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Abstract
A Bayesian approach to the optical reconstruction problem associated with
spectral quantitative photoacoustic tomography is presented. The approach is
derived for commonly used spectral tissue models of optical absorption and
scattering: the absorption is described as a weighted sum of absorption spectra
of known chromophores (spatially dependent chromophore concentrations),
while the scattering is described using Mie scattering theory, with the pro-
portionality constant and spectral power law parameter both spatially-depen-
dent. It is validated using two-dimensional test problems composed of three
biologically relevant chromophores: fat, oxygenated blood and deoxygenated
blood. Using this approach it is possible to estimate the Grüneisen parameter,
the absolute chromophore concentrations, and the Mie scattering parameters
associated with spectral photoacoustic tomography problems. In addition, the
direct estimation of the spectral parameters is compared to estimates obtained
by fitting the spectral parameters to estimates of absorption, scattering and
Grüneisen parameter at the investigated wavelengths. It is shown with
numerical examples that the direct estimation results in better accuracy of the
estimated parameters.
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1. Introduction

In the photoacoustic effect, the absorption of a short light pulse in a target generates an initial
acoustic pressure distribution that is proportional to the absorbed energy density [1]. The
connection between the absorbed optical energy density and the initial pressure distribution,
the photoacoustic efficiency, is often called the Grüneisen parameter, terminology which is
adopted in this paper. Due to the elastic nature of tissue, the initial pressure distribution
subsequently propagates as an ultrasonic wave, which can be measured on the boundaries of
the target. In photoacoustic imaging, these acoustic measurements are used to deduce
properties of the target [2, 3]. As the propagation of light is dependent on the optical prop-
erties of the tissue, such as the absorption and the scattering, the ultrasonic wave carries with
it information about these parameters, which can in turn provide valuable morphological,
pathological and functional data about the underlying tissue. In quantitative photoacoustic
tomography (QPAT) the goal is to determine these properties.

The inverse problem associated with QPAT is two-fold. Ultrasonic measurements from
the boundary of the target are first used to determine the initial pressure distribution. This is
the acoustical inverse problem associated with photoacoustic imaging, which has been stu-
died extensively [4–22]. Secondly, the initial pressure distribution, which is related to the
optical properties of the target, is used as the data in an optical inverse problem. In the optical
inverse problem, the distribution of the optical parameters is estimated from the initial
pressure distribution and knowledge of the illumination scheme. In the optical inverse pro-
blem of QPAT two models of light propagation have been used: the radiative transfer
equation (RTE) [23–29] and its diffusion approximation (DA) [26, 30–37].

In spectral quantitative photoacoustic tomography (SQPAT), measurements of the target
are obtained with illuminations at different optical wavelengths [38–44]. After obtaining the
initial pressure distribution, via the acoustical inversion, for each wavelength, spectral
parameter models (models of the wavelength dependence of optical absorption and scattering
parameters, which couple the distributions at the different wavelengths) can be used to aid the
optical inversion.

There are two approaches to using the spectral parameter models. One is to reconstruct
the optical absorption and scattering at each different wavelength separately, and then fit the
spectral parameter models to these optical parameters [40, 43, 44]. The second approach is to
express the optical properties of the forward problem as a function of the spectral parameter
model, and estimate the spectral parameters directly [41–44]. The latter approach is used in
this work, and is compared to the former. In addition to being able to provide information
about the optical properties of the target, SQPAT makes it possible to reconstruct physio-
logical quantities, such as chromophore concentrations or blood oxygenation in biologi-
cal tissues.

The optical inverse problem in SQPAT has previously been studied in [41–44]. Common
assumptions have been to assume that the Grüneisen parameter is a known constant [41–43],
or the scattering (or diffusion) to be proportional to a known constant power of the illumi-
nation wavelength [42–44]. In this work a Bayesian approach to ill-posed inverse problem is
taken [45]. The Grüneisen and scattering parameters are estimated simultaneously with the
absorption parameters utilizing quantitative prior information provided by the Bayesian
approach. The forward model used here is based on the DA, though the approach could be
implemented with the RTE. The spectral parameter model for the absorption is expressed as a
spatially dependent chromophore concentration weighted sum of known absorption spectra of
different chromophores [41–44]. The spectral model for scattering is treated in a more general
fashion to previous studies, as the scattering is expressed as a function of a proportionality
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factor and a power law exponent, both spatially dependent. The Grüneisen parameter is
modeled as spatially dependent, but independent of the illuminating wavelength and inde-
pendent of the concentrations of the chromophores present. The parameters that are recon-
structed are the chromophore concentrations, the exponent and proportionality factor of the
scattering parameter model, and the Grüneisen parameter. The estimates obtained by this
direct approach are compared to estimates computed by fitting the spectral parameter model to
estimates of the absorption and scattering parameters at multiple wavelengths.

