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Abstract—Simulating the propagation of nonlinear ultra-
sound waves is computationally difficult because of the dense 
grids needed to capture high-frequency harmonics. Here, a 
mapped k-space pseudospectral method is presented which al-
lows the use of nonuniform grid spacings. This enables grid 
points to be clustered around steep regions of the wave field. 
Compared with using a uniform grid, this significantly reduces 
the total number of grid points needed for accurate simula-
tions. Two methods for selecting a suitable nonuniform grid 
mapping are discussed.

I. Introduction

The accurate and efficient numerical solution of non-
linear acoustic equations remains an important topic 

in biomedical ultrasonics and physical acoustics [1], [2]. 
However, simulating the propagation of nonlinear waves 
is a computationally difficult task because the medium 
discretization must be fine enough to capture harmonics 
that are generated as the ultrasound waves propagate. 
For strongly shocked waves, several hundred harmonics 
may be generated, resulting in the need for very dense 
computational grids [3]. This requirement is compounded 
if conventional finite-difference or finite-element meth-
ods are used to solve the governing equations, because 
large numbers of grid points per minimum wavelength 
are needed to avoid numerical dispersion [4]. To reduce 
this computational burden, several models for nonlinear 
ultrasound simulation based on the Fourier pseudospec-
tral method have recently been presented [5]–[7]. These 
models use spectral methods to compute spatial gradi-
ents which allows discretizations close to the Nyquist limit 
of two grid points per minimum wavelength. Compared 
with finite-difference approaches, this can reduce the to-
tal number of grid points needed by as much as two or-
ders of magnitude [6], [8]. However, a major limitation of 
current nonlinear ultrasound models based on the Fou-
rier pseudospectral method is the restriction to uniform 
Cartesian grids. This means the discretization is globally 
constrained by the highest frequency of interest. That is, 

if two-points per wavelength are required to accurately 
represent the highest frequency harmonic somewhere in 
the domain, this grid spacing must be used everywhere. 
This penalty is of practical significance because the har-
monic content produced by nonlinear waves does not usu-
ally exist uniformly over the domain. Here, we explore 
how this constraint might be overcome by using a mapped 
pseudospectral method to enable the use of nonuniform 
grid spacings. This allows the local discretization of the 
medium to be optimized to support the frequency content 
of the wave field in that region of the domain. Overall, 
this can yield a considerable saving in the total number of 
grid points (and thus memory and compute time) without 
compromising accuracy. The theory and background of 
the mapped pseudospectral method are given in Section 
II, with several numerical examples given in Section III. 
Discussion and summary are then given in Section IV.

II. Theory

A. The Mapped Pseudospectral Method

The use of spectral methods to compute the gradient of 
discrete functions first gained popularity in the 1970s [9]. 
The general idea is to decompose the entire field into a 
finite sum of scaled basis functions that vary globally over 
the domain. The gradient can then be computed using the 
derivative of the basis functions. In the Fourier spectral 
method (which is the focus of this work), the basis func-
tions are sinusoidal and the sampling points are evenly 
spaced. This allows the use of the fast Fourier transform 
(FFT) to compute the basis function weights. The advan-
tage of this approach over finite-difference methods is that 
the grid spacing can often be much coarser for the same 
degree of accuracy [9]. In the context of modeling linear 
acoustic waves, this can be down to the Nyquist limit 
of two points per wavelength [8]. However, in nonlinear 
acoustics, the steepening waves generate high-frequency 
harmonics which also must be represented on the discrete 
computational grid.

The idea behind the mapped pseudospectral method is 
to discretize the field (in this case, the acoustic wave field) 
using a nonuniform grid such that any sharp or rapidly 
varying features are adequately resolved [9]. Given a map-
ping between the nonuniform grid xn and a uniform grid 
with the same number of grid points xu, spatial gradients 
can then be computed using the chain rule, where
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Here, the derivative with respect to the uniform grid 
points ∂/∂xu is calculated using the Fourier collocation 
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spectral method without modification, where F represents 
the spatial Fourier transform, i is the imaginary unit, and 
kx is the set of acoustic wavenumbers supported by the 
uniform grid.

