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Abstract—The simulation of ultrasound propagation through
biological tissue has a wide range of applications in medicine.
However, ultrasound simulation presents a computationally dif-
ficult problem, as simulation domains are very large compared
with the acoustic wavelengths of interest. This becomes a greater
problem when simulating high intensity focussed ultrasound
since nonlinear effects increase the required resolution of com-
putational grids. Two common methods for dealing with this
difficulty include using spectral methods for solving the acoustic
model equations and using an axisymmetric assumption for the
system. In this paper, a full-wave nonlinear model similar to the
Westervelt equation is solved using pseudospectral methods based
on the discrete sine and cosine transforms. These methods can
be used to apply homogeneous Neumann and Dirichlet boundary
conditions (both of which are present in axisymmetric systems)
while retaining the many established benefits of the Fourier
spectral method. The accuracy of the model is established through
comparison with analytical solutions to several nonlinear wave
equations.

I. INTRODUCTION

The simulation of ultrasound propagation plays an impor-
tant role in the development of technologies such as photoa-
coustic tomography and high intensity focussed ultrasound
(HIFU). These simulations need to account for a range of
effects seen in biological tissue such as acoustic absorption and
nonlinear propagation. These effects are particularly important
in HIFU since nonlinear propagation results from high acoustic
pressures and acoustic absorption causes significant heating
in tissue. High pressures additionally create steep wavefronts
and short acoustic wavelengths, which require dense computa-
tional grids and correspondingly high levels of computational
resources.

One simplification that is commonly made in ultrasound
simulations is to assume axisymmetry in the system. A promi-
nent nonlinear axisymmetric method was developed by Lee
and is found in the KZKTexas code [1]. This method solves
the KZK equation and models the propagation of pulsed sound
beams in homogeneous, thermoviscous fluids. The KZK equa-
tion only permits one-way propagation of waves however, and
so cannot be extended to include tissue heterogeneities since
these produce reflections. Sparrow & Raspet [2] and Hallaj &
Cleveland [3] both solve full-wave axisymmetric models that
do not have these limitations. Their models are solved using
finite-difference methods however, which require many com-
putational grid points per acoustic wavelength. In comparison,
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spectral methods converge exponentially and only require close
to the Nyquist limit of two points per wavelength. An example
of a full-wave nonlinear spectral method is provided by Albin
et al. in which the Fourier Continuation method is applied to
ultrasound simulation [4]. The Fourier Continuation method
deals with the symmetric extension through the system’s axis
by mirroring a strip of points beyond the simulation domain,
rather than through the direct application of an appropriate
boundary condition.

The present paper solves a full-wave acoustic model using
a spectral method based on the discrete sine and cosine
transforms which is capable of dealing with symmetrically
and antisymmetrically extended computational domains. The
acoustic model has been developed by Treeby et al. for
Cartesian systems and is composed of three coupled first-
order partial differential equations, together equivalent to a
generalised Westervelt equation [5], [6]. This model includes
the effects of tissue heterogeneities (sound speed, density,
and nonlinearity) and thermoviscous absorption. Some of the
spectral methods provided here have seen some use in the
past by Kosloff & Kosloff in solving the wave equation with
reflective boundaries, and by Long & Rheinhard in solving
the Navier-Stokes equation to constrain fluid flow within a
tank [7], [8]. Their use there reflected their ability to apply
homogeneous Neumann and Dirichlet boundary conditions to
the solution of partial differential equations.

II. THE WESTERVELT EQUATION IN AN AXISYMMETRIC
SYSTEM

The model used in this paper consists of a system of
three first-order partial differential equations in three acoustic
variables, which together combine to give the Westervelt
equation. Using a system of equations for each variable gives a
number of benefits, including allowing quantities such as the
acoustic intensity and the heating of tissue to be calculated
from the acoustic field variables, permitting staggered time and
spatial grids to be used to improve the accuracy of numerical
methods, and simplifying the addition of force and mass
sources. Following Treeby et al. [6] the system of equations is

∂u
∂t

= − 1

ρ0
∇p+ SF , (cons. momentum) (1)

∂ρ

∂t
= −(2ρ+ ρ0)∇ · u + SM , (cons. mass) (2)

p = c20

(
ρ+

B

2A

ρ2

ρ0
− Lρ

)
. (eq. of state) (3)
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Here ρ0 and c0 are the ambient density and sound speed, and
SF and SM are force and mass sources. The ratio B/A char-
acterises the relative contribution of finite-amplitude effects to
the sound speed, and the term −2ρ∇ · u in Eq. (2) describes
the contribution of the particle velocity to the wave velocity.
The loss operator L is defined as

L = −2α0c0
∂

∂t
, (4)

where α0 is the power law prefactor and absorption follows a
frequency squared power law.

