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Bayesian Image Reconstruction in Quantitative
Photoacoustic Tomography

Tanja Tarvainen*, Aki Pulkkinen, Ben T. Cox, Jari P. Kaipio, and Simon R. Arridge

Abstract—Quantitative photoacoustic tomography is an
emerging imaging technique aimed at estimating chromophore
concentrations inside tissues from photoacoustic images, which
are formed by combining optical information and ultrasonic
propagation. This is a hybrid imaging problem in which the solu-
tion of one inverse problem acts as the data for another ill-posed
inverse problem. In the optical reconstruction of quantitative
photoacoustic tomography, the data is obtained as a solution of
an acoustic inverse initial value problem. Thus, both the data
and the noise are affected by the method applied to solve the
acoustic inverse problem. In this paper, the noise of optical data
is modelled as Gaussian distributed with mean and covariance
approximated by solving several acoustic inverse initial value
problems using acoustic noise samples as data. Furthermore,
Bayesian approximation error modelling is applied to compensate
for the modelling errors in the optical data caused by the acoustic
solver. The results show that modelling of the noise statistics and
the approximation errors can improve the optical reconstructions.

Index Terms—Bayesian methods, biomedical optical imaging,
inverse problems, photoacoustic effects, tomography, ultrasonic
imaging.

I. INTRODUCTION

P HOTOACOUSTIC tomography (PAT) is an emerging
imaging modality developed over the last few decades

which combines the benefits of optical contrast and ultrasound
propagation. The optical methods provide information about
the distribution of chromophores which are light absorbing
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molecules within the tissue. The chromophores of interest
are, for example, haemoglobin, melanin, and various contrast
agents. The ultrasonic waves carry this optical information
directly to the surface with minimal scattering, thus retaining
accurate spatial information as well. Nowadays, PAT can be
used to provide images of soft biological tissues with high
spatial resolution. It has successfully been applied to the vi-
sualization of different structures in biological tissues such as
human blood vessels, microvasculature of tumors and cere-
bral cortex in small animals. However, this information is
only a qualitative image and it does not include quantitative
information about chromophores’ concentrations. For more
information about PAT, see e.g., [1]–[4], and the references
therein.
Quantitative photoacoustic tomography (QPAT) is a tech-

nique in which also the absolute concentration of chromophores
is estimated [5]. This is a hybrid imaging problem in which
the solution of one inverse problem acts as a data for another
ill-posed inverse problem. The two inverse problems in QPAT
are: 1) reconstruct the initial acoustic pressure distribution from
measured acoustic waves and 2) reconstruct the distributions
of the optical parameters from the absorbed optical energy
density.
The first inverse problem 1) is an inverse initial value problem

in acoustics. There are a large number of reconstruction tech-
niques available, see e.g., [1], [3], [6] and the references therein.
However, in cases in which the speed of sound, acoustic ab-
sorption and scattering within the tissue are varying, the inverse
problem becomes significantly more challenging [7]–[16].
The second inverse problem in QPAT 2) is the optical image

reconstruction. In the optical inverse problem the goal is to
estimate the concentrations of chromophores. These can be
obtained either by directly estimating the distributions of
concentrations from photoacoustic images obtained at various
wavelengths or by first recovering the absorption coefficients at
different wavelengths and then calculating the concentrations
from the absorption spectra [5]. In order to obtain accurate
estimates, scattering effects also need to be taken into ac-
count [5], [17]–[19]. In this work, estimation of absorption
and scattering at one wavelength is considered. Extension to
multiple wavelengths is straightforward. For more information
about multiwavelength PAT, see e.g., [5], [20]–[25], and the
references therein.
Different approaches for the solution of the optical inverse

problem have been considered, see e.g., [17]–[20], [22], [23],
[26]–[40]. In this work, we consider the optical inverse problem
of QPAT in a Bayesian framework [41], [42]. In the Bayesian
approach for inverse ill-posed problems, all parameters are