The paper is organized as follows. The forward problem associated with SQPAT is
described in section 2, along with the spectral model of tissue properties. In section 3, the
Bayesian inversion approach in SQPAT is presented. The derived inverse scheme is
numerically validated in section 4, and a discussion is provided in section 5.

2. Optical forward problem in SQPAT

The measurement obtained in QPAT of a target Ω ⊂ k (k = 2 or 3) is the ultrasonic
(photoacoustic) pulse as a function of time measured at the boundary Ω∂ . After performing
the acoustical inversion, the initial pressure distribution p

0
inside Ω is obtained, which acts as

the data in the optical inverse problem. The initial pressure distribution is connected to the
absorbed optical energy density through

γ μ μ γμ Φ μ μ=′ ′( )( )p r s r s; , , , ; , , , (1)
0 a s a a s

where Ω∈r is the position, γ is the Grüneisen parameter, μ Φ
a

is the absorbed optical energy

density, μ
a
and ′μ

s
are the absorption and (reduced) scattering coefficients, Φ is the fluence

inside the target, and s is the illumination inducing the photoacoustic effect. All parameters
are functions of position r and wavelength λ of the illumination, with the exception of γ, being
usually treated as wavelength independent.

For highly scattering media the fluence Φ in (1) is governed by the DA [46, 47]
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1
is the optical diffusion, ζk is a parameter related to the number of

spatial dimensions (ζ π= −
2

1, ζ = −43
1), A describes the reflectivity at the boundary Ω∂ and ν is

the outward normal on Ω∂ . Throughout this work value A = 1 is used. s in (2) is the spatially
dependent illumination pattern (inward light current) on the boundary Ω∂ .

The optical properties of the target can be expressed using their spectral representation.
Commonly used spectral models for the optical properties can be written as [39–44]
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where the absorption coefficient μ
a
is expressed as chromophore concentration cn weighted

sum of N known chromophore absorption spectra μ
na,
. The scattering coefficient ′μ

s
is
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expressed, according to Mie scattering theory, as being proportional to
′ ′μ μ λ= ( )r r( ) ;
s,REF s REF and power −b r( ) of a relative wavelength λ λREF [48–51]. ′μ

s,REF
is

the reduced scattering coefficient at a reference wavelength λREF.
Substituting the spectral parameter model (3) into (1) results in the SQPAT forward

model. In this work the SQPAT forward model is discretized using the finite element method.
The model is discretized using linear basis functions ϕ

q
defined at points Ω∈rq into

= …q Q1, , discretization points. The parameters are expressed as

∑ ϕ γ μ= = … ′
=

h r h r r h p c c b( ) ( ) ( ), , , , , , or , (4)
q

Q

q q N
1

0 1 s,REF

where h r( )q is the discrete representation of the parameter. The resulting SQPAT forward

model for measurements = …m M1, , performed with illuminations sm at wavelengths λm

can be expressed as

= = …z f x m M( ), 1, , , (5)m m

where = … ∈
⊤( )z p r p r( ), , ( )m m m Q

Q
0, 1 0,

is a discrete representation of p
0
associated with

measurement γ γ= … … … …(m x c r c r c r c r r r, ( ), , ( ), , ( ), , ( ), ( ), , ( )Q N N Q Q1 1 1 1 1 , ′μ r( ),
s,REF 1

′μ… r, ( )Qs,REF
, …b r( ),1 , ∈

⊤ +)b r( ) ( )
Q

Q N 3 are the parameters of the target, and

 →+f : ( )
m

Q N Q3 is the discretized model of (1)–(3). Forward model (5) can be further

simplified to

=z f x( ), (6)

where = … ∈⊤ ⊤ ⊤( )z z z, , M
MQ

1 , and  = … →⊤ ⊤ ⊤ +( )f x f x f x( ) ( ) , , ( ) : ( )
M

Q N MQ
1

3 .

