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Abstract
Quantitative photoacoustic tomography is a novel hybrid imaging technique
aiming at estimating optical parameters inside tissues. The method combines
(functional) optical information and accurate anatomical information obtained
using ultrasound techniques. The optical inverse problem of quantitative
photoacoustic tomography is to estimate the optical parameters within
tissue when absorbed optical energy density is given. In this paper we
consider reconstruction of absorption and scattering distributions in quantitative
photoacoustic tomography. The radiative transport equation and diffusion
approximation are used as light transport models and solutions in different
size domains are investigated. The simulations show that scaling of the data,
for example by using logarithmic data, can be expected to significantly improve
the convergence of the minimization algorithm. Furthermore, both the radiative
transport equation and diffusion approximation can give good estimates for
absorption. However, depending on the optical properties and the size of the
domain, the diffusion approximation may not produce as good estimates for
scattering as the radiative transport equation.

(Some figures may appear in colour only in the online journal)

1. Introduction

Photoacoustic tomography (PAT) is an emerging imaging modality developed over the past
decade which combines the benefits of optical contrast and ultrasound propagation. The optical
methods provide information about the distribution of chromophores which are light absorbing
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molecules within the tissue. The chromophores of interest are, for example, haemoglobin and
melanin. In addition, chromophores are utilized in tomographic contrast agent-based imaging
in which case they are dyes, nanoparticles or genetically expressed markers that are used as
contrast agents. The ultrasonic waves carry this optical information directly to the surface
with minimal scattering, thus retaining accurate spatial information as well. Nowadays, PAT
can be used to provide images of soft biological tissues with high spatial resolution. It has
been successfully applied to the visualization of different structures in biological tissues such
as human blood vessels, microvasculature of tumours and cerebral cortex in small animals.
However, this information is only a qualitative image and it does not include information
about the amount of chromophores. For more information about PAT, see e.g. [6, 33, 34] and
references therein.

Quantitative photoacoustic tomography (QPAT) is a technique in which also the absolute
concentration of chromophores is estimated. This is a hybrid imaging problem in which the
solution of one inverse problem acts as a data for another ill-posed inverse problem.

In QPAT measurement situation, a short (ns) pulse of light is used to illuminate the region
of tissue of interest. As light propagates within the tissue, it is absorbed by chromophores. This
generates an increase in pressure and a small accompanying increase in temperature. Because
of the elastic nature of tissue, the pressure increase propagates through the tissue as an acoustic
wave and is detected by ultrasound sensors on the surface of the tissue. The propagation of
the acoustic wave occurs on a microsecond timescale, about three orders of magnitude slower
than the optical propagation, so only the total absorbed optical energy density is of interest and
not the rate of absorption. This large difference in timescale allows the optical and acoustic
parts of the inverse problem to be decoupled and treated separately.

The two inverse problems in QPAT are as follows: (i) reconstruct the initial acoustic
pressure distribution from measured acoustic waves and (ii) reconstruct optical parameters
from absorbed optical energy density. The first inverse problem (i) is an inverse initial
value problem in acoustics. There are a large number of reconstruction techniques available
[20, 33]. However, in cases in which the speed of sound or acoustic absorption within the tissue
is varying, the inverse problem becomes significantly more challenging [13, 19, 31]. In this
paper we consider the second inverse problem (ii). Furthermore, we assume that the Grüneisen
coefficient which connects the acoustic pressure and absorbed optical energy density is known.
For a discussion about the estimation of the Grüneisen coefficient simultaneously with optical
parameters, see e.g. [3, 4, 27].

In the optical inverse problem of QPAT, the estimation of more than one optical parameter
is non-unique if only one light source or optical wavelength is used. To overcome this problem,
one approach has been to assume the scattering as known and estimate only the absorption
[5, 8, 15, 23, 35, 36]. This, however, is unrealistic since in practical applications, scattering
is usually not known. A different approach was taken in [24] where absorption and photon
fluence were extracted using sparse signal representation. The two most commonly applied
approaches to overcome the non-uniqueness problem when estimating more than one optical
parameter simultaneously are as follows: a spectral approach in which more than one optical
wavelength is used [9, 21, 4] and a multi-source QPAT in which multiple optical illuminations
are used [3, 7, 11, 27, 37]. In this work we consider the latter approach.