0278-0062 © 2013 IEEE



2288 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 32, NO. 12, DECEMBER 2013

modelled as random variables. The parameters depend on each
other through a model and information about the parameters is
expressed by probability distributions. In the inverse problem,
the idea is to estimate the unknown parameters based on the
measurements, the model and the prior information about the
parameters.
In tomographic inverse problems, measurement noise is

generally modelled as uncorrelated Gaussian distributed with
zero mean and known (constant) variance. In the optical in-
verse problem of QPAT, the data is obtained as a solution of the
acoustic inverse initial value problem. Thus, the data and noise
are affected by the method applied to solve the acoustic inverse
problem. Therefore, the noise of the optical data has a different
distribution from the noise of the acoustic measurement. Fur-
thermore, the optical data contains modelling errors caused by
the acoustic solver.
In this paper, the Bayesian approach is used in the modelling

of the noise statistics of the optical data and its application to the
solution of the optical inverse problem. Furthermore, approxi-
mation error modelling is considered. The Bayesian approxima-
tion error approach for the treatment of modelling errors was in-
troduced in [41], [43]. The method has previously been success-
fully applied in other ill-posed tomographic imaging problems
for example in compensating modelling errors due to discretiza-
tion, domain mismodelling and model reduction [44]–[53]. In
this paper, the approximation error method is applied to com-
pensate for the errors in the optical data caused by the acoustic
solver.
The rest of the paper is organized as follows. Quantitative

photoacoustic tomography and the related forward and inverse
problems are described in Section II. The Bayesian approach
for the optical inverse problem, and the modelling of noise and
approximation errors, are described in Section III. The results
of simulations are shown in Section IV and the conclusions are
given in Section V.

II. QUANTITATIVE PHOTOACOUSTIC TOMOGRAPHY

In QPAT, a short (ns) pulse of near-infrared light is used to
illuminate the region of tissue of interest. As light propagates
within the tissue, it is absorbed by chromophores. This gener-
ates localized increases in pressure. This pressure increase prop-
agates through the tissue as an acoustic wave and is detected by
ultrasound sensors on the surface of the tissue. The propagation
of the acoustic wave occurs on a microsecond time scale, about
five orders of magnitude slower than the optical propagation,
so only the total absorbed optical energy density is of interest
and not the rate of the absorption. This large difference in the
time scale allows the optical and acoustic parts of the inverse
problem to be decoupled and treated separately.

A. Forward Problem

The forward problem in QPAT is to solve the time-varying
pressure on the boundary of the target when the optical and
acoustic properties and the amount of input light are given.
Solving the QPAT forward problem consist of solving optical
and acoustic forward problems.
1) Optical Forward Problem: Let be a point located

in a tissue region of interest with boundary where

is the dimension of the domain. The optical forward
problem in QPAT is to compute the absorbed optical energy den-
sity when the optical properties of the medium and the input
light sources are given. In this work, we use the diffusion ap-
proximation (DA) to the radiative transfer equation as the model
for light propagation [54]. The DA together with a Robin-type
boundary condition is of the form

(1)

(2)

where is the fluence, is the absorption coefficient,
is the diffusion coefficient and

is the reduced scattering coefficient,
where is the scattering coefficient and is the mean of
the cosine of the scattering angle [41], [54]. Further, is a dif-
fuse boundary current at the source position , is a
dimension-dependent constant which takes values
and and is an outward unit normal [41]. The ab-
sorbed optical energy density can be solved from fluence
as

(3)

In this work, a finite element method (FEM) is used for the nu-
merical solution of the DA [18].
The absorbed energy density is connected to the initial

acoustic pressure distribution through the photoacoustic
efficiency which can be identified with the Grüneisen param-
eter for an absorbing fluid [5]. In this work, the Grüneisen
coefficient is assumed to be a known constant and the initial
acoustic pressure distribution is

(4)

2) Acoustic Forward Problem: The acoustic forward
problem in QPAT is to solve the time-varying pressure at
the detectors surrounding the object. Time evolution of the pho-
toacoustic wave fields can be modelled using the equations of
linear acoustics [55]. For soft biological tissues, it is generally
assumed that the medium is isotropic and quiescent and that
the shear waves can be neglected. The propagation of pressure
through an acoustically nonabsorbing medium is described by
wave equation [56]