Details of the finite element approximation of the forward model are presented in appendix A.

3. Optical inverse problem in SQPAT

The discrete measurement data z in (6) is polluted with some additive noise

= +z f x e( ) , (7)

with e being the noise vector of each measurement m such that = … ∈⊤e e e( , , )M
MQ

1 and

∈em
Q. In the case of SQPAT, the noise e is the residual noise remaining after the

application of the acoustical inversion to the noisy acoustical measurement on Ω∂ [37].
In the Bayesian approach, the inverse problem is treated as a problem of statistical

inference [45]. All variables are modeled as random variables and the measurements are used
to determine the posterior density of the parameters of primary interest. Assuming that z and x
are random variables, the likelihood distribution associated with the observation model (7) is

π δ= − −( ) ( )z x e z f x e, ( ) , (8)

where δ ·( ) is the Dirac δ-distribution. The solution to the inverse problem is the posteriori

distribution π ( )x z , which can be obtained using Bayes’ theorem
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where π ·( )e is used to denote the distribution of e, π x( ) is the prior distribution of x, and it
has been assumed that e and x are uncorrelated. Since, for fixed measurement z, π z( ) is a
fixed scalar, (9) can be expressed as a proportionality

π π π∝ −( ) ( )x z z f x x( ) ( ). (10)e

For normal distributions η Γ∼  ( )e ,
e e , η Γ∼  ( )x ,

x x the posteriori distribution (10) can be

written as

π η η∝ − − − − −
⎛
⎝⎜

⎞
⎠⎟( )( )x z L z f x L xexp

1

2
( )

1

2
( ) , (11)e e x x

2 2

where Γ=⊤ −L Le e e
1 and Γ=⊤ −L Lx x x

1 are the Cholesky decompositions of the inverse covariance
matrices, and · is the Euclidean norm.

A pointwise estimate of x is the maximum a posteriori (MAP) estimate, which can be
defined for (11) as

η η= − − + −( )x L z f x L xarg min ( ) ( ) . (12)
x

e e x xMAP
2 2

The MAP estimate is used in this work due to its computational efficiency.
Priors for the parameters …c c, , N1 , γ, ′μ

s,REF
and b are based on the Ornstein–Uhlenbeck

process [52]. The covariance matrices for the estimated parameters are defined in relation to

covariance matrix Ξ ∈ ×Q Q, with sth row and pth column defined with the Orn-
stein–Uhlenbeck covariance function as

Ξ = − −( )r r lexp , (13)sp s p

where l describes the corralation length (i.e. the smoothness) of the prior. The specific choice
of the prior mean and the scaling of the prior covariance matrix is described later in
section 4.2, where the combined prior of the estimated parameters and its relation to Ξ is
defined. Other possible choices for the prior could be, for example, a white noise prior with
diagonal covariance matrix or a squared exponential prior with the matrix elements defined as

− −( )r r lexp s p
1

2
2 2 . A white noise prior is not a smooth prior, and is more suited for

estimation of parameters which are independent or which have no spatial correlation. A
squared exponential prior, on the other hand, is infinitely differentiable. The choice of the
prior distribution, and the parameters of the distribution, will affect the MAP estimate. White
noise prior supports nonsmooth or very noise sensitive MAP estimates whereas the squared
exponential prior supports estimates which can be unrealistically smooth considering the true
parameters. Both of these prior choices may be too harsh a presumption for applications
where it is possible that the target is composed of heterogeneities separated by sharp edges (an
example of such could be blood vessels in photoacoustic biomedical imaging).
Ornstein–Uhlenbeck provides a compromise between the two: while the prior is not

Inverse Problems 30 (2014) 065012 A Pulkkinen et al

5



differentiable (and as such not a smooth prior), it still has finite cross-correlation between
spatially different points promoting distributions which can be close to homogeneous locally
with sharp changes between different areas.

