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Abstract—The absorption of ultrasound waves in biological
tissue has been experimentally shown to follow a frequency
power law. This type of behaviour can be modelled using
fractional derivative operators. However, previous elastic wave
equations are based on fractional derivatives that are non-
local in time. This makes them difficult to solve using standard
numerical techniques in a memory efficient manner. Here, a
fractional Kelvin-Voigt model is derived based on the fractional
Laplacian. This is obtained by splitting the particle velocity into
compressional and shear components using a dyadic wavenumber
tensor. This allows the temporal derivatives to be replaced with
spatial derivatives using the lossless dispersion relation with the
appropriate compressional or shear wave speed. If the spatial
gradients are computed using the Fourier collocation spectral
method, this results in a computationally efficient elastic wave
model that can account for arbitrary power law absorption of
both compressional and shear waves.

I. INTRODUCTION

Accurately accounting for the absorption of ultrasound
waves in biological tissue is of critical importance in many
modelling problems, including treatment planning for ther-
apeutic ultrasound [1], and image reconstruction in photoa-
coustic tomography [2]. Experimentally, acoustic absorption
in both soft tissue and bones has been observed to follow
a frequency power law of the form ↵0!

y , where ! is the
temporal frequency and y is between 0 and 2. This type
of behaviour can be modelled through the use of fractional
derivative operators [3]. However, previous elastic constitutive
equations including power law absorption are based on tempo-
ral fractional derivatives. Because these operators are non-local
in time, numerically they require the time history of the field
variables to be stored. This carries a significant computational
penalty, particularly in the elastic case where the field variables
are vectors and tensors. Here, we show how this penalty can be
overcome through the use of absorption operators that are non-
local in space, rather than time. If the Fourier spectral method
is used to compute spatial gradients, this allows different power
law absorption parameters for compressional and shear waves
to be modelled in a computationally efficient manner.

II. MODEL DEVELOPMENT

A. Kelvin-Voigt Model

In an elastic material, the strain at each point within a body
is only dependent on the instantaneous local stress. The stress
and strain are related by the stiffness, which is a measure of
resistance to deformation in response to an applied force. For
an anisotropic medium, this relationship can be written using
Einstein summation notation as
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where � is the stress tensor, " is the strain tensor, and C is
the stiffness tensor. For small deformations, the relationship
between strain and particle displacement u is given by
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These expressions describe purely elastic deformations that do
not dissipate energy when a stress is applied and removed,
i.e., they are lossless equations. Conversely, many materials
(including biological tissue) exhibit a time-dependent strain
when a stress is applied.

To account for viscoelastic behaviour, Eq. (1) can be gen-
eralised by adding additional terms proportional to derivatives
of the stress and strain. The most common models are the
Maxwell, Kelvin-Voigt, and Zener models [4]. These can each
be described by equivalent mechanical circuits, where elastic
springs and viscous dampers are cascaded together in different
fashions. The Kelvin-Voigt model (which consists of a spring
and damper in parallel) is given by
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where N is the viscosity tensor. If the medium is isotropic, the
relationship between the stress and strain does not depend on
the orientation of the material. In this case, there are only two
independent components of the stiffness and viscosity tensors.
The Kelvin-Voigt stress-strain relation can then be written in
the form
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Here � and µ are the Lamè parameters where µ is the shear
modulus (the ratio of shear stress and shear strain), and �

and ⌘ are the compressional and shear viscosity coefficients.
The Lamè parameters are related to the shear (transverse) and
compressional (longitudinal) sound speeds by

µ = c
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where ⇢0 is the mass density.

To model the propagation of elastic waves, it is necessary
to combine the appropriate stress-strain relation with Newton’s
second law. This is a statement of the conservation of mo-
mentum (sometimes referred to as the equation of motion).
Written as a function of stress and particle velocity, where
v
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The Kelvin-Voigt stress-strain relation can similarly be written
as a function of the stress and particle velocity using Eq. (2)
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Equations (6) and (7) are coupled equations that describe the
propagation of compressional and shear waves in a viscoelastic
solid. These can also be combined into a single elastic wave
equation. Written as a function of the particle displacement u,
this becomes [4, p. 207]
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Using vector notation, this is equivalent to
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Expanding the vector Laplacian using r2u = r (r · u) �
r ⇥ (r⇥ u) and replacing the Lamè parameters with the
compressional and shear sound speeds then gives
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where ⌧
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=
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. This expression can also

be written in terms of scalar and vector potentials, where
u = r� + r ⇥  (this is sometimes called the Helmholtz
decomposition)
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Individual equations for the potentials can then be obtained by
taking the divergence or curl of Eq. (11), where r ·u = r2