(5)

where is the speed of sound which in this work is assumed to
be a known constant. The wave equation (5) is solved together
with initial conditions (4) and

(6)

A perfectly matched layer (PML) is applied at the boundaries
to simulate free space propagation. In this work, the numer-
ical solution of the wave equation is obtained using the -space
time-domain method implemented with the k-Wave MATLAB
toolbox [55].
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B. Inverse Problem

The inverse problem in QPAT is to solve the distribution of
optical parameters in the medium when the measured pressure
on the detectors and the amount of input light are given. Gen-
erally, the acoustic properties of the medium and the Grüneisen
coefficient are assumed to be known. However, correction of
artefacts due to unknown acoustic parameters have also been
considered [7], [9], [11], [13], [14], [16], [57]. Furthermore,
simultaneous estimation of the optical parameters and the
Grüneisen coefficient have been investigated [17], [23], [34],
[38].
1) Acoustic Inverse Problem: The first inverse problem in

QPAT is the acoustic inverse initial value problem in which
the initial acoustic pressure distribution is estimated
when measured acoustic waves on the detectors are given.
In this work, we use a time reversal method from the k-Wave
MATLAB toolbox for the solution of the acoustic inverse
problem [55]. In this approach, the recorded measurements

are used in time-reversed order as a time-varying
Dirichlet boundary condition at the detector positions. The time
evolution of the propagating acoustic wave field imposed by
the Dirichlet boundary condition is calculated using the wave
equation (5) with zero initial conditions. The reconstructed
initial pressure is then obtained as an acoustic pressure
within the domain after time . In this work, the medium is
assumed to be nonabsorbing and the speed of sound is assumed
to be known.
2) Optical Inverse Problem: The second inverse problem in

QPAT is to estimate the optical parameters when the absorbed
optical energy density and the input illumination are given. In
this work we use the Bayesian approach for the solution of
the optical inverse problem and estimate the absorption and
scattering distributions within the domain. The approach is de-
scribed in Section III.

III. BAYESIAN APPROACH FOR THE OPTICAL INVERSE
PROBLEM OF QPAT

Let us denote the distribution of optical parameters at a point
by . Further, denote the measurements
by a finite dimensional vector
where is the number of measurements which in this case is
the number of illuminations multiplied with the number of dis-
cretized elements to represent the data space. The observation
model with an additive noise model is of the form

(7)

where is the forward model which maps the parameters to the
measurable data, and denotes the noise. Typically in practical
implementations the parameters and the forward mapping are
represented in discrete vector spaces

and the continuous model (7) is replaced by an
approximate equation

(8)

where is a discretized parameter distribution and is a dis-
cretized forward model.

In the Bayesian approach, the inverse problem is treated as
a problem of statistical inference [41], [42]. All variables are
modelled as random variables and the measurements are used
to determine the posterior probability density of the parameters
of primary interest.
Let us assume that and are random variables in finite-di-

mensional spaces and called parameter and data space,
respectively. The joint probability density of and can be
written in terms of conditional probability densities as

(9)

The solution of the inverse problem is the posterior probability
density which according to (9) is of the form

(10)

where is the prior probability density and is the
likelihood density [41], [42]. Equation (10) is the Bayes’ for-
mula, and it is typically written in the nonnormalized form

(11)

since is constant for fixed measurements . If we assume
that the noise and the unknown are mutually independent,
formula (8) leads to likelihood density

(12)

where is the probability distribution of the noise .
If the unknown and the measurement errors can be mod-

elled as Gaussian random variables, we have

where and are the means and
and are the covariance matrices. In this case, the
posterior density (11) becomes

(13)

A. Modelling of Noise

1) Conventional Noise Model: Typically in tomographic in-
verse problems, the mean of the noise is assumed to be zero,

, and the covariance is assumed to be a diagonal
matrix with known (constant) variance , that is

. In this case, the posterior density (11) be-
comes

(14)

The practical solution for the inverse problem is obtained by cal-
culating point estimates from the posterior density. Since we are
interested in computationally efficient inverse problem solvers,
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we consider here only the maximum a posteriori (MAP) esti-
mate. It is obtained as