In this work the minimization problem (12) is solved using Gauss–Newton method
augmented with an approximative line search algorithm. The minimization algorithm is
started from the prior mean. Details of the computation of the partial derivatives of
the forward model required by the Gauss–Newton algorithm are presented in appendix B.
The line search is performed on fixed interval α[ ]0, 2MAX . αMAX was chosen as the largest

α′ such that ′ ′μ λ μ μ λ… + >( )( )r c c r b; , , , ; , , 0Na 1 s s,REF
for α α Ω∀ ∈ ′ ∀ ∈r[0, ] , ,

λ λ λ∀ ∈ …{ }, , M1 with μ
a
and ′μ

s
corresponding to optical parameters at αΔ+x GN, where

ΔGN is the Gauss–Newton update direction. This choice of step length avoids issues that could
arise with the singularity of the optical diffusion κ in (2) when ′μ μ+

a s
approaches zero.

4. Numerical validation

4.1. Simulation of the measurement data

The data was simulated using the DA in a two dimensional square domain Ω with sidelength

of 10 mm. The data = …⊤ ⊤ ⊤( )z z z, , M1 was formed based on six measurements (M = 6) in

total, such that two different illumination patterns were used at three different wavelengths.
The wavelengths were λ λ= = 700 nm1 2 , λ λ= = 800 nm3 4 , λ λ= = 900 nm5 6 . The illu-
mination patterns were defined as

∪
∪
∪
∪

Ω Ω
Ω Ω

Ω Ω
Ω Ω

= = =
∈ ∂ ∂
∈ ∂ ∂

= = =
∈ ∂ ∂
∈ ∂ ∂

⎧⎨⎩
⎧⎨⎩

s r s r s r
r

r

s r s r s r
r

r

( ) ( ) ( )
1,
0,

( ) ( ) ( )
0,
1,

, (14)
1 3 5

L R

T B

2 4 6
L R

T B

where Ω∂ L, Ω∂ R, Ω∂ T, Ω∂ B are the left, right, top and bottom segments, respectively, forming
the square boundary such that ∪ ∪ ∪Ω Ω Ω Ω Ω∂ = ∂ ∂ ∂ ∂L R T B. The optical absorption
coefficient was composed of three different chromophores (N = 3): fat, deoxygenated and
oxygenated blood corresponding to chromophore concentrations c1, c2 and c3 and known
absorption spectra μ

a,1
, μ

a,2
, μ

a,3
respectively. Values for the absorption spectra are shown in

table 1. Two problems were considered: a case with smoothly varying spectral parameters and
a case with sharply varying spectral parameters. The values for the spectral parameters c1, c2,
c3, γ, ′μ

s,REF
and b used to simulate the data in the two cases are presented in the first columns of

figures 1 and 2 for the smoothly and sharply varying parameter cases respectively. ′μ
s,REF

was
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Table 1.Absorption spectra used in this paper: μ
a,1
corresponds to fat [53], μ

a,2
and μ

a,3
to

oxygenated and deoxygenated blood [54].

λ (nm) μ
a,1

(λ) −(mm )1 μ λ −( ) (mm )
a,2

1 μ λ −( ) (mm )
a,3

1

700 0.0700 0.9781 0.1713
800 0.0750 0.4496 0.4632
900 0.0800 0.4754 0.7155
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Figure 1. True and reconstructed chromophore concentrations c1, c2, c3, Grüneisen
parameter γ, and scattering parameters μ′

s,REF
and b for the case of smoothly varying

material parameters. First column shows the true parameters. Second column shows the
MAP estimates. Third and fourth columns show the estimates using the LS and LSγ
approaches respectively.
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Figure 2. True and reconstructed chromophore concentrations c1, c2, c3, Grüneisen
parameter γ, and scattering parameters μ′

s,REF
and b for the case of sharply varying

material parameters. First column shows the true parameters. Second column shows the
MAP estimates. Third and fourth columns show the estimates using the LS and LSγ
approaches respectively.



defined at a reference wavelength λ = 700 nmREF . The spectral parameters correspond to μ
a

varying within range 0.10–0.92 −mm 1 and ′μ
s
varying within range – −0.36 0.90 mm 1 at the

investigated wavelengths for both of the cases.
The computational domain Ω was composed of 9016 triangular elements and 4629

nodes. After simulating the noiseless data = … ⊤z z z( , , )M1 , it was interpolated onto an
inversion grid composed of 5022 triangular elements and Q = 2598 nodes. The interpolation
was performed in order to avoid the inverse crime. Additive error with a Gaussian white noise
distribution was added to the noiseless data such that → +z z em m m. It was drawn from a

distribution with Δ∼ · · ( )( )e I0, 0.01 3m m

2 2 , with Δ = −z zmax { } min { }m m m , ∈0 Q

being a vector of zeros and ∈ ×I Q Q being the identity matrix.