Solving these equations in an axisymmetric system requires
the axisymmetric forms of the gradient and divergence opera-
tors. In the context of Eqs. (1) and (2) these are

∇p =
∂

∂r
r̂ +

∂

∂z
ẑ , (5)

∇ · u =
ur

r
+

∂ur

∂r
+

∂uz

∂z
. (6)

The 1/r term that occurs in the divergence equation is im-
portant since this restricts us to calculating Eq. (6) at points
that aren’t on the system’s axis. To do this, a staggered grid
scheme is used where p and ρ are defined on a grid that
includes the axis while u is defined on a grid shifted by half
the grid point spacing. This is indeed one motivation for using
a split form of the wave equation as the Laplacian operator that
occurs in the general second-order wave equation includes a
1/r term preventing the pressure field from being calculated on
the axis. Defining p along the axis is important for modelling
the response of transducers since the maximal pressure occurs
on (or at least near) the axis and is needed for calculating the
heat delivered to tissue at the transducer’s focal point.

III. AXISYMMETRIC BOUNDARY CONDITIONS

To simulate free-field conditions a perfectly matched layer
(PML) is used to absorb the waves at the simulation boundaries
[9]. In a Cartesian system a PML would be placed on all
boundaries to prevent reflections, however in the axisymmetric
case symmetry allows our simulation to have one boundary
placed on the system’s axis with the wave field mirrored
beyond it, and so only three PMLs are used. This mirroring
is equivalent to applying a symmetric extension in the radial
direction to p, uz and ρ, and to applying an antisymmetric
extension to ur. To illustrate this, the acoustic pressure field
for the simulation in Sec. VI-B is shown in Fig. 1.

These antisymmetric and symmetric extensions can be
implemented by applying homogeneous Neumann and Dirich-
let boundary conditions on the axis. The implementation of
these conditions in a spectral method is often done using a
polynomial basis defined on a Chebychev grid. The Chebychev
grid has the disadvantage however of needing a higher density
of points near the simulation boundaries and having a much
stricter stability requirement. For a given maximum grid spac-
ing a Chebychev grid requires (π/2)D more grid points where
D is the dimension of the simulation. It would be preferable
instead to be able to use an equispaced grid, like that available
through Fourier spectral methods. However to do so requires
the inherent periodicity of Fourier spectral methods to be dealt
with.
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Fig. 1. Simulated acoustic pressure field for an unfocussed cylindrical
transducer. The field is calculated for positive radial coordinates and a
symmetric boundary condition is used to imply the mirroring beyond the axis.

IV. SYMMETRIC AND ANTISYMMETRIC FOURIER
SPECTRAL METHODS

A general approach to implementing Neumann and Dirich-
let boundary conditions in a spectral method is to choose basis
functions that implicitly meet those conditions [10, p.135]. One
appropriate choice of basis functions are sines and cosines
respectively – noting unlike a Fourier representation that the
choice needs to be mutually exclusive (i.e only sines or only
cosines). Much like a Fourier spectral method we can represent
a sampled function u of length N by a weighted sum of
sinusoids defined for a set of equally spaced wavenumbers
kn. That is either

uj =
∑

n

An sin (knxj) , or (7)

uj =
∑

n

Bn cos (knxj) , (8)

where An and Bn are the weights associated with each basis
function and j, n = 1, 2, . . . , N .

