulation domain
with respect to the material parameters used. As was observed in [54] it might be
better to utilize the RTE as the reconstruction model in the parameter scales used
in the simulations. The µ′s reconstructions are visibly worse than in Section 5.3.
The AEM and FSA reconstructions are able to capture the general shape of µa in
cases I-III. Whereas the AEM gives good estimates also in the simulation case IV,
the FSA does not.

Table 3 shows the relative errors of the reconstructions when the measurements
are simulated with MC. The AEM reconstructions are better than the FSA recon-
structions in the simulations cases I, II and IV. However in the simulation case III
the FSA reconstruction yielded the best of reconstructions approaches. Surprisingly
the AEM estimates are better than the CEM estimates in cases I-III.

6. Conclusions. In this work the approximation error method was applied to the
inverse problem associated with the optical reconstruction in QPAT. The statistics
of approximation error caused by using fixed incorrect reduced scattering coefficient
was approximated as a normal distribution. This in turn was used to reduce the
number of parameters in the inverse problem by carrying out approximate marginal-
ization over the approximation error. The approach was applied to the DA-model
of the propagation of light in scattering media with biologically relevant optical
parameters.

By using two-dimensional simulated data it was shown that the approximation
error method can be used to reduce the number of reconstructed parameters of the
inverse problem. Improvement of estimates using the approximation error method
over the estimates obtained by a fixed scattering assumption was evident based on
the relative errors of the estimates. This shows that the modelling error caused
by the fixed scattering assumption should be taken into account when performing
reconstructions with fixed scattering.
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Figure 5. Reconstructions of absorption coefficient µa with MC-
simulated data. From top to bottom: true µa followed by CEM,
AEM and FSA reconstructions of µa. From left to right: the re-
constructions of cases I-IV. The units of the colorbar are in mm−1.

The method was also tested for Monte Carlo simulated data. Larger discrepan-
cies were observed in the estimates, although the approximation error method was
beneficial in comparison to the fixed scattering estimates in most of the simulation
cases. Reasons for the discrepancies arise from the physical differences between the
diffusion approximation and the Monte Carlo model. Whereas diffusion approxi-
mation is a good approximation of propagation of light in highly scattering media,
the Monte Carlo works well even when the scattering is not strong. The results
would indicate that some criticism should be placed on the practical usability of
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826 Pulkkinen, Kolehmainen, Kaipio, Cox, Arridge and Tarvainen

Figure 6. Reconstructions of reduced scattering coefficient µ′s
with MC-simulated data. Top row shows the true µ′s and bot-
tom row shows the CEM reconstruction of µ′s. From left to right:
the reconstructions of cases I-IV. The units of the colorbar are in
mm−1.

the diffusion approximation based inversion schemes in quantitative photoacoustic
tomography.

Although this work investigates the use of approximation error method to mar-
ginalize the unknown scattering in quantitative photoacoustic tomography in two
dimensions, the presented approach can be extended into three dimensions. It is
expected that by taking into account the uncertainties caused by the fixed scattering
assumption will result in better estimates than when the uncertainties are neglected.
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