4.2. Reconstructions

The MAP estimates were obtained by minimizing (12) as described in section 3. The para-

meters of the combined prior η Γ∼  ( )x ,
x x were

η η η η η η η

Γ Γ Γ Γ Γ Γ Γ

= · · · · · ·

=

γ μ

γ μ

⊤ ⊤ ⊤ ⊤
′

⊤ ⊤
⊤

′

( )
{ }
1 , 1 , 1 , 1 , 1 , 1 ,

diag , , , , , , (15)

x c c c b

x c c c b

s,REF

s,REF

where ·diag { } indicates a block diagonal matrix formed with the matrices in the braces, and
the parameters correspond to priors of the estimated parameters such that ∼c c c, ,1 2 3

η Γ· ( )1,
c c , γ η Γ∼ ·γ γ ( )1, , ′μ η Γ∼ ·μ μ′ ′( )1,

s,REF s,REF s,REF
, η Γ∼ · ( )b 1,

b b , ∈1 Q is

a vector of ones, and each covariance matrix of the priors has the form

Γ α Ξ γ μ= = ′w c b, , , , or , (16)w w s,REF

where Ξ is given by (13), and αw are scaling parameters for the marginal priors. Values used
for the prior means η

w
and the scaling parameters αw are given in table 2. The prior parameters

were chosen by presuming good quantitative prior information of the form

η = +( )w wmax { } min { } 2
w

, and α = −( )( )w wmax { } min { } 2w

2
, where w is the

true γ, ′μ
s,REF

, or b. Parameters η
c
and αc were chosen similarly, but assuming that =cmax { } 1

and =cmin { } 0. Correlation length of =l 1 mm was used in computing Ξ .

For the noise statistics, a distribution of η Γ∼  ( )e ,
e e was used in the inversion, with

accurately defined mean and covariance
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Table 2. Prior parameters used for the MAP estimate.

w η
w

αw

c 0.5000 0.2500
γ 0.1100 0.0001
μ′

s,REF
−0.6750 mm 1 −0.0506 mm 2

b 0.7500 0.2500



η

Γ Δ Δ Δ Δ Δ Δ

=

=

⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤

⎜ ⎟⎛
⎝

⎞
⎠

( )

{ }I I I I I I

0 , 0 , 0 , 0 , 0 , 0 ,

0.01

3
diag , , , , , . (17)

e

e

2

1
2

2
2

3
2

4
2

5
2

6
2

The second column of figure 1 shows MAP estimates obtained with (12) for the case of
smoothly varying spectral parameters. The estimate of c1 is clearly worse than the estimates of
the other chromophore concentrations c2 and c3. This is due to the low absorption spectrum of
the first chromophore in comparison to the other two, as evident from the values listed in
table 1. The main contributors to the optical absorption in the domain are the oxygenated and
deoxygenated components of blood, with concentrations c2 and c3. Their reconstructions are
comparable in visual quality to each other, and their shape resembles that of the true para-
meters. The Grüneisen parameter γ and the reduced scattering parameters ′μ

s,REF
and b are in

their overall shape similar to the true parameters, but show more distortion in comparison to
c2 and c3.

The second column of figure 2 shows MAP estimates in the case of sharply varying
spectral parameters. The reconstructions are similar to the case of smoothly varying spectral
parameters. Estimates of c2 and c3 show the sharp changes in the true parameters. However,
the estimates of c1, γ, ′μ

s,REF
and b do not show the sharp changes, while the overall shape of the

estimates are similar to the true parameters.

4.3. Reference reconstructions

For a comparison with the direct estimation of the spectral parameters, the same parameters
were estimated indirectly, and more conventionally, by first estimating the optical coefficients
at each wavelength. A Bayesian approach [37] was used to obtain the optical coefficient
estimates, then the spectral parameters were fitted to the estimated absorption and scattering
parameters based on (3). The approach was performed under two conditions: with a known
and unknown γ. These are referred to as LS and LSγ approaches for the known and unknown
γ respectively. The approaches were performed for the smoothly and sharply varying material
parameter cases.