To determine these weights and wavenumbers we use the
discrete sine and cosine transforms, collectively referred to
as the discrete trigonometric transforms (DTTs). There are
sixteen DTTs, each corresponding to a specific type of discrete
symmetry on the left and right boundaries. Symmetry may be
either symmetric (S) or antisymmetric (A) and the point of
symmetry may lie on a data point (W) or halfway between data
points (H). The DTTs can be labelled by the symmetry on each
boundary, for instance a Dirichlet condition applied at a data
point on the left boundary and a Neumann condition applied
halfway between data points on the right boundary would be
labelled as WSHA. Table I provides these boundary symme-
tries along with their corresponding DTTs and wavenumber
sets1. In it, N is the length of the representative sample of the
sequence the DTT is applied to and M is the implied periodic
length of the sequence. The DTTs can be divided into four
classes based on whether their implied periodic length M is
an even or odd number (even and odd classes), and whether

1See Martucci for an explanation of the DTTs and their relationships to
one-another and to the generalised Fourier transform [11]. As in this paper,
Martucci notes the existence of four DTT classes based on wavenumbers,
though in the context of convolution rather than differentiation.
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TABLE I. THE DISCRETE TRIGONOMETRIC TRANSFORM CLASSES

Wavenumbers Symmetry DTT n = . . . M = . . .

kn = 2π
M∆xn

WSWS C1 0, 1, . . . , M
2 2(N − 1)

HSHS C2 0, 1, . . . , M
2 − 1 2N

WAWA S1 1, 2, . . . , M
2 − 1 2(N + 1)

HAHA S2 1, 2, . . . , M
2 2N

WSHS C5 0, 1, . . . , M−1
2 2N − 1

HSWS C6 0, 1, . . . , M−1
2 2N − 1

WAHA S5 1, 2, . . . , M+1
2 2N + 1

HAWA S6 1, 2, . . . , M+1
2 2N + 1

kn = 2π
M∆x

(
n + 1

2

)

WSWA C3 0, 1, . . . , M
2 − 1 2N

HSHA C4 0, 1, . . . , M
2 − 1 2N

WAWS S3 0, 1, . . . , M
2 − 1 2N

HAHS S4 0, 1, . . . , M
2 − 1 2N

WSHA C7 0, 1, . . . , M−1
2 2N − 1

HSWA C8 0, 1, . . . , M−1
2 2N + 1

WAHS S7 0, 1, . . . , M−1
2 2N + 1

HAWS S8 0, 1, . . . , M−1
2 2N − 1

their wavenumbers are shifted by π/M∆x (whole- and half-
wavenumber classes).

To form a pseudospectral method we make use of the
same frequency-space differentiation properties that make the
Fourier spectral method possible, namely

∂

∂x
An sin (knx) = knAn cos (knx) , and (9)

∂

∂x
Bn cos (knx) = −knBn sin (knx) . (10)

Thus, a DTT spectral method involves transforming a dis-
cretely sampled function u into frequency space using a DTT
appropriate to the sequence’s boundary conditions, scaling the
basis function weights (An or Bn) by their wavenumbers
(kn or −kn), and inverting the derivative back using an
inverse DTT corresponding to the boundary conditions of the
differentiated function u′. That is, either

u′ ≈ S−1 {kC{u}} , or (11)
u′ ≈ C−1 {−kS{u}} . (12)

where S and C are the discrete sine and cosine transforms.
Note that under differentiation symmetry about a boundary will
change from symmetric to antisymmetric and vice-versa. There
are two options available when choosing the inverse DTT –
the differentiated sequence can be reconstructed on the original
sampling grid or on a staggered grid. This is possible because
each DTT class includes transforms defined for subsets of the
same set of basis wavenumbers, but for differing symmetry
types and spatial grids. When forming DTT pseudospectral
methods, a key consideration that arises is that the forward
and inverse subsets of wavenumbers may differ. This is dealt
with by trimming any extra basis function weights and setting
any missing ones to zero before inversion.

V. DISCRETE MODEL EQUATIONS

The ultrasound model given in Eqs. (1)–(3) is solved using
DTT pseudospectral methods from the even half-wavenumber
class along with a centred leapfrog time scheme. On the non-
axis boundaries any symmetry applied will be negated by a
PML, and so can be chosen arbitrarily. Thus, p and ρ are given
WSWA boundaries in both the radial and depth dimensions

(the axis is on the left radial boundary) and ur and uz have
HAHS boundaries. This is shown in Fig. 2. By choosing a
half-wavenumber DTT class we have avoided trimming or
zero-padding sequences in frequency space since all DTTs in
each half-wavenumber class are defined for the same subset
of wavenumbers. Choosing an even class gives access to the
fast algorithms available through the FFTW library [12]. The
model was implemented in MATLAB using a mex interface to
FFTW as an extension to the MATLAB k-Wave toolbox [5].
The PML is not included in the equations below for simplicity,
however it is applied by simply scaling u and ρ at each time
step.
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Fig. 2. The axisymmetric coordinate system used showing the grids on which
field variables are calculated and the time steps at which they are defined.