(15)

where Cholesky factorization of the prior is . In
the following sections, we refer to the solution of (15) as the
MAP estimate with the conventional noise model (MAP-CNM).
Generally, the optical inverse problem is solved using the con-
ventional noisemodel byminimizing (15). In this case, themean
of the noise is set as zero and some value , which is thought to
be most suitable, is chosen as the variance of the noise.
2) Approximate Noise Model: In practice, the noise is hardly

ever uncorrelated and it has a nonzero mean, and thus the MAP
estimate of posterior distribution (13) is obtained as

(16)

where Cholesky factorization of the noise is . In
the following sections, we refer to the solution of (16) as the
MAP estimate with an approximate noise model (MAP-ANM).
A more accurate noise model can be, for example, approxi-

mated as follows. First a set of noise samples of pressure mea-
surements are simulated (or measured using an empty acoustic
measurement setup). Then, the inverse initial value problem is
solved using these noise samples as data. As a result, noise sam-
ples of the optical inverse problem are obtained. The mean
and the covariance of the noise model can then be approximated
using these noise samples as

(17)

(18)

where is the number of samples. These are then applied in the
solution of the minimization problem (16).

B. Approximation Error Approach

In practice the numerical implementation of the acoustic
inverse method also affects the measured data. Thus, the optical
energy density distribution obtained as the solution of the
acoustic inverse problem contains modelling error which
can be due to e.g., discretization of the geometry and time,
implementation of the boundary conditions and smoothing of
the data by the acoustic solver.
Let us assume that the continuous model ,

(7), can be approximated by a densely discretized finite-dimen-
sional model

Thus, the discretized model, that is exact within the measure-
ment accuracy, is of the form

(19)

In the approximation error approach [41], [43], the observation
model is written in the form

(20)

where is the reduced model and is the modelling
error. The modelling error describes the discrepancy between
the accurate forward model and the reduced model, i.e., a model
that is an approximation to the accurate physical model and/or a
model with a coarser discretization or a smaller computational
domain [41], [43].
In the approximation error approach, a Gaussian approxima-

tion is constructed for , and the total error is approx-
imated by a Gaussian distribution, thus

Furthermore, if we ignore the mutual dependence of and ,
we get an approximation that is referred to as the enhanced error
model [41]

(21)

where and . The MAP estimate
with the enhanced error model is obtained as [45]

(22)
where . In the following, we refer to the solution
of (22) as theMAP estimate with the approximation error model
approach (MAP-AEM). As it can be see, functional resembles
penalized weighted least squares approach [58]–[61]. In addi-
tion, other work on related problems can be found in [62]–[64].
However, in the Bayesian approach taken here, the issue is how
to compute the mean and the covariance of the noise and mod-
elling errors.
The modelling error can be simulated for example as follows.

First, a set of samples are drawn from
the prior distribution of the optical parameters. Then, the
optical forward problem is solved in a fine discretization using
these samples. This results a set of forward solutions .
Then, in order to obtain samples of the reduced forward model
solutions, the acoustic forward and inverse problems of QPAT
are solved. The obtained reconstructed initial pressure samples
are used to calculate . Then samples of the approxima-
tion error are computed as

(23)
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and the mean and covariance of the approximation error are es-
timated as

(24)

(25)

These are then applied in the solution of the minimization
problem (22) together with the noise model .
We note that the mean and covariance of the noise model (17)

and (18) and the approximation error model (24) and (25) are
computed before the measurements are performed and they are
valid for the employed geometry, discretizations and other pa-
rameters as long as the employed prior model and noise proper-
ties can be assumed to be feasible. Thus, these can be precom-
puted and the computational burden of the MAP estimates (15),
(16), and (22) is essentially the same.

IV. RESULTS

The Bayesian approach for the solution of the optical inverse
problem of QPAT was tested with simulations. The noise sta-
tistics and the approximation errors were investigated. Further-
more, the three different MAP estimates were computed from
simulated data sets utilizing the conventional and approximate
noise models and approximation error modelling.