The role of the mapping can be understood by imagin-
ing the nonuniform grid stretched out so the grid points 
are evenly spaced. In the transformed coordinates, re-
gions in which the input function varies rapidly are much 
smoother. This allows the gradient to be computed more 
accurately. A simple example is shown in Fig. 1(b). Here, 
the solid line illustrates the original function sampled on 
a uniform grid. The dashed line shows the same func-
tion sampled using a nonuniform grid which is then 
stretched so the grid points are evenly spaced. Because 
the remapped function is smoother (meaning the Fourier 
coefficients decay more rapidly), the spectral gradient cal-
culation is more accurate. The transformation gradient  
dxu/dxn then maps the calculated gradient back to the 
original nonuniform grid points. For a given coordinate 
transform, the function dxu/dxn can be precalculated and 
then applied each time the gradient is computed. This 
means the computational efficiency of the gradient cal-
culation compared with the uniform case is largely pre-
served. Note, the transformation between xu and xn must 
have at least C1 continuity (i.e., the transformation gradi-
ent must be continuous) [10].

An illustrative example of using a nonuniform grid to 
compute the gradient of a periodic function is shown in 
Fig. 1 (in this case, the function is chosen to be a one-
dimensional cnoidal wave with an elliptic parameter of 
0.99999). The nonuniform grid is defined by a periodic 
arctan/tan function [11], [12], where xn = arctan (a tan xu) 
for xu ∈ [−π/2, π/2]. The parameter a ∈[0, 1] controls the 
strength of the grid point clustering about x = 0. The cross-
es and dots in Figs. 1(a) and 1(b) show the function values 
sampled at uniform and nonuniform grid points, respec-
tively, where a = 0.5 and Nx = 12 (here, Nx is the number 
of grid points). Fig. 1(c) illustrates the corresponding L∞ 
error norm in the gradient calculation against the number 
of grid points Nx for simulations on both uniform and 
nonuniform grids (where L∞ = max{| fref(xi) − fcalc(xi)|: i 
= 1, 2, …, Nx}). The error is noticeably reduced when the 
nonuniform grid mapping is used, with less than half the 
number of grid points required to reach machine precision. 
The variation in error with the clustering parameter a for 
Nx = 50 is shown in Fig. 1(d). For this example, the opti-
mum value is around a = 0.5. However, the exact selection 
of this parameter is not critical, and there is a reduction 
in the error compared with the uniform case (shown with 
a dashed line) for a wide range of values.

The use of coordinate transformations to improve 
the accuracy of spectral methods in this fashion is not a 
new idea. In both electromagnetics and linear acoustics, 
the mapped pseudospectral method has previously been 
used to increase the density of grid points near known 
discontinuities in the medium properties [10], [13]. This 
can increase the accuracy of modeled transmission and 

reflection coefficients, particularly for frequencies close to 
the Nyquist limit. Much earlier, a similar technique was 
applied to periodic solutions of Burgers’ equation in one-
dimension to increase the grid sampling near the steep-
est component of the wavefront [11], [12], [14]. A more 
comprehensive reference list of other applications is also 
given by Boyd [9]. Here, we explore the use of a mapped 
k-space pseudospectral method for time-domain simula-
tions of propagating nonlinear waves where the density 
of grid points is increased in regions of the domain with 
steep variations in the wave field. In this correspondence, 
the analysis is restricted to simulations in one-dimension, 
which is sufficient to illustrate the merit of the approach. 
The implementation of the mapped pseudospectral meth-
od in higher dimensions is a simple extension of the one-
dimensional case, however, the choice of optimal nonuni-
form grid mappings is more complex [15]. The extension 
to two and three spatial dimensions will be examined as 
part of future work.

