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A pseudospectral model of linear elastic wave propagation is described based on the first order
stress-velocity equations of elastodynamics. k-space adjustments to the spectral gradient calcula-
tions are derived from the dyadic Green’s function solution to the second-order elastic wave equa-
tion and used to (a) ensure the solution is exact for homogeneous wave propagation for timesteps of
arbitrarily large size, and (b) also allows larger time steps without loss of accuracy in heterogeneous
media. The formulation in k-space allows the wavefield to be split easily into compressional and
shear parts. A perfectly matched layer (PML) absorbing boundary condition was developed to
effectively impose a radiation condition on the wavefield. The staggered grid, which is essential for
accurate simulations, is described, along with other practical details of the implementation. The
model is verified through comparison with exact solutions for canonical examples and further
examples are given to show the efficiency of the method for practical problems. The efficiency of
the model is by virtue of the reduced point-per-wavelength requirement, the use of the fast Fourier
transform (FFT) to calculate the gradients in k space, and larger time steps made possible by the
k-space adjustments. VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4730897]
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I. INTRODUCTION

Numerical models of elastic wave propagation are used
in many different fields, including seismology, geophysics
and soil mechanics,1,2 non-destructive testing,3 condensed
matter physics,4 design of SAW devices and other types of
sensor and transducer,5,6 and biomedical ultrasound.7 A
number of different numerical methods have been used to
solve the elastic wave equations but among the more com-
monly used are finite elements,8 boundary elements,9 finite
volume,10,11 integral equations,12 finite-differences,13–15 or
pseudospectral models.16–18 This paper describes a model of
elastic wave propagation in isotropic, heterogeneous solid
media using a k-space method, a variation on the pseudo-
spectral theme.

Spectral methods are characterized by the use of Fourier
or polynomial basis functions to describe the field variables
and have the advantages over finite difference methods that
the mesh requirements are more relaxed, requiring only two
nodes per wavelengths, and that the spatial gradients can in
many cases (such as Fourier collocation) be calculated effi-

ciently using fast Fourier transforms.19–21 Pseudospectral
models are spectral models for which the time derivatives
are calculated using finite differences.22 k-space methods
also use a spectral approach to calculate the derivatives but
look for ways to improve the approximation of the temporal
derivative. k-space methods are typically used for hyperbolic
problems for which an exact solution is known in the homo-
geneous case. In some cases this allows an adjustment to be
made to either the (finite difference) time derivative or the
(spectral) spatial derivatives which converts the time-
stepping pseudospectral model into an exact model for ho-
mogeneous media, and stable for larger timesteps (for a
given level of accuracy) in heterogeneous media. An early
use of a k-space adjustment to a gradient calculation to
improve a pseudospectral method was made by Fornberg
and Whitham,23 who applied it to a nonlinear wave equation,
but did not use the term “k-space.” Bojarski and others24–29

applied similar ideas to linear scalar wave equations, with
clear applications in acoustics and ultrasound, but Liu30 was
the first to apply k-space ideas to elastic wave problems. He
derived a k-space form of the dyadic Green’s function for
the elastic wave equation and used it, in conjunction with
equivalent source terms accounting for medium heterogene-
ities, to calculate the scattered field iteratively in a Born
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series. In a slightly different approach, Tabei et al.31 proposed
a k-space method for solving a pair of coupled first order
acoustic equations, rather than a second order wave equation,
which has been applied to scalar acoustic problems.32,33 This
paper extends their approach to the elastic wave case. The
principal differences of this method over that of Liu30 are that
due to the fact that we solve first order equations rather than a
second order wave equation. This allows velocity (or displace-
ment) as well as stress sources to be implemented simply, and
permits the straightforward inclusion of a perfectly matched
layer (PML) as an absorbing boundary. The implementation
of the PML used here, however, requires each of the field var-
iables to be split into three directions which will increase the
overall memory requirements.