Due to the ill posedness of the optical inverse problem of QPAT, the reconstruction is
sensitive to the measurement and modelling errors. Therefore, light propagation within the
target needs to be accurately modelled. The generally accepted model for light transport in
tissues is the radiative transport equation (RTE) [14]. However, it is computationally expensive
and therefore its applications in biomedical imaging have been limited. The most commonly
applied model in biomedical imaging is the diffusion approximation (DA) to the RTE. It is
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known to describe light propagation accurately in a diffusive regime, that is, sufficiently far
from light source and when scattering is significantly larger than absorption [1, 14]. However,
when these conditions are not fulfilled, it has been shown that the DA does not predict light
propagation accurately [10, 22, 32] and the RTE needs to be used as a light propagation model.

Previously, the multi-source QPAT has been studied in [3] in which the DA was used as
the forward model for light transport. In the approach, the absorption and diffusion coefficients
were estimated from absorbed optical energy density. The results showed good reconstructions
for both absorption and diffusion coefficients in a diffusive regime. The diffusive regime was
considered also in [11] where absorption and reduced scattering coefficients were estimated
using the DA as the light transport model. A non-iterative reconstruction technique for the
estimation of absorption and diffusion perturbations in a diffusive regime was introduced in
[27]. In [7] the estimation of absorption and scattering distributions in an inverse crime case
was considered using both the RTE and the DA as light transport models. It was seen that the
DA failed to give good estimates for scattering.

In this paper, we investigate a simultaneous estimation of absorption and scattering in
multi-source QPAT. We consider both the RTE and the DA as light transport models and
investigate the minimization problem in two size domains: in a transport regime and in a
diffusive regime. The numerical solutions of the RTE and the DA are implemented using
the finite element method (FEM). The image reconstruction is based on the nonlinear total
variation regularized least-squares method in which scaling of the data and solution spaces are
applied. Similar scaling has been applied in diffuse optical tomography [26, 28] and in QPAT
[3, 11]. Furthermore, the total variation regularization has been applied for example in QPAT
in [3, 7, 11]. The corresponding minimization problem is solved using the Gauss–Newton
method.

The rest of this paper is organized as follows. The optical inverse problem of QPAT is
described in section 2. The light transport models are reviewed in section 3 and finite element
implementations are described in section 4. The simulation results are shown in section 5 and
conclusions are given in section 6.

2. Optical inverse problem in QPAT

The optical inverse problem in QPAT is to estimate the optical properties of the object when
absorbed optical energy density H is given. In this paper, the estimated optical parameters are
the absorption and scattering coefficients (µa, µs) within the medium.

We consider the solution of the inverse problem in a discrete framework. The domain !

is discretized into K disjoint elements !k, and the absorption and scattering coefficients are
represented in basis

µa(r) ≈
K∑

k=1

µakχ
(µa)
k (r) (1)

µs(r) ≈
K∑

k=1

µskχ
(µs)
k (r), (2)

where χk(r) is a characteristic function of the element !k. In general, let us use the notation
x :=

(
µa
µs

)T where µa = (µa,1, . . . , µa,K )T ∈ RK and µs = (µs,1, . . . , µs,K )T ∈ RK are vectors
of projection coefficients in the approximations (1) and (2) for the absorption and scattering
parameters. Furthermore, let the measurement vector be H = (H1,1, . . . ,Hℓ,m)T ∈ Rℓ×m

where ℓ is the number of illuminations and m is the number of measurements (measurement
pixels).
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The regularized nonlinear least-squares problem is to estimate the absorption and
scattering distributions x̂ which minimize the functional

x̂ = arg min
x

{∥Le(H − F (x))∥2 + B(x)} (3)

when the measured data H are given. In (3), F is the forward model for light transport which
maps the absorption and scattering parameters to the data. In this work, we use two models, the
RTE and the DA, as forward models. Furthermore, matrix Le is a weighting matrix which, from
the statistical point of view, can be interpreted as the Cholesky factor of the inverse of the noise
covariance matrix. The term B(x) > 0 is a regularizing penalty functional. Regularization is
needed to overcome the instability that is due to the ill-posed nature of the problem. In this
paper, we use a total variation prior for regularization. The total variation norm is a good prior
for piecewise constant images which consists of a few constant levels with relatively short
boundary lines [18]. In this paper, it is constructed similarly as in [18, 28] for the diffuse
optical tomography. Previously, it has been applied in QPAT, for example, in [3, 7, 11].