A. Geometry and Discretizations

A rectangular domain of size 20 mm 20 mmwas consid-
ered. TheGrüneisen coefficient was assumed to be a known con-
stant with value . Four illuminations, one edge working
as a light source in turn, were considered.
Two types of acoustic measurements were considered: fine

and coarse sensor arrays. The fine sensor array was modelled
using 316 ultrasound measurement positions evenly positioned
around the target domain (80 detectors on each side of the do-
main). In the case of the coarse sensor array, 76 sensors (20 sen-
sors on each side of the domain) were used.
1) Discretizations: For the forward and inverse acoustic

computations, a larger computation domain of size 25 mm 25
mm was created in order to minimize boundary effects. In all of
the acoustic computations, the PML layer was located outside
the computation domain. In the acoustic inverse problem, two
discretizations were considered: a fine discretization consisting
of 128 128 pixels and a coarse discretization with 64 64
pixels.
In the solution of the optical inverse problem, the domain

was discretized using 976 nodes and 1842 triangular elements
for the FE-approximation of the DA. For the representation of
the absorption and scattering, the domain was discretized into

disjoint elements , and the absorption and scat-
tering coefficients were represented in a piece-wise constant
basis

(26)

(27)

TABLE I
PRIOR MEAN AND STANDARD DEVIATIONS FOR THE BACKGROUND

AND THE INCLUSIONS USED IN THE TEACHING AND

RECONSTRUCTION PRIOR DISTRIBUTIONS

where is a characteristic function of the element . Fur-
thermore, the data for the inverse problem, the absorbed optical
energy density, was represented using the same piece-wise con-
stant basis.
2) Prior Model: In this work, the prior density was uti-

lized both in the solution of the MAP estimates (15), (16), and
(22), in which case it worked as a regularizing penalty functional
to alleviate the ill-posed nature of the problem, and when the
noise model and the approximation error model were simulated.
In both cases, the prior density was an informative smoothness
prior [45], [48]. The informative smoothness prior is based on
modifying a smoothing preprior into a Gaussian distribution.
In this approach, quantitative information of the properties of
the discretized parameter at some points, called marginalization
points, is attached into the smoothing preprior. The informa-
tion included is correlation length for the estimated parameters,
which (roughly) is the prior estimate of the spatial size of the
inhomogeneities in the target domain, prior mean, and a con-
trast for the background and the inhomogeneities. The corre-
lation length used in the simulations for both absorption and
scattering was 4 mm. Values for the mean and standard devia-
tions of the teaching and reconstruction prior distributions for
absorption and scattering are given in Table I. For more infor-
mation about the informative smoothness prior, see e.g., [41],
[45], [48].

B. Noise Models

The conventional noise model and the approximate noise
model were generated for both the fine and the coarse acoustic
sensor array setups.
1) Conventional Noise Model: For the conventional noise

model, the noise was considered to be uncorrelated Gaussian
distributed noise with zero mean. The standard deviation of
the noise was set as 1% of the peak amplitude of the simulated
data. Sample of the noise covariance structure is shown on the
left image of Fig. 1.
2) Approximate Noise Model: To create the approximate

noise model , statistics of the noise was simulated by recon-
structing noise samples using the time reversal method. To
simulate the noise samples, first a set of time-varying pressure
signals was simulated by solving the acoustic forward problem
where the initial pressure was obtained by computing the
FE-solution of the DA (1) together with the boundary condi-
tion (2) with optical parameters drawn from the informative
smoothness prior and using equations (3) and (4). The mean
and standard deviations of the teaching prior distributions are
given in Table I. Then Gaussian distributed noise samples were
generated with standard deviation of 1% of the peak amplitude
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Fig. 1. Covariance structures (100 100 sample of a covariance matrix) of
the conventional noise model (left image), the approximate noise model
(middle image) and the approximation error model (right image) in the fine
discretization of the fine sensor array.