�

and r⇥u = r2 . This results in two separate wave equations
given by the bracketed terms in Eq. (11). Each of these is
in the form of Stokes’ classical viscous wave equation. The
parameter ⌧ can thus be interpreted as Stokes’ relaxation time.
For !⌧ ⌧ 1, the acoustic absorption varies with the square of
frequency while the sound speed is approximately constant
(meaning there is no dispersion). Similarly, for !⌧ � 1, both
the absorption and the sound speed vary with the square root
of frequency [5].

B. Fractional Kelvin-Voigt Model

In the low frequency limit, the Kelvin-Voigt model de-
scribed in the previous section accounts for acoustic absorption
that varies with frequency squared. However, the absorption
that is experimentally observed in biological tissue varies with

a power law dependence that can be between 0 and 2, and is
often close to 1. To account for this behaviour, the Maxwell,
Kelvin-Voigt, and Zener models can each be generalised by
replacing the @/@t terms with fractional derivatives of the form
@

y

/@t

y (see [3] for a recent review of fractional governing
equations). For Eq. (3), this leads to the fractional Kelvin-
Voigt model [6], [7]
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In the isotropic case, this can be written in the form
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Following the same steps as before, this leads to the following
wave equation written in terms of scalar and vector potentials
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In this case, the equations for the individual potentials are
now both in the form of the Caputo/Wismer fractional wave-
equation [7], [8]. Written in terms of the acoustic pressure p,
this is given by
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In the low frequency limit where !⌧ ⌧ 1, this equation
encapsulates power-law acoustic absorption of the form

↵ = �⌧ cos(⇡y/2)
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where ↵ is the absorption coefficient in Np m�1. For the
elastic case with !⌧

p

⌧ 1 and !⌧

s

⌧ 1, the absorption of
compressional and shear waves is thus governed by
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To account for absorption of the form ↵ = ↵0!

y , this means
the viscosity coefficients should be chosen such that
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where ↵0,s and ↵0,p are the desired absorption coeffi-
cient pre-factors for shear and compressional waves in
Np (rad/s)�y m�1, and y is the desired power law dependence.

C. From Temporal to Spatial Fractional Derivatives

The use of fractional time derivatives in the Kelvin-Voigt
model discussed in the previous section introduces an interest-
ing computational problem. This arises because the fractional
operators are non-local in time. To illustrate, the fractional
derivative in Caputo’s form may be written as the convolution
between an integer derivative and a function �
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Fig. 1. Decay of the convolution function �n�y(t) used in Caputo’s
fractional derivative for different values of n� y.
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Here y is a positive real number (which may be fractional),
n is the next integer value equal to or larger than y, and
⇤ denotes a convolution. As shown in Fig. 1, the function
�

n�y

(t) has a long tail that decays more and more slowly as
n�y moves from 0 to 1. For the fractional Kelvin-Voigt model
given in Eq. (13), the fractional power is y� 1. This means if
the power law exponent y is close to 1 (as often observed in
biological tissue), the function �

n�y

(t) will have a very long
tail. Practically, this means to evaluate the fractional derivative
using the convolution in Eq. (19), a large time history of
f(t) must be stored. For explicit time-stepping methods, this
can carry a large computational penalty. For example, Wismer
noted that for y = 1.4, even storing the previous 20 time
steps was not sufficient to accurately evaluate the fractional
derivative [8].