Both in the case of known and unknown γ, the prior parameters for the absorption and
scattering in the LS and LSγ approaches were defined similarly as in section 4.2 as

Inverse Problems 30 (2014) 065012 A Pulkkinen et al
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Table 3. Prior parameters used for LS and LSγ approaches.

w η
w

αw

λ = 700 nm
μ

a
−0.512 mm 1 −0.1584 mm 2

μ′
s

−0.675 mm 1 −0.0506 mm 2

λ = 800 nm
μ

a
−0.3696 mm 1 −0.0727 mm 2

μ′
s

−0.6107 mm 1 −0.0506 mm 2

λ = 900 nm
μ

a
−0.4882 mm 1 −0.1294 mm 2

μ′
s

−0.5590 mm 1 −0.0347 mm 2

γ 0.1100 0.0001



μ η α Ξ∼ μ μ ( ),
a a a

and ′μ η α Ξ∼ μ μ′ ′ ( ),
s s s

with η = +( )w wmax { } min { } 2
w

and

α = −( )( )w wmax { } min { } 2w

2
with w being either μ

a
or ′μ

s
. The prior parameters of μ

a

and ′μ
s
were different for each of the investigated wavelengths. In the LSγ approach, where γ

was assumed to be unknown, its prior was defined as γ η α Ξ∼ γ γ ( ), where

η γ γ= +γ ( )max { } min { } 2 and α γ γ= −γ ( )( )max { } min { } 2
2
. Values of the prior

parameters are shown in table 3. As in section 4.2, accurate mean and covariance were used
for the additive error in both of the approaches.

The estimates of μ
a
and ′μ

s
were computed at the three wavelengths using the true value of

γ in the LS approach. For LS γ approach γ was estimated as well. Following the estimation of
the absorption and scattering using the LS and LSγ approaches, the spectral parameter model
(3) was fitted to the estimates using a least squares method.

The third column of figure 1 shows the estimates of the spectral properties of the target
for the LS approach (known γ) for the smoothly varying parameter case. It is observed that the
estimates of c1 and b do not resemble the true parameter distributions, while the estimates of

c2, c3 and ′μ
s,REF

do. Similar behaviour is observed in the case of sharply varying material

parameters shown in the third column of figure 2.
The fourth column of figure 1 shows the estimated spectral parameters of the target for

the LSγ approach (unknown γ) for the smoothly varying parameter case. The estimates of c2

and c3 seem to resemble the true parameters. It is oberserved that the estimate of γ is not very

good and that the estimate of ′μ
s,REF

is worse than in the LS approach. As in the LS approach,

the estimate of b using the LSγ does not resemble the true parameter distribution. The fourth
column of figure 2 shows the estimates for the sharply varying material parameter case. In this
case ′μ

s,REF
resembles the true parameter distribution even less than in the case of smoothly

varying material parameters. Otherwise the estimates behave as in the case of the smooth
material parameters.
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Table 4. Relative errors of the estimates in percentage for the smoothly and sharply
varying parameter cases. Relative error shown for the MAP estimate, as well as for the
LS and LSγ approaches.

Smooth parameter case Sharp parameter case

MAP LS LSγ MAP LS LSγ

c1 91.8 331.0 442.1 86.8 345.0 386.5
c2 6.5 15.1 17.1 8.3 13.7 19.7
c3 7.9 17.4 21.4 11.8 21.4 26.3
γ 2.9 4.9 4.4 5.0
μ′

s,REF
9.4 7.7 12.8 12.6 8.7 13.7

b 17.3 61.0 69.2 25.2 58.4 56.8



4.4. Comparison of the reconstructions

The relative error of the estimated spectral parameters was computed using

γ μ μ μ= · − ′ ′ = ′ ′E
h h

h
h h c c c b100% , , , , , , , , or , (18)h 1 2 3 s,REF a s

where h is the true parameter and ′h is the estimate. Table 4 shows the relative errors of the
MAP estimates and the estimates obtained with the LS and LSγ approaches. The relative
errors are shown for the smoothly and sharply varying parameter cases. Based on the relative
errors it is observed that the direct estimation of the spectral parameters results in better
estimates than by first estimating the optical parameters at each wavelength separately and
then fitting the spectral parameters based on the spectral parameter model. Estimates of ′μ

s,REF

with the LS approach (known γ assumption) were better than when using the MAP estimate.
However, this assumption is not usually valid as the Grüneisen parameter is
typically unknown.