Fig. 2. Means of the approximate noise model (left image) and the approx-
imation error model (right image) when light is illuminated from the upper
side of the domain in the fine discretization of the fine sensor array.

of the simulated time varying pressure signal. The number of
simulated pressure signals used to define the peak amplitude
was 80 and the number of noise samples generated for each
of the pressure signals was 100. Both the fine (128 128
pixels) and the coarse (64 64 pixels) discretizations were
considered. Note that the optical and acoustic forward solutions
were utilized only to give a realistic amplitude for the noise and
no other information of the forward solutions were included
into the noise model. The mean and the covariance of the noise
model were approximated from reconstructed noise samples
using (17) and (18).
The mean of the noise with illumination from the upper

side of the domain, simulated using the fine (128 128 pixels)
acoustic discretization of the fine sensor array measurement
setup, is shown in the left image of Fig. 2. A sample of the
simulated noise covariance matrix obtained using the fine
discretization of the same setup is shown in the middle image
of Fig. 1. As it can be seen, the mean of the noise does not show
any structure and is close to zero. However, the covariance of
the noise of the optical data is not uncorrelated. Thus, it can be
expected that including information of the noise model, will
improve the reconstructions.

C. Approximation Error Model

The approximation error mean and covariance were simu-
lated for both the fine and the coarse sensor array setups as fol-
lows. First, 1200 samples were drawn from the teaching
prior distribution given in Table I as in the case of the approxi-
mate noise model. The DA (1) together with the boundary con-
dition (2) was solved using the FEM. Then samples of the ab-
sorbed optical energy density of the accurate model
were calculated using (3).
The initial pressure was computed from these samples using

(4) and the acoustic forward problem was solved using the

-space method with a 512 512 pixel discretization grid.
Then, the acoustic inverse problem was solved using the time
reversal method both in the fine (128 128 pixels) and the
coarse (64 64 pixels) discretizations and samples of reduced
model solutions were computed using (4) for both
discretizations.
The samples of approximation error were computed from

the samples of absorbed optical energy density of the accurate
model and the reduced model using (23).
Further, the mean and covariance of the approximation error
were estimated using (24) and (25).
The mean of the approximation error when light is illu-

minated from the upper side of the domain simulated in the
fine acoustic discretization of the fine sensor array measurement
setup is shown in the right image of Fig. 2. Further, a sample of
the simulated noise covariance matrix of the fine discretiza-
tion of the same setup is shown in the right image of Fig. 1.
As it can be seen, the mean of the approximation error is

nonzero close to the domain boundaries with the largest values
close to the light source. Also the covariance has a structure
different from the noise model covariances. These results show
that the acoustic inversion affects the data. Furthermore, in-
cluding this approximation error information in the optical in-
verse model is likely to improve the reconstructions.

D. Data Simulation

We simulated four datasets using the following procedure.
We considered absorption and scattering distributions shown on
the top rows of Figs. 3 and 4. The anisotropy parameter was

throughout the domain. The absorption and scattering
values were represented in the piecewise constant bases (26) and
(27) using triangular elements.
First, the QPAT forward problem was solved. The DA (1) to-

gether with the boundary condition (2) was solved using the
FEM. The FE-discretization consisted of 26166 triangular el-
ements and 13284 nodes. The absorbed optical energy density
distribution and the initial pressure were computed using (3) and
(4), respectively. Then, the -space method was used to simu-
late propagation of the pressure wave though the domain. The
discretization of the computation domain consisted of 1024
1024 pixels. The time-varying acoustic pressure was recorded
at 316 sensors located around the target corresponding to the
fine sensor array setup and at 76 sensors corresponding to the
coarse sensor array. Noise with a standard deviation of 1% of
the peak amplitude of the simulated pressure signal was added
to the both recorded datasets.
In order to obtain the data for the optical inverse problem,

the acoustic inverse problem was solved using the time reversal
method. The acoustic inverse problem was solved using both
datasets in the fine (128 128 pixels) and coarse (64 64
pixels) discretizations. As a result, the initial pressure within the
domain was obtained. The absorbed optical energy density in
the reconstruction grid, which is the data of the optical inverse
problem, was computed from the initial pressure using (4) with
Grüneisen coefficient .



TARVAINEN et al.: BAYESIAN IMAGE RECONSTRUCTION IN QUANTITATIVE PHOTOACOUSTIC TOMOGRAPHY 2293

Fig. 3. Reconstructed absorption (left column) and scattering (right column)
distributions. Images from top to bottom: simulated distributions (first row),
reconstructions obtained with the noise models MAP-CNM (second row),
MAP-ANM (third row), and error model MAP-AEM (fourth row) for the fine
(128 128 pixels) acoustic discretization of the fine sensor array in 20 mm
20 mm domain. The units of the colorbars are in .