To begin, Eq. (1) is calculated in two parts as

∂

∂ξ
pn = S−1

4

{
−kξC3{pn}

}
, (13)

u
n+ 1

2
ξ = u

n− 1
2

ξ − ∆t

ρ0

∂

∂ξ
pn +∆tSn

Fξ
, (14)

where ξ = r, z and n is the current timestep. The acoustic
density is split into two components so that the PML can
be applied and as a result the radial terms in the divergence
operator from Eq. (6) are calculated separately from the
depth term. Noting that ur/r has HSHA-type boundaries, we
calculate the radial and depth components of the divergence
term as

(
∇ · un+ 1

2

)

r
= C−1

3

{
C4

{
u
n+ 1

2
r

r

}
+ krS4

{
u
n+ 1

2
r

}}
,

(15)(
∇ · un+ 1

2

)

z
= C−1

3

{
kzS4

{
u
n+ 1

2
z

}}
. (16)

Here ur/r has been transformed into frequency space so
that it can be shifted onto a whole-sample grid after being
added to ∂ur/∂r. These can be added to the radial and depth
components of the acoustic density, solving Eq. (2) as

ρn+1
ξ =

ρnξ −∆tρ0
(
∇ · un+ 1

2

)

ξ
+∆tS

n+ 1
2

Mξ

1 + 2∆t
(
∇ · un+ 1

2

)

ξ

, (17)

where ξ = r, z. The two density components are then recom-
bined to give the total acoustic density

ρn+1 = ρn+1
r + ρn+1

z . (18)
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Finally, the pressure–density relation from Eq. (3) is discretised
as

pn+1 = c20

(
ρn+1 +

B

2A

1

ρ0

(
ρn+1

)2 − Ld

)
, (19)

with the loss operator given by

Ld = −2α0c0
∂

∂t
ρn+1

= −2α0c0ρ0

((
1

r
+

∂

∂r

)
u
n+ 1

2
r +

∂

∂z
u
n+ 1

2
z

)
, (20)

Here, the term ∂
∂tρ

n+1 has been expanded using Eq. (2) prior
to the leapfrog time scheme being applied to integrate it.

VI. NUMERICAL VALIDATION

A. Nonlinear Propagation and Thermoviscous Absorption

When acoustic waves possess a high amplitude to wave-
length ratio nonlinear propagation effects are seen, producing
steep wavefronts. To see the accuracy of the axisymmetric
model and pseudospectral method given in this paper, a com-
parison is drawn with an analytical solution to the Burgers
equation [13]. This solution is for a monochromatic plane
wave which is simulated propagating 15 wavelengths along the
system’s axis. The results are given in Fig. 3 where a good
agreement is evident between the simulated and analytical
solutions.

B. Comparison with the Rayleigh Integral and KZK Equation

The KZK equation is often used to model nonlinear acous-
tics with thermoviscous absorption, notably in the KZKTexas
code [1]. Lee has analytically solved a linearised form of the
KZK equation for the maximal acoustic pressure along the
axis for an unfocussed monochromatic cylindrical transducer,
however this solution includes a singularity at the transducer
[1]. Pierce has derived an analytical solution to the Rayleigh in-
tegral for the same system, but without the erroneous behaviour
at the transducer [14]. Fig. 3 shows a comparison between the
simulated system and these solutions. The simulation agrees
closely with the Rayleigh integral, while the singularity in
the KZK equation solution manifests as a high frequency
oscillation near the transducer, and accuracy is only achieved
at points in the far-field, beyond the dotted vertical line.

VII. CONCLUSION

An axisymmetric ultrasound model has been presented that
efficiently and accurately accounts for nonlinear propagation
effects and thermoviscous absorption. The discrete sine and co-
sine transforms are used to solve this model since they provide
fast pseudospectral methods capable of applying homogeneous
Dirichlet and Neumann boundary conditions. Nonlinear prop-
agation and absorption effects are validated using an analytical
solution to the Burgers equation and a favourable comparison
is made with the one-way KZK equation. The model presented
has applications in high intensity focussed ultrasound where it
can simulate reflections and scattering in heterogeneous tissue.
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