5. Discussion

In this work a Bayesian approach to SQPAT was described. It employed generic and widely-
used spectral tissue models, and was tested in two problems, each composed of three different
chromophores with biologically relevant tissue parameters. The first problem had spatially
smoothly varying spectral parameters, while the second had sharp changes. In both cases all
the parameters (three chromophore concentrations, Grüneisen parameter, and two scattering
parameters from Mie scattering theory) were reconstructed to good accuracy from the
simulated measurement data formed with six measurement composed of two illuminations at
three different wavelengths.

The superiority of the direct estimation of the spectral parameters was demonstrated
numerically, by comparing the estimates to ones obtained by first estimating the absorption,
scattering and the Grüneisen parameters separately at the three wavelengths and then fitting
the spectral parameter model to these estimates. The latter approach failed to provide as
accurate estimates as the direct estimation of the spectral parameters.

The approach presented allows the inclusions of quantitative prior information of the
estimated parameters into the reconstruction. In addition, although not investigated in this
paper, this approach also makes it possible to include information regarding the noise sta-
tistics in the reconstruction, as in [37]. As the inverse problem in SQPAT is two-fold, any
error in the initial pressure distribution estimate (formed from the noisy measured transient
ultrasonic waves) is certain to affect the estimates obtained in the optical inverse problem.
The error in the initial pressure distribution estimate might have a nondiagonal and spatially
nonuniform distribution in terms of its covariance structure, when it is modeled as a random
normally distributed noise process. This could be a consequence of nonideal measurements of
the acoustic signal, for example, limited view measurement on the boundary, large area
transducers causing averaging of the received signal, or band-limited response of the trans-
ducer. The error could also be a consequence of neglecting acoustic inhomogeneities in the
investigated target, or using approximative reconstruction algorithms to obtain the initial
pressure distribution estimate. The error might be of numerical source by nature as well. An
example of such could arise from errors caused by insufficient discretization in the numerical
estimation of the intial pressure distribution. Utilizing the Bayesian approach should allow
compensation of the said types of imperfections.
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For this investigation, the DA was used as the model for light propagation in tissues. A
more accurate model for the situation, considering the size of the domain and the values of
absorption and scattering, is the RTE [46, 47]. However, practice has shown that the DA
works as well in QPAT, at least when the main interest is the optical absorption parameter
[35, 38, 40, 42, 55]. This is probably due to the nature of the data in QPAT as it is more
sensitive to the absorption, than it is to the scattering [26]. Therefore, it was chosen as the
light transport model for this work. In the future, this same approach will be tested using the
RTE. Furthermore, compensating the modelling error caused by using the DA with respect to
RTE through Bayesian approximation error modelling could be considered, as in [56].

Extension of the presented approach from two dimensions to three is not without issues.
As the number of spatial dimensions increases, so does the total number of discretization
points involved in the computation. This means that the size of the covariance matrices in the
computation and the simulation time of the forward model increase as well. These factors will
make the reconstructions slower and more memory demanding in three dimensions. In this
work, the time to compute the estimates of the spectral parameters using the approach
presented was around 31 min using MATLAB (R2011b, The Mathworks) code on a work-
station with two Intel Xeon E5649 processors.
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Appendix A. Finite element approximation of the forward model

Variational form of (2) is

 ∫ ∫ ∫ ∫κ Φ ψ κμ Φψ
ζ

Φψ ψ· + + =
Ω Ω Ω Ω∂ ∂

r r
A

r
A

sd d
2

d
2

dr, (A.1)k
a

where ψ ψ= r( ) is a test function. Approximating κ, μ
a
, s and Φ as sum of linear basis

functions ϕ
n
(n = i or q)