In QPAT, where the dynamic range of the measured light intensities can be very large,
scaling of the data may be needed in order to ensure numerical stability of the optimization
problem. Furthermore, transformation of the solution space may be used to constitute a correct
preconditioning. In this work, the data space is scaled similarly as in [26, 28] in the case of
the diffuse optical tomography, thus

H̃ = lnH; (4)

thus, we use the logarithm of amplitude as the data. Furthermore, in the solution space the
absorption and scattering values are scaled with their mean values as

µ̃a = µa

µ̄a
, µ̃s = µs

µ̄s
, (5)

where µ̄a and µ̄s are the mean of the absorption and scattering, respectively. Thus, taking into
account the scaling, the minimization problem is of the form

x̂ = arg min
x̃

{∥Lẽ(H̃ − F (x̃))∥2 + B(x̃)}, (6)

where x̃ := (µ̃a, µ̃s)
T .

In this work the minimization problem (6) is solved using the Gauss–Newton method
which is equipped with a line search algorithm for the determination of the step length and
a positivity constraint for the estimated parameters. The main reason for the choice of this
minimization approach is that it was found to produce best convergence in the challenging
situations in which the DA does not have a clear minimum. Examples of this are shown later in
section 5. However, the construction of the Jacobian is time consuming and other approaches
such as gradient-based methods will be considered in the future. Gauss–Newton iteration for
the solution of (6) is of the form

x̃(i+1) = x̃(i) + s(i)

(
J̃ T

(i)WJ̃(i) + 1
2 HB(x̃)(i)

)−1 (
J̃ T

(i)W (H̃ − F (x̃)) − 1
2 gB(x̃)(i)

)
, (7)

where i is the iteration index, s(i) is a step length parameter which is determined by the line
search algorithm, J̃ is the Jacobian and W = LT

ẽ Lẽ. Furthermore, HB(x̃) and gB(x̃) are the
Hessian and gradient of the penalty functional. The computation of the Jacobian is explained
in more detail in section 4.3.

3. Modelling light transport

The optical forward problem in QPAT is to compute the absorbed optical energy density
when the optical properties of the medium and the input light sources are given. Light
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propagation in biological media is usually modelled through transport theory which can
be treated through stochastic methods, such as Monte Carlo, or deterministic methods which
are based on describing particle transport with integro-differential equations. In the following
we consider the latter approach.

3.1. Radiative transport equation

A widely accepted model for light transport in tissues is the RTE [14]. The RTE is a one-speed
approximation of the transport equation, and thus it assumes that the energy (or speed) of
the particles does not change in collisions and that the refractive index is constant within the
medium.

Let ! ⊂ Rn, n = 2 or 3 denote the physical domain with boundary ∂! and let ŝ ∈ Sn−1

denote a unit vector in the direction of interest. In QPAT, we use the time-independent RTE

ŝ · ∇φ(r, ŝ) + (µs + µa)φ(r, ŝ) = µs

∫

Sn−1
&(ŝ · ŝ′)φ(r, ŝ′) dŝ′ + q(r, ŝ), r ∈ !, (8)

where µs = µs(r) and µa = µa(r) are the scattering and absorption coefficients of the
medium, respectively, φ(r, ŝ) is the radiance, &(ŝ · ŝ′) is the scattering phase function and
q(r, ŝ) is the source inside !.

The scattering phase function &(ŝ · ŝ′) describes the probability that a photon with an
initial direction ŝ′ will have a direction ŝ after a scattering event. In biological tissues, the most
commonly used phase function is the Henyey–Greenstein scattering function [12] which is of
the form

&(ŝ · ŝ′) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2π

1 − g2

(1 + g2 − 2gŝ · ŝ′)
, n = 2

1
4π

1 − g2

(1 + g2 − 2gŝ · ŝ′)3/2
, n = 3.

(9)

The anisotropy parameter g defines the shape of the probability density and it obtains values
between −1 < g < 1. With the value g = 0, the scattering probability density is a uniform
distribution. For forward dominated scattering g > 0 and for backward dominated scattering
g < 0.

In QPAT, we use the RTE boundary condition which assumes that no photons travel in an
inward direction at the boundary ∂! except at source position ϵ j ⊂ ∂!, thus

φ(r, ŝ) =
{

φ0(r, ŝ), r ∈ ϵ j, ŝ · n̂ < 0

0, r ∈ ∂!\ϵ j, ŝ · n̂ < 0,
(10)

where n̂ is an outward unit normal and φ0(r, ŝ) is a boundary source [1, 30]. This boundary
condition implies that once a photon escapes the domain !, it does not re-enter it.