E. Reconstructions

The MAP estimates of the three approaches were computed
by minimizing (15) (MAP-CNM), (16) (MAP-ANM), and (22)
(MAP-AEM) using a Gauss–Newton method equipped with a
line search algorithm and positivity constraint. Data simulated
using both fine and coarse acoustic discretizations of the fine
and coarse sensor arrays and the corresponding noise and error
models were considered. The prior distribution was the infor-
mative smoothness prior described earlier with mean and
standard deviations given in Table I.
Differences between the simulated and estimated absorption

and scattering parameters were compared by computing the rel-
ative errors

(28)

Fig. 4. Reconstructed absorption (left column) and scattering (right column)
distributions. Images from top to bottom: simulated distributions (first row),
reconstructions obtained with the noise models MAP-CNM (second row),
MAP-ANM (third row), and error model MAP-AEM (fourth row) for the
coarse (64 64 pixels) acoustic discretization of the fine sensor array in 20 mm
20 mm domain. The units of the colorbars are in .

and the mean relative errors

(29)

where and are the simulated absorption and scattering
distributions interpolated to the solution space and and
are the estimated values.
1) Reconstructions From Fine Sensor Array Data: The

reconstructed absorption and scattering distributions from the
data simulated using the fine acoustic discretization of the
fine sensor array setup are shown in Fig. 3. The reconstructed
absorption and scattering distributions from the data simulated
using the coarse discretization of the same sensor array are
shown in Fig. 4.
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Fig. 5. Relative errors of absorption (left column) and scattering
(right column) estimates obtained using the conventional noise

model CNM (first row), approximate noise model ANM (second row), and
approximation error modelling AEM (third row) in the fine (128 128 pixels)
acoustic discretization of the fine sensor array.

TABLE II
MEAN RELATIVE ERRORS OF ABSORPTION AND SCATTERING MAP ESTIMATES

AND , RESPECTIVELY, OBTAINED WITH NOISE MODELS MAP-CNM
(15), MAP-ANM (16), AND ERROR MODEL MAP-AEM (22) FOR THE
FINE (128 128 PIXELS) AND THE COARSE (64 64 PIXELS) ACOUSTIC

DISCRETIZATIONS OF THE FINE SENSOR ARRAY

The distributions of the relative errors for absorption and scat-
tering are shown in Figs. 5 and 6. Furthermore, the mean relative
errors are given in Table II.
2) Reconstructions From Coarse Sensor Array Data: The

reconstructed absorption and scattering distributions from
the data simulated using the fine acoustic discretization of the
coarse sensor array setup are shown in Fig. 7. The reconstructed
absorption and scattering distributions from the data simulated
using the coarse discretization of the same sensor array are
shown in Fig. 8.

Fig. 6. Relative errors of absorption (left column) and scattering
(right column) estimates obtained using the conventional noise

model CNM (first row), approximate noise model ANM (second row), and
approximation error modelling AEM (third row) in the coarse (64 64 pixels)
acoustic discretization of the fine sensor array.

Furthermore, the distributions of the relative errors for ab-
sorption and scattering are shown in Figs. 9 and 10 and the cor-
responding mean relative errors are given in Table III.
3) Discussion: As can be seen, the absorption and scattering

estimates obtained with the conventional noise model (MAP-
CNM) are not as good as the absorption and scattering estimates
obtained with the approximate noise model (MAP-ANM) and
approximation error model (MAP-AEM). In particular, the scat-
tering inclusions are not distinguished when conventional noise
model is applied. We believe that this is due to the minimization
problem being more ill-posed when estimating scattering. This
ill-posedness leads to inaccurate scattering estimates and there-
fore affects the accuracy of the absorption estimates as well.
This difficulty in estimating absorption and scattering simulta-
neously due to low sensitivity of the likelihood to distinguish
scattering was also noticed in [18] where it was shown that
the scattering estimates can be improved by using data in loga-
rithmic scale. Taking the logarithm is however an ad hocmethod
to scale the data basis and it does not have a theoretical expla-
nation which noise modelling through the Bayesian approach
offers.
Modelling of the noise improves both the absorption and