Fig. 1. Example of using a nonuniform grid mapping to compute the 
gradient of a periodic function. (a) Periodic uniform and nonuniform grid 
spacings created using an arctan/tan mapping with Nx = 12 and a = 0.5. 
(b) Periodic cnoidal wave (solid line) sampled using uniform (crosses) 
and nonuniform (dots) grids. The dashed line shows the nonuniform grid 
values stretched out so the grid points are evenly spaced. (c) Variation 
in the L∞ error norm with the number of grid points for gradient cal-
culations using uniform and nonuniform grid spacings. (d) Effect of the 
nonuniform clustering parameter a on the L∞ error norm for Nx = 50. 
The corresponding error for the uniform grid is shown with a dashed line.
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B. The k-Space Pseudospectral Method

In most pseudospectral discretizations of time-depen-
dent partial differential equations, solutions are obtained 
by iterating forward in time using a finite-difference ap-
proximation of the temporal gradients. The k-space pseu-
dospectral method instead exploits the existence of an 
exact solution to the linearized wave equation for homo-
geneous media to improve the accuracy of the temporal 
discretization [8]. This allows larger time steps to be used 
for the same degree of accuracy. The k-space approach was 
recently applied to the discretization of coupled acoustic 
equations valid for modeling wave propagation through 
heterogeneous media, including cumulative nonlinear ef-
fects and power law acoustic absorption [6]. This approach 
is extended here to incorporate calculations on nonuni-
form grids using the mapped pseudospectral method.

The set of coupled first-order partial differential equa-
tions can be written as [6]
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Physically, these expressions correspond to momentum 
conservation, mass conservation, and an equation of state. 
Here, u is the acoustic particle velocity, p is the acoustic 
pressure, ρ is the acoustic density, c0 and ρ0 are the isen-
tropic sound speed and ambient density in the medium, 
B/A is the nonlinearity parameter, and L is a power-law 
absorption operator dependent on the fractional Lapla-
cian [16]. These equations are the first-order equivalents 
of a generalized Westervelt equation modified to include 
power law absorption [6].

Using the k-space pseudospectral method, the discrete 
form of these equations in one dimension for simulations 
on a nonuniform grid is given by
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These expressions are equivalent to those given in [6], 
except for the two transformation gradients which map 
between uniform and nonuniform grids. The superscript 
m and m + 1 denote the function values at the current 
and next time points (including time staggering), the 

subscripts u and n denote uniform and nonuniform grids, 
Δt is the size of the time step, and κ is given by κ = 
sinc (crefkΔt/2). The sinc term results from a nonstan-
dard discretization of the time derivative that is known 
to reduce (or, in the case of suitably constrained material 
properties, eliminate) numerical dispersion [8].

These equations were implemented in Matlab (The 
MathWorks Inc., Natick, MA) as an extension to the 
open-source k-Wave Toolbox [17]. A perfectly matched 
layer was used to absorb the waves at the edges of the 
domain (this was applied on the nonuniform grid), and the 
grids were spatially and temporally staggered to improve 
accuracy [8]. Note that, when spatially staggered grids are 
used, the transformation gradient dxu/dxn used to com-
pute the spatial gradient of the particle velocity ∂u/∂xn 
must also be defined using the staggered grid points, i.e., 
using the uniform grid axis xn shifted by half the grid 
point spacing Δxu/2.

III. Numerical Examples

A. Nonuniform Grid Optimization Using a Known 
Harmonic Distribution

To investigate the applicability of using nonuniform 
grids for modeling nonlinear ultrasound waves, we begin 
with a simple example. It is first assumed that an accurate 
reference solution is available from which a suitable non-
uniform grid and transformation gradient can be derived 
(an example without this is discussed in the next section). 
In this case, the reference solution was computed using 
a uniform grid with 2048 grid points (including a per-
fectly matched layer with a thickness of 20 grid points on 
each side of the domain). The grid point spacing was set 
to 1.5 μm, supporting a maximum frequency of 50 MHz 
at two points per wavelength, and the time step was 
3 ns, giving a Courant–Friedrichs–Lewy (CFL) number 
of 0.3, where CFL = c0Δt/Δx. The medium parameters 
were set to be homogeneous, with c0 = 1500 m·s−1, ρ0 = 
1000 kg·m−3, B/A = 6, and α0 = 0.25 dB·MHz−2·cm−1. 
The input signal was a 1-MHz sinusoid with an amplitude 
of 5 MPa injected as a mass source at the left-hand side of 
the domain. A snapshot of the pressure field after 25 μs is 
shown in Fig. 2(c).