The absorbed optical energy density H(r) can be solved as

H(r) = µa)(r), (11)

where )(r) is the fluence which is defined as

)(r) =
∫

Sn−1
φ(r, ŝ) dŝ. (12)
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3.2. Diffusion approximation

In the DA framework, the radiance is approximated by

φ(r, ŝ) ≈ 1
|Sn−1|

)(r) − n
|Sn−1|

ŝ · (κ∇)(r)) , (13)

where κ = (n(µa + µ′
s))

−1 is the diffusion coefficient where µ′
s = (1 − g1)µs is the reduced

scattering coefficient and g1 is the mean of the cosine of the scattering angle [1, 16]. In the case
of the Henyey–Greenstein scattering function, equation (9), we have g1 = g. By inserting the
approximation (13) and similar approximations written for the source term and phase function
into equation (8) and following the derivation in [1, 14], we obtain the DA

−∇ · κ∇)(r) + µa)(r) = q0(r), r ∈ !, (14)

where q0(r) is the source inside !.
The boundary condition (10) cannot be expressed in terms of variables of the DA. Instead,

it is often replaced by an approximation that the total inward directed photon current is zero.
Furthermore, by taking into account the mismatch between the refractive indices of the medium
and surrounding medium, a Robin-type boundary condition can be derived; see for example
[1]. This boundary condition can be written as

)(r) + 1
2γn

κA
∂)(r)

∂ n̂
=

⎧
⎨

⎩

Is

γn
, r ∈ ϵi

0, r ∈ ∂! \ ϵi,

(15)

where Is is a diffuse boundary current at the source position ϵ j ⊂ ∂!, γn is a dimension-
dependent constant which takes values γ2 = 1/π and γ3 = 1/4 and A is a parameter governing
the internal reflection at the boundary ∂! [16]. In the case of matched refractive index, A = 1.

4. Finite element implementations

In this work, the FEM is used for the solution of the RTE and the DA. In the FEM, a variational
formulation is derived for the original problem. Then, a finite-dimensional approximation for
the variational formulation is constructed using a suitably chosen basis and test functions in
the solution space.

4.1. FE approximation of the RTE

In this work, the FE approximation of the RTE (8) with boundary condition (10) is derived
and implemented similarly as in [28, 29]. Thus, both the spatial and angular discretizations are
implemented in piecewise linear bases. As a result, a following matrix equation is obtained

Arteα = brte, (16)

where α = (α1,1, . . . ,α1,Nθ
,α2,1, . . . ,α2,Nθ

, . . . ,αNn,1 . . . , αNn,Nθ
)T ∈ RNnNθ is the radiance in

nodal points of the spatial and angular meshes, Nn is the number of spatial nodes and Nθ is
the number of angular directions. Furthermore, brte = bψ0 where ψ0 is the source strength
vector, and Arte = A1 + A2 + A3 + A4 where

A1(h, s) = −
∫

!

∫

Sn−1
ŝ · ∇ψ j(r)ψm(ŝ)ψℓ(ŝ) dŝψi(r) dr

+
∫

!

δ

∫

Sn−1
(ŝ · ∇ψ j(r)ψm(ŝ))(ŝ · ∇ψi(r)ψℓ(ŝ)) dŝ dr (17)

A2(h, s) =
∫

∂!

ψi(r)ψ j(r) dS
∫

Sn−1
(ŝ · n̂)+ψℓ(ŝ)ψm(ŝ) dŝ (18)
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A3(h, s) =
∫

!

(µs + µa)ψi(r)ψ j(r) dr
∫

Sn−1
ψℓ(ŝ)ψm(ŝ) dŝ

+
∫

!

δ(µs + µa)

∫

Sn−1
ŝ · ∇ψ j(r)ψm(ŝ)ψℓ(ŝ) dŝψi(r) dr (19)

A4(h, s) = −
∫

!

µsψi(r)ψ j(r) dr
∫

Sn−1

∫

Sn−1
&(ŝ · ŝ′)ψℓ(ŝ′) dŝ′ψm(ŝ) dŝ

−
∫

!

δµs

∫

Sn−1
ŝ · ∇ψ j(r)ψm(ŝ)

∫

Sn−1
&(ŝ · ŝ′)ψℓ(ŝ′) dŝ′ dŝψi(r) dr (20)

b(h, s) =
∫

∂!