Under certain conditions, it is possible to replace fractional
time derivatives with fractional space derivatives which are
non-local in space, rather than time [9]. For explicit time-
stepping methods, this has a significant computational benefit,
as the wave-field at other spatial positions is already known.
To illustrate how this replacement arises, consider the spatial
and temporal Fourier transform of the fractional temporal
derivative of a function f(x, t)
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Here k and ! are the spatial and temporal frequencies, and
F {. . .} denotes the Fourier transform. The first part of this
expression can be expanded using (�i)
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For many applications (including biomedical ultrasound),
acoustic absorption only has a second order effect on wave
propagation. This means that the temporal frequency terms
in Eq. (22) (which correspond to temporal derivatives) can
be replaced by spatial frequency terms (which correspond to
spatial derivatives) using the dispersion relation for the lossless
wave equation ! = kc0. This is based on the premise that the

substitution of first-order relations into second-order terms will
result in third-order errors. Equation (22) then becomes
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Using the definition of the fractional Laplacian [10]
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and taking the inverse Fourier transform of Eq. (23) then yields
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Thus fractional temporal derivatives can be replaced with
fractional spatial derivatives provided the effect of absorption
on the wave-field is small. To illustrate, substituting Eq. (25)
into Eq. (15) leads to the fractional Laplacian wave equation
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where ⌧1 = 2↵0c
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y

0 tan(⇡y/2). This is the
absorption model derived in Refs. [10], [9] and implemented
in the k-Wave toolbox [11]. If the Fourier spectral method is
used to compute the spatial gradients, the fractional Laplacian
terms become trivial to compute, where
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In the fluid case, this approach has been shown to be
computationally efficient [9]. However, in the elastic case, the
compressional and shear waves travel at two different sound
speeds. This means the relation ! = kc0 cannot be used with
Eq. (22) to convert temporal to spatial fractional derivatives.
In the next section, we discuss how this restriction can be
overcome by splitting the displacement or velocity fields into
shear and compressional components in k-space.

D. Field-Splitting in k-space

Considering first the lossless case and following Ref. [12],
the wave equation given in Eq. (10) can be written in the
spatial frequency domain as
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in this expression can be expanded using the substitution
k(k · U) = (kk) · U, where kk is the dyadic tensor
formed by the outer product of k with itself. Similarly, the
second term can be expanded using the triple vector product
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Using these expansions, Eq. (28) can then be written in the
form

@

2U

@t

2
= �k

2
⇣
c

2
p

⇣
ˆkˆk
⌘
+ c

2
s

⇣
I� ˆkˆk

⌘⌘
·U , (29)

where ˆk = k/k is the normalised wavenumber vector.
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The dyadic operators (

ˆkˆk) and (I� ˆkˆk) in Eq. (29) act to
split the vector particle displacement into compressional and
shear components, i.e.,
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notation this is equivalent to
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Using the same approach to split the particle velocity, the
fractional Kelvin-Voigt stress-strain relation can be split into
two equations which separately describe the compressional and
shear components of the wave-field. Written in x-t space, this
gives
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where the total stress field is �
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= �
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ij

. Because the field
is split, the fractional temporal derivatives can now be replaced
with fractional spatial derivatives using Eq. (25), where c0 is
chosen to be the appropriate shear or compressional sound
speed. This also allows the absorption power law exponent y
to be chosen separately for the shear and compressional waves
to match experimental data.

E. Pseudospectral Time Domain Solution

A computationally efficient model for elastic wave prop-
agation in absorbing media can now be constructed using
the split-field fractional Kelvin-Voigt model along with the
equation of motion given in Eq. (6). Here, these are solved
as two coupled partial differential equations using the Fourier
collocation spectral method to compute spatial gradients. This
leads to
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where the split velocity components are calculated from
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and the parameters L
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are given by
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This is coupled with the equation of motion from Eq. (6),
which can be written in the form

@v

i

@t

=

1

⇢0
F�1 {ik

j

F {�
ij

}} , (35)

where the split components of the stress field are combined
before calculating the updates for the particle velocity. The

time derivatives in Eqs. (33) and (35) can be discretised using
any standard explicit finite-difference scheme [12], [13]. The
encapsulated power law absorption is again given by Eq. (17).
However, in this case, the power law exponent y can also
be chosen separately for the shear and compressional wave
components.

III. CONCLUSION

A computationally efficient elastic wave model that ac-
counts for the power law absorption of both compressional
and shear waves is derived. This is based on a fractional
Kelvin-Voigt model which is split into compressional and shear
components using a dyadic wavenumber tensor. This allows the
temporal fractional derivatives to be replaced with spatial frac-
tional derivatives using the lossless dispersion relation with the
appropriate compressional or shear wave speed. If the spatial
gradients are computed using the Fourier collocation spectral
method, this results in a computationally efficient elastic wave
model that can account for the power law absorption of both
compressional and shear waves.
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