To obtain a nonuniform grid mapping from the refer-
ence solution, the frequency spectrum of the steady-state 
time-varying pressure at each grid point was analyzed to 
determine the highest frequency harmonic contributing to 
the local waveform. This maximum was extracted by find-
ing the highest frequency harmonic with an amplitude of 
more than 0.5% the amplitude of the fundamental fre-
quency at that position. The variation in the maximum 
harmonic present in the local waveform with propagation 
distance is shown as the solid line in Fig. 2(a). This curve 
increases with distance due to the cumulative nature of 
the modeled nonlinear effects. The corresponding grid 
point spacing required to capture this frequency using two 
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points per wavelength is shown as the solid line in Fig. 
2(b). There is almost an order of magnitude difference in 
the grid spacing needed as the waveform steepens. When a 
uniform grid spacing is used, the discretization is globally 
constrained by the smallest grid point spacing required 
anywhere in the domain. In this case, this requires a com-
putational grid with 580 grid points.

Given the variation in the required grid point spac-
ing with distance, a nonuniform grid can then be derived. 
Here, an arctan/tan mapping was used, where [11], [12]
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This maps between normalized uniform grid points xu ∈ 
[0, 1] and nonuniform grid points xn ∈ [0, 1], where the 
parameter β > 0 controls the strength of the grid point 
clustering toward x = 1. The transformation gradient for 
this mapping is
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where xu = 0, 1/Nx, 2/Nx, …, 1 − 1/Nx. The values for 
β and Nx were obtained by fitting (4) to the grid spac-
ing data shown in Fig. 2(b) using unconstrained nonlinear 
minimization (fminsearch in Matlab). For this example, 
the obtained parameter values were β = 1.7 and Nx = 366 
(the fitted curve is shown with a dashed line). Excluding 
the perfectly matched layer, this corresponds to a 40% re-
duction in the total number of grid points compared with 
using a uniform grid, which is significant. Using a CFL 
number of 0.05 to minimize any other sources of error, er-
ror norms calculated from the final pressure field using a 
nonuniform grid were L2 = 0.59% and L∞ = 30 kPa com-
pared with L2 = 0.33% and L∞ = 69 kPa in the uniform 
case. (Here, the relative L2 error norm is defined as L2 = 
|| pref(xi) − p(xi)||2/|| pref(xi)||2.) This confirms that the ac-
curacy of the simulation is maintained.

B. Nonuniform Grid Optimization Using  
Envelope-Based Equidistribution

Although the example provided in the previous section 
illustrates the potential benefits of using a nonuniform 
grid for simulating nonlinear ultrasound waves, in many 
cases an accurate reference solution will not be available a 
priori. However, if some basic information about the wave 
field is still available (for example, from a simulation on a 
coarse uniform grid), this can similarly be used to derive 
an appropriate nonuniform grid mapping. In this case, 
rather than analyzing the time history of the wave field at 
each grid point, a monitor function is constructed from a 
snapshot of the wave field at a particular time. The moni-
tor function assesses the variation of the pressure field 
between each pair of adjacent grid points. A more suitable 
distribution of grid points can then be estimated based on 

the concept of equidistribution [15]. This works by shuf-
fling the grid points such that the changes in the field 
values are roughly equally distributed between the grid 
points.

In the case of nonlinear wave propagation, the wave 
field may be complex, with large variations between the 
grid points that oscillate in time. However, for a continu-
ous wave source in steady state, the overall spatial distri-
bution of energy at higher frequency harmonics (which 
dictates the required grid spacing) will remain constant. A 
suitable nonuniform grid can thus be derived by construct-
ing a monitor function that depends only on the overall 
envelope of the variations in the wave field, rather than 
variations on a small scale. This is illustrated in Fig. 3. 
Here, the monitor function was created from the pressure 
field after 25 μs using the uniform simulation with Nx = 
580 discussed in the previous section. The magnitude of 
the pressure variation between each of the grid points is 
shown in Fig. 3(a). The steeper peaks correspond to 
sharper variations in the wave field (in this case, resulting 
from nonlinearity). The exact position of these peaks will 
migrate with time, however, the overall envelope will re-
main approximately constant. In this case, the monitor 