ψi(r)ψ j(r) dS
∫

Sn−1
(ŝ · n̂)−ψℓ(ŝ)ψm(ŝ) dŝ, (21)

where h = Nθ ( j − 1) + m, s = Nθ (i − 1) + ℓ ( j, i = 1, . . . , Nn, m, ℓ = 1, . . . , Nθ ,
h, s = 1, . . . , NnNθ ), ψi(r) and ψ j(r) are spatial basis functions, ψℓ(r) and ψm(r) are angular
basis functions and δ is a streamline diffusion modification parameter [17, 28]. The FE solution
of the RTE is obtained using equation (16). Thus, as a solution, the radiance α in nodes of the
spatial and angular discretizations is obtained. Then, the absorbed optical energy density can
be calculated using equations (11) and (12).

4.2. FE approximation of the DA

In this work, the FE solution of the DA (14) with the boundary condition (15) is implemented
similarly as in [2]. Thus, the FE solution of the DA is obtained as a solution of the following
matrix equation:

Adaa = bda, (22)

where Ada = K + C + R and

K(p, q) =
∫

!

κ∇ϕq(r) · ∇ϕp(r) dr (23)

C(p, q) =
∫

!

µaϕq(r)ϕp(r) dr (24)

R(p, q) =
∫

∂!

2γn

A
ϕq(r)ϕp(r) dS (25)

bda(p) =
∫

ϵi

2Is

A
ϕp(r) dS, (26)

where q, p = 1, . . . , N, ϕq(r) and ϕp(r) are basis functions, and N is the number of nodes.
As a solution of the DA, fluence a in the nodes of the FE mesh is obtained and the absorbed
optical energy density can be calculated using equation (11).

4.3. Jacobian

In the Gauss–Newton algorithm, the Jacobian needs to be computed on each iteration. Taking
into account the scaling described in section 2, the scaled Jacobian J̃ = (J̃µa , J̃µs ) is of the
form

J̃µa = diag(F )−1 Jµa µ̄a (27)

J̃µs = diag(F )−1 Jµs µ̄s, (28)

where F is the forward model.
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In the case of the RTE, the kth column of the Jacobian for absorption Jµa,RTE and scattering
Jµs,RTE corresponding to element !k is obtained by a column-wise vectorization of

j(k)
µa,RTE = −µ(k)

a MrteA−1
rte

∂Arte

∂µak

A−1
rte brte + χkMrteA−1

rte brte (29)

j(k)
µs,RTE = −µ(k)

a MrteA−1
rte

∂Arte

∂µsk

A−1
rte brte, (30)

where

∂Arte

∂µak

(h, s) =
∫

!k

ψi(r)ψ j(r) dr
∫

Sn−1
ψℓ(ŝ)ψm(ŝ) dŝ (31)

∂Arte

∂µsk

(h, s) =
∫

!k

ψi(r)ψ j(r) dr
∫

Sn−1
ψℓ(ŝ)ψm(ŝ) dŝ

−
∫

!k

ψi(r)ψ j(r) dr
∫

Sn−1

∫

Sn−1
&(ŝ · ŝ′)ψℓ(ŝ′) dŝ′ψm(ŝ) dŝ (32)

and Mrte is a discretized measurement operator for the RTE.
In the case of the DA, the kth column of Jacobian for absorption Jµa,DA and scattering

Jµs,DA corresponding to element !k is obtained by a column-wise vectorization of

j(k)
µa,DA = −µ(k)

a MdaA−1
da

∂Ada

∂µak

A−1
da bda + χkMdaA−1

da bda (33)

j(k)
µs,DA = −µ(k)

a MdaA−1
da

∂Ada

∂µsk

A−1
da bda, (34)

where

∂Ada

∂µak

(p, q) = − 1
n(µak + (1 − g)µsk )

2

∫

!k

∇ϕq(r) · ∇ϕp(r) dr +
∫

!k

ϕq(r)ϕp(r) dr (35)

∂Ada

∂µsk

(p, q) = − 1 − g
n(µak + (1 − g)µsk )

2

∫

!k

∇ϕq(r) · ∇ϕp(r) dr (36)

and Mda is a discretized measurement operator for the DA.

5. Simulation results

The optical inverse problem of QPAT was investigated with simulations. We were interested
in estimating both absorption and scattering in different size domains using both the RTE and
the DA as light transport models. The FEM was used for numerical implementations. Two
rectangular domains were considered. The size of the smaller domain was 4 mm × 8 mm.
According to theory, light transport within it is accurately modelled with the RTE but not with
the DA. The size of the larger domain was 20 mm × 40 mm. It can be considered to be in a
diffusive regime, and thus both RTE and DA can be expected to be suitable light transport
models. In all of the simulations, four illuminations, one at each side of the rectangle, were
used.
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Figure 1. Mesh geometry and position of the perturbation in a single perturbation case in a
4 mm × 8 mm domain (left image) and in a 20 mm × 40 mm domain (right image).