∑ ∑

∑ ∑

κ κ ϕ μ μ ϕ

ϕ Φ Φ ϕ

≈ ≈

≈ ≈

= =

= =

r r r r r r

s r s r r r r r

( ) ( ) ( ), ( ) ( ) ( ),

( ) ( ) ( ), ( ) ( ) ( ), (A.2)

i

Q

i i a
i

Q

i i

i

Q

i i
q

Q

q q

1 1
a

1 1

and inserting (A.2) into (A.1) with choice ψ ϕ=r r( ) ( )
p

for the test function results in the

discretized form
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Q
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Q
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q p q
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Q
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1 1
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Note that ′κ μ μ= +
−( )( )r k r r( ) ( ) ( )i i ia s

1
in (A.3). Though s only needs to be defined on the

boundary Ω∂ , in the above it is defined in the entire domain Ω for convenience. Defining
matrices ∈ ×S M B, ,i i

Q Q by their value in pth row and qth column, and vertical vector

∈Ri
Q by its value in the pth row as

 ∫ ∫
∫ ∫

ϕ ϕ ϕ ϕϕϕ

ζ
ϕϕ ϕϕ

= · =

= =

Ω Ω

Ω Ω∂ ∂

{ } { }
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r R
A
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d , d ,

2
d ,

2
d , (A.4)

i pq i q p i pq i q p

pq

k
q p i p i p

equation (A.3) can be expressed in matrix notation

μ μ Φˆ ˆ ˆ = ˆ′( ) ( )K v s, , (A.5)
a s

where



∑ ∑

∑

μ μ μ

μ μ μ

μ μ
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Φ Φ Φ
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i i

i
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Q

i i

Q
Q

i

Q

i i

a a 1 a

s s 1 s

1

a s
1 a s 1

a

1

1

A finite element approximation of fluence Φ can readily be obtained from (A.5) with
matrix inversion, from which an approximation of the initial pressure distribution (1) is
obtained as

γ μ μ γ μ Φ μ μˆ ˆ ˆ ˆ = ˆ ˆ ˆ′ ′( ) ( )p r s r r r s; , , , ( ) ( ) ; , , . (A.7)q q q q0 a s a a s

Defining ˆ = … ∈
⊤( )c c r c r( ), , ( )n n n Q

Q
1 ( = …n N1, , ), γ γ γˆ = …

⊤( )r r( ), , ( )Q1 ∈ Q,

′ ′ ′μ μ μˆ = … ∈
⊤( )r r( ), , ( )Q

Q
s,REF s,REF 1 s,REF

and ˆ = … ∈
⊤( )b b r b r( ), , ( )Q

Q
1 , and sub-

stituting μ̂
a
and ′μ̂

s
with their discrete spectral representatations at wavelength λ

Inverse Problems 30 (2014) 065012 A Pulkkinen et al

14



∑μ μ λ μ λ

μ μ μ λ μ λ
λ

→ ˆ … ˆ =

→ ˆ ˆ =′ ′ ′ ′

=

−⎛
⎝⎜

⎞
⎠⎟( )

( ) ( )

( )

r r c c c r

r r b r

( ) ; , , , ( )

( ) ; , , ( ) (A.8)

q q N
n

N

n q n

q q q

b r

a a 1
1

a,

s s s,REF s,REF
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q

in (A.7) results in

γ μ λ γ μ Φ μ μˆ ˆ … ˆ ˆ ˆ ˆ = ˆ ˆ ˆ′ ′( ) ( )p r c c b s r r r s; , , , , , , , ( ) ( ) ; , , , (A.9)q N q q q0 1 s,REF a a s
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( )r r c c

r r b
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q q N

q q

a a 1

s s s,REF

Forward models (5) and (6) follow from (A.9)–(A.10) by replacing λ and s with λm, sm, and

defining ′γ μ= ˆ … ˆ ˆ ˆ ˆ⊤ ⊤ ⊤ ⊤ ⊤

⊤( )x c c b, , , , ,N1 s,REF
.

Appendix B. Computing Jacobians

Partial derivatives of (A.9) forming the Jacobians with respect to c r( )n p , γ r( )p , ′μ r( )ps,REF
and
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Partial derivatives μD r r( ; )q pa
and μ′D r r( ; )q ps

are computed by differentiating (A.5) with

respect to μ r( )pa
and ′μ r( )ps

and solving for the partial derivatives of the fluence
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