Fig. 2. Simulation of nonlinear wave propagation in 1-D. (a) Number of 
harmonics needed to accurately represent the waveform at each position 
(solid line), maximum harmonic supported by the grid at each position 
using a uniform grid (dash dot line), and maximum harmonic supported 
by the grid at each position using an optimized nonuniform grid (dashed 
line). (b) Analogous information for the maximum grid spacing at each 
grid position. (c) Snapshot of the pressure within the domain using a 
uniform grid (solid line) and an optimized nonuniform grid (crosses). 
The nonuniform grid retains the accuracy of the simulation with a 40% 
reduction in grid points.
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function was constructed by fitting an exponential func-
tion of the form xfit = aebx u to the peaks shown in Fig. 
3(a). The fitted exponential is shown with the dashed line.

Once the monitor function is known, the nonuniform 
grid points xn can be extracted in three steps as follows: 
1) take the reciprocal of the monitor function values; 2) 
calculate the cumulative sum (e.g., using cumsum in Mat-
lab); and 3) normalize the result between 0 and 1. For an 
exponential monitor function, the nonuniform grid map-
ping is given by
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where xu, xn ∈ [0, 1] and a and b are the exponential pa-
rameters obtained from the fitting procedure. The corre-
sponding transformation gradient is given by
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The nonuniform grid mapping derived in this fashion for 
the monitor function given in Fig. 3(a) is shown in Fig. 
3(b). The corresponding magnitude of the pressure vari-
ation between each pair of adjacent grid points derived 
from a simulation using the nonuniform grid is given in 
Fig. 3(c). The envelope of this variation is now approxi-
mately flat across the domain. This improves the accuracy 
of the simulation, particularly in regions where the wave 
field varies rapidly. The variation in the L∞ error norm 
with the number of grid points used is shown in Fig. 3(d). 
In each case, a uniform simulation with the same number 
of grid points was performed first. This was then used 
to derive a suitable nonuniform grid using envelope-based 
equidistribution. The use of the nonuniform grid gives a 
noticeable improvement in the accuracy of the simulation. 
The total simulation time using uniform and nonuniform 
grids in each case were within 3%, which illustrates the 
computational efficiency of the technique.

IV. Conclusion and Discussion

A mapped k-space pseudospectral method for simulat-
ing the propagation of nonlinear waves on nonuniform 
computational grids has been described. This allows the 
grid points to be clustered around regions of the wave field 
that are sharply varying, which improves accuracy. Two 
methods for selecting the nonuniform grid mapping have 
also been presented. The first is based on extracting the 
highest frequency that contributes to the local waveform 
using an accurate reference simulation. This is then used 
to define the required grid point spacing and hence the lo-
cation of the nonuniform grid points. The second method 
is based on equidistribution, in which the grid points are 
shuffled so that the envelope of the variation in the pres-
sure field between grid points is approximately constant 
across the domain. In both cases, using a nonuniform grid 
significantly reduces the number of grid points required 
for accurate simulations. Equivalently, for a fixed number 
of grid points, using a nonuniform grid gives a noticeable 
improvement in accuracy. This illustrates the utility of 
using nonuniform grids for modeling nonlinear acoustic 
waves. Future work will address extending this to two and 
three spatial dimensions as well as the use of adaptive 
procedures to update the mesh during the simulation [15].
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Fig. 3. Deriving an optimized nonuniform grid for a 1-D simulation using 
envelope-based equidistribution. (a) Magnitude of the pressure variation 
between pairs of adjacent grid points (solid line) and an exponential 
function fitted to the envelope (dashed line). (b) Nonuniform grid map-
ping derived from the envelope. (c) Magnitude of the pressure variation 
between grid points using the nonuniform grid. The sizes of the peaks are 
now approximately equal across the grid. (d) Variation in the L∞ error 
norm with the number of grid points using a uniform grid (dashed line) 
and nonuniform grid derived using equidistribution (solid line).
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