5.1. Error surfaces for a single perturbation case

To illustrate the reconstruction problem of a simultaneous estimation of absorption and
scattering, we considered a simple problem of single perturbation located within homogeneous
and known background similarly as was done in [25] in the case of diffuse optical tomography.
For this case, we can plot 1 as a function of µ(P)

a and µ(P)
s .

1
(
µ(P)

a , µ(P)
s

)
=

∥∥F
(
µ(P)

a,ref, µ
(P)
s,ref

)
− F

(
µ(P)

a , µ(P)
s

)∥∥2
, (37)

where F
(
µ(P)

a,ref, µ
(P)
s,ref

)
is the reference data vector obtained with perturbation values µ(P)

a,ref and
µ(P)

s,ref. The background parameters
(
µ(B)

a , µ(B)
s

)
were kept fixed at correct values.

Case 1. 4 mm × 8 mm domain:
First, the small domain of size 4 mm × 8 mm was considered. The perturbation was

a circular inclusion with radius of r = 0.5 mm. We used constant background parameters
µ(B)

a = 0.01 mm−1 and µ(B)
s = 2 mm−1. Furthermore, the anisotropy parameter was

constant g = 0.8. The reference data set was generated with perturbation parameters
µ(P)

a,ref = 0.02 mm−1 and µ(P)
s,ref = 4 mm−1. The test data were generated for all combinations for

20 absorption µ(P)
a values in the range from 0.001 to 0.1 mm−1 and 20 scattering µ(P)

s values in
the range from 0.1 to 20 mm−1. Both the RTE and the DA were used as light transport models.
In the FE implementation, the spatial FE discretization consisted of 8638 triangular elements
and 4440 nodes. Furthermore, the angular discretization of the RTE consisted of 64 angles.
The mesh geometry and the perturbation are shown in the left image of figure 1.

The graphs in figure 2 show maps of 1(µ(P)
a , µ(P)

s ) for absorbed optical energy density H
and logarithm of absorbed optical energy density ln(H). On the first row, the reference data
and test data sets were generated using the RTE. On the second row, the reference data and
test data sets were generated using the DA. All data sets were calculated in the same mesh
and no noise was added. Therefore, all error maps reach their absolute minimum of zero at the
correct perturbation data set.

Comparing the graphs shows that using absorbed optical energy density H as a data type
gives much longer minimum ‘valley’ in the direction of scattering compared to logarithm of
absorbed optical energy density ln(H). This indicates that scaling of the data for example by
taking the logarithm can improve the convergence of the minimization algorithm significantly.
Furthermore, when the results computed using the RTE and the DA are compared, it can be
seen that graphs obtained using the RTE as the forward model show a clearer minimum (when
scattering is varied) than when the DA is used. Thus, the reconstruction of scattering using

9



Inverse Problems 28 (2012) 084009 T Tarvainen et al

5 10 15 20

0.02

0.04

0.06

0.08

0.1

5 10 15 20

0.02

0.04

0.06

0.08

0.1

5 10 15 20

0.02

0.04

0.06

0.08

0.1

5 10 15 20

0.02

0.04

0.06

0.08

0.1

µ
a

µ
a

µ
a

µ
a

µsµs

µsµs

H ln(H)

Figure 2. Objective functions for a single perturbation case in a 4 mm × 8 mm domain as a
function of scattering coefficient and absorption coefficient of the perturbation. The data types
are the absorbed optical energy density H (left column) and logarithm of absorbed optical energy
density ln(H) (right column). The RTE results are on the top row and the DA results are on the
bottom row.

the DA is more ill posed than using the RTE. This indicates that in small domains, the DA is
likely not to give as reliable estimates for scattering as the RTE.

Case 2. 20 mm × 40 mm domain:
Then, the larger domain of size 20 mm × 40 mm was considered. The perturbation was a

circular inclusion with radius of r = 2.5 mm. We used the same optical parameters as in the
smaller domain. Thus, background parameters were µ(B)

a = 0.01 mm−1 and µ(B)
s = 2 mm−1,

and the anisotropy parameter was constant g = 0.8. The reference data set was generated
with perturbation parameters µ(P)

a,ref = 0.02 mm−1 and µ(P)
s,ref = 4 mm−1, and the test data

were generated for all combinations for 20 absorption µ(P)
a values in the range from 0.001

to 0.1 mm−1 and 20 scattering µ(P)
s values in the range from 0.1 mm−1 to 20 mm−1. Again,

both the RTE and the DA were considered. The spatial FE discretization consisted of 8640
triangular elements and 4441 nodes, and the angular discretization of the RTE consisted of 64
directions. The mesh geometry and the perturbation are shown in the right image of figure 1.