scattering estimates significantly. The scattering inclusions
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Fig. 7. Reconstructed absorption (left column) and scattering (right column)
distributions. Images from top to bottom: simulated distributions (first row),
reconstructions obtained with the noise models MAP-CNM (second row),
MAP-ANM (third row), and error model MAP-AEM (fourth row) for the fine
(128 128 pixels) acoustic discretization of the coarse sensor array in 20 mm
20 mm domain. The units of the colorbars are in .

are distinguished well and the relative errors for absorption
and scattering estimates are smaller when compared to the
conventional noise model results. The absorption images show
small errors close to the boundary which are likely to be due to
data smoothing in the numerical implementation of the -space
method. Furthermore, when the coarse sensor array is applied,
artefacts can be seen in the estimated absorption distributions
inside and between the absorbing inclusions and everywhere in
the scattering images.
The error close to boundaries in the absorption estimates is

removed when the approximation error model is included in the
reconstruction method. Also the other artefacts in the absorp-
tion images have reduced. The scattering estimates are of the
same accuracy when compared to the approximate noise model

Fig. 8. Reconstructed absorption (left column) and scattering (right column)
distributions. Images from top to bottom: simulated distributions (first row),
reconstructions obtained with the noise models MAP-CNM (second row),
MAP-ANM (third row), and error model MAP-AEM (fourth row) for the
coarse (64 64 pixels) acoustic discretization of the coarse sensor array in
20 mm 20 mm domain. The units of the colorbars are in .

TABLE III
MEAN RELATIVE ERRORS OF ABSORPTION AND SCATTERING MAP ESTIMATES

AND , RESPECTIVELY, OBTAINED WITH NOISE MODELS MAP-CNM
(15), MAP-ANM (16) AND ERROR MODEL MAP-AEM (22) FOR THE
FINE (128 128 PIXELS) AND THE COARSE (64 64 PIXELS) ACOUSTIC

DISCRETIZATIONS OF THE COARSE SENSOR ARRAY

results and significantly more accurate when compared to the
conventional noise model case. It is also worth noticing that
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Fig. 9. Relative errors of absorption (left column) and scattering
(right column) estimates obtained using the conventional noise

model CNM (first row), approximate noise model ANM (second row), and
approximation error modelling AEM (third row) in the fine (128 128 pixels)
acoustic discretization of the coarse sensor array.

the MAP-AEM estimates of absorption obtained using different
acoustic sensor arrays and discretizations are approximately of
the same magnitude. Thus, significant model reduction can be
performed if the approximation error method is used.

V. CONCLUSION

In this paper, the optical inverse problem of QPAT in the
framework of a Bayesian inversion was considered. In the op-
tical reconstruction of QPAT, the data is obtained as a solution
of an acoustic inverse initial value problem. Thus, both the data
and the noise are affected by the acoustic solver. The noise
of the optical data was modelled as Gaussian distributed with
mean and covariance approximated by solving several acoustic
inverse initial value problems using acoustic noise samples as
data. Furthermore, the modelling errors of the acoustic solu-
tion method were considered using the Bayesian approximation
error method. The developed noise model and the approxima-
tion error model were utilized in the optical inverse problem
and the MAP estimates utilizing the conventional noise model,
the approximate noise model and the approximation error mod-
elling were computed. The results show that modelling of the
noise and the approximation errors can improve the optical re-

Fig. 10. Relative errors of absorption (left column) and scattering
(right column) estimates obtained using the conventional noise model

CNM (first row), approximate noise model ANM (second row), and approxima-
tion error modelling AEM (third row) in the coarse (64 64 pixels) acoustic
discretization of the coarse sensor array.

constructions of QPAT significantly by improving the accuracy
of the estimated parameters and removing systematic artefacts
caused by the acoustic solver. Furthermore, using the approxi-
mation error method enables the use of coarser discretizations
and sensor arrays than the conventional approaches.
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