The graphs in figure 3 show maps of 1(µ(P)
a , µ(P)

s ) for absorbed optical energy density H
and logarithm of absorbed optical energy density ln(H) calculated in the larger domain. On
the first row, the reference data and test data sets were generated using the RTE and on the
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Figure 3. Objective functions for a single perturbation case in a 20 mm × 40 mm domain as a
function of scattering coefficient and absorption coefficient of the perturbation. The data types
are the absorbed optical energy density H (left column) and logarithm of absorbed optical energy
density ln(H) (right column). The RTE results are on the top row and the DA results are on the
bottom row.

second row, the DA was used. Again, all data sets were calculated in the same mesh and no
noise was added.

Comparing the graphs obtained using the absorbed optical energy density H and logarithm
of absorbed optical energy density ln(H) as data types shows again the similar minimum
‘valley’ as in the smaller domain. This indicates that also in the larger domain, logarithmic data
(or other similar scaling) are likely to give faster convergence of the minimization algorithm.
Comparing the RTE and DA results shows that now they both show a clear minimum. This
indicates that the RTE and DA can give the same quality reconstructions in a diffusive regime.

5.2. Reconstructions

To test the feasibility of the RTE and the DA to estimate absorption and scattering parameters,
we performed reconstructions in two same-sized domains as in the single perturbation case. The
simulation domains consisted of heterogeneous optical properties with varying and partially
overlapping absorption and scattering inclusions. The optical parameters were chosen to be on
a typical range of biological tissues and also low-scattering regions were included. The purpose
was to simulate the method with tissue-like optical properties and to see how well absorption
and scattering values can be distinguished also in cases in which they do not correlate.
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Figure 4. Reconstructed absorption (left column) and scattering (right column) distributions in
a 4 mm × 8 mm domain. Rows from top to bottom: the simulated distributions (first row), RTE
reconstructions (second row) and DA reconstructions (third row).

Case 1. 4 mm × 8 mm domain:
First, the small domain of size 4 mm×8 mm was considered. The distributions of simulated

absorption and scattering values are shown on the top row of figure 4. The anisotropy parameter
was g = 0.8 throughout the domain. The data were simulated using the RTE which was solved
using the FEM. The FE discretization of the domain consisted of 9322 triangular elements
and 4782 nodes. The angular discretization consisted of 128 directions. Gaussian distributed
noise with standard deviation of 1% of the corresponding amplitude was added to the data.

The absorption and scattering distributions were reconstructed from the simulated data as
described in section 2 by minimizing functional (6). Thus, the logarithm of absorbed optical
energy density was chosen as the data type. The data were represented in a piece-wise constant
basis using 1308 triangles. The same triangularization was used for the representation of the
absorption and scattering in a piece-wise constant basis (1), (2) where K = 1308. The forward
models used in reconstructions were the RTE and the DA. The discretization mesh consisted
of 1308 triangular elements and 703 nodes. In the case of the RTE, 64 angular directions were
used.

The reconstructed absorption and scattering distributions are shown in figure 4.
Furthermore, the cross-sections through absorption and scattering distributions at y-positions
y = 3.7 mm, y = 2 mm and y = 0.3 mm are shown in figure 5. In order to compare the
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Figure 5. Cross-sections through absorption (left column) and scattering (right column)
distributions in a 4 mm × 8 mm domain at y-positions: y = 3.7 mm (first row), y = 2 mm (second
row) and y = 0.3 mm (third row). The simulated distributions (thick grey line), the RTE solutions
(solid blue line) and the DA solutions (dashed red line).

accuracy of the estimated parameters obtained using the RTE and the DA as light transport
models, we calculated the estimation errors. The estimation errors for absorption ẽµa and
scattering ẽµs were calculated as

ẽµa =
∫
!
(µa − µ̂a)

2 d!∫
!

µ2
a d!

· 100, ẽµs =
∫
!
(µs − µ̂s)

2 d!∫
!

µ2
s d!

· 100 (38)

where µa and µs are the original absorption and scattering coefficients and µ̂a and µ̂s are the
estimated values. In this paper we wanted in particular to compare the errors that arise between
the two models. The estimation errors are given in table 1.

As can be seen, the reconstructions obtained using the RTE as the forward model are
similar to the original optical parameter distributions for both absorption and scattering. The
DA gives as good reconstructions for absorption as the RTE. The scattering reconstructions
obtained with the DA, however, are unclear and the estimated parameters differ from the
original ones. This can also be noted from the estimation errors in table 1 where the estimation
errors of absorption obtained with the RTE and the DA are of the same magnitude but the
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Figure 6. Reconstructed absorption (left column) and scattering (right column) distributions in a
20 mm × 40 mm domain. Rows from top to bottom: the simulated distributions (first row), RTE
reconstructions (second row) and DA reconstructions (third row).

Table 1. Estimation errors of absorption ẽµa (%) and scattering ẽµs (%) calculated for the RTE
and the DA in domains (4 mm × 8 mm) and (20 mm × 40 mm).

4 mm × 8 mm 20 mm × 40 mm

ẽµa ẽµs ẽµa ẽµs

RTE 3.9 13.0 3.4 17.2
DA 4.1 26.7 3.5 17.3

estimation errors of scattering are larger for the DA than for the RTE. Thus in a small domain,
both the RTE and DA can produce estimates for absorption with the same accuracy. However,
the scattering estimates obtained with the DA are not as accurate as with the RTE.

Case 2. 20 mm × 40 mm domain:
The distributions of simulated absorption and scattering values in the larger domain of

size 20 mm × 40 mm are shown on the top row of figure 6. The anisotropy parameter was
g = 0.8. Again, the RTE was used to simulate the data. The spatial FE discretization consisted
of 9224 triangular elements and 4733 nodes. Furthermore, the angular discretization consisted
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Figure 7. Cross-sections through absorption (left column) and scattering (right column)
distributions in a 20 mm × 40 mm domain at y-positions: y = 18.5 mm (first row), y = 10 mm
(second row) and y = 1.5 mm (third row). The simulated distributions (thick grey line), the RTE
solutions (solid blue line) and the DA solutions (dashed red line).

of 128 angular directions. Gaussian distributed noise with standard deviation of 1% of the
corresponding amplitude was added to the data.

The absorption and scattering distributions were reconstructed similarly as in the smaller
domain by minimizing functional (6) and using the logarithm of absorbed optical energy
density as the data type. The data were represented in a piece-wise constant basis using 1308
triangles, and the same triangularization was used for the representation of the absorption
and scattering in a piece-wise constant basis (1), (2). Both the RTE and the DA were used
as forward models. The discretization mesh consisted of 1308 triangular elements and 703
nodes. In the case of the RTE, 64 angular directions were used.

The reconstructed absorption and scattering distributions are shown in figure 6 and the
cross-sections through absorption and scattering distributions at y-positions y = 18.5 mm,
y = 10 mm and y = 1.5 mm are shown in figure 7. The relative estimation errors calculated
using equations (38) are given in table 1. As can be seen, in the large domain, the reconstructions
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obtained using both the RTE and the DA as forward models are similar to the original optical
parameter distribution for both absorption and scattering. Also the relative estimation errors
are of the same magnitude when comparing results between the RTE and DA models. Thus,
in a diffusive regime, both the RTE and DA can produce absorption and scattering estimates
of the same accuracy.

6. Conclusions

In this work the optical inverse problem of multi-source QPAT was considered. The absorption
and scattering distributions were estimated using the total variation regularized least-squares
method which was solved using the Gauss–Newton algorithm. Both the RTE and the DA
were used as forward models for light propagation. The FEM was used for numerical
implementations. The approach was investigated in two size domains: in a transport regime
and in a diffusive regime.

The simulations show that scaling of the data, for example by using logarithmic data,
can be expected to significantly to improve the convergence of the minimization algorithm.
Furthermore, in a transport regime, the reconstruction of scattering using the DA is a more
ill-posed problem than using the RTE. In a diffusive regime, both models can be expected to
be equally reliable. The reconstructions show that both the RTE and the DA can give good
estimates for absorption both in a transport regime and in a diffusive regime. However, if the
DA is used as a light transport model in a small domain, the estimates for the scattering are
significantly worse than when the RTE is used.

Thus, both the RTE and the DA can be used as a forward model in multi-source QPAT.
However, depending on the optical properties and the size of the domain, care is needed in
the choice of the forward model and in scaling of the data in order to estimate both absorption
and scattering accurately.
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