The layout of this paper is as follows. The k-space model
of elastic wave propagation is derived in Sec. II. More specifi-
cally, in Sec. II A. the equations used to model elastic waves
are briefly reviewed, in Sec. II B an exact k-space solution of
the elastic wave equations is derived, this solution is com-
pared to a leapfrog pseudo-spectral method in order to derive
two k-space propagators corresponding to compressional and
shear wave propagation in Sec. II C, and in Sec. II D their use
in a model based on the first order elastic wave equations is
considered. Two characteristics of the model are the use of
the dyadic wavenumber tensor to split the field into shear and
compressional components, and the use of separate propaga-
tors for the shear and compressional components. The details
of the numerical implementation, including the staggered
grid, absorbing boundary conditions and source terms are
described in Sec. III, examples and validating comparisons to
analytical solutions are given in Sec. IV, and a discussion sec-
tion and summary conclude the paper.

II. k-SPACE MODEL OF ELASTIC WAVE
PROPAGATION

A. Governing equations

The fundamental equations used to describe deforma-
tion in isotropic elastic solids are the relationships between
displacement ui, strain !ij, and stress rij:

rij ¼ kdij!kk þ 2l!ij; (1)

!ij ¼
1

2

@ui

@xj
þ
@uj

@xi

! "
; (2)

where l and k are the Lamé elastic constants and are xi,
i ¼ 1; 2; 3, Cartesian position coordinates. To model the
propagation of lossless elastic waves it is enough to add
Newton’s second law:

q
@2ui

@t2
¼ @rij

@xj
þ fi; (3)

where fi is a body force and q is the mass density. The Lamé
constants are related to the propagation speeds of shear and
compressional waves, c2

s and c2
p, as

l ¼ c2
s q; kþ 2l ¼ c2

pq: (4)

Equations (1)–(3) can be written as two coupled first order
equations

@rij

@t
¼ kdij

@vk

@xk
þ l

@vi

@xj
þ
@vj

@xi

! "
; (5)

q
@vi

@t
¼
@rij

@xj
þ fi; (6)

where vi ¼ @ui=@t is the velocity vector. The numerical
model described in this paper is based on these first-order
equations. However, the k-space method is derived from the
second order wave equation which can be obtained by elimi-
nating the stress tensor from Eqs. (5) and (6). In vector nota-
tion with u ¼ ðu1; u2; u3Þ it has the form (following some
rearrangement):

q
@2u

@t2
¼ rkðr % uÞ þrl %

#
ruþ ðruÞT

$

þ ðkþ 2lÞrðr % uÞ & lr' ðr' uÞ þ f;

(7)

where f is the vector force term. (We will move between the
index and bold vector notation, and even combine them if
necessary, to give the clearest expressions.) When the me-
dium is homogeneous, so that the gradients of the Lamé pa-
rameters in the first two terms are zero, this reduces to the
elastic wave equation

@2u

@t2
& c2

prðr % uÞ þ c2
sr' ðr' uÞ ¼ 0; (8)

where the forcing term has been left out for simplicity. Note
that when the coupled first order Eqs. (5) and (6) are solved
numerically for a heterogeneous medium, it is equivalent to
solving Eq. (7). However, the k-space method will be
motivated by examining solutions in the homogeneous case,
Eq. (8).

B. Exact k-space solution for a homogeneous
medium

In Fourier spectral methods the wavefield is mapped
from the spatial domain, x ¼ ðx1; x2; x3Þ, to the wavenumber
domain or k-space, k ¼ ðk1; k2; k3Þ, using Fourier transforms,
i.e. the wavefield is decomposed spatially into Fourier
components:

ujðxÞ ¼
X

k

UjðkÞeik%x; (9)

where U ¼ ðU1ðkÞ;U2ðkÞ;U3ðkÞÞ is the displacement vector
in k-space.

The spatial gradients can now be calculated straightfor-
wardly as

@

@xj
¼ F&1fikjFf%gg; (10)

where i is the imaginary unit. By writing the spatial gradient
operator as r ¼ ik and recalling that
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k' ðk' UÞ ¼ ðkk& k2IÞ % U; (11)

where kk is the dyadic tensor formed by the outer product of
k with itself, k ¼ jkj, and I is the identity matrix, Eq. (8) can
be written in k-space as12

@2U

@t2
þ k2

#
c2

pðbkbkÞ þ c2
s ðI& bkbkÞ

$
% U ¼ 0; (12)

where bk ¼ k=k is the unit vector in direction. k (Note that
for a single frequency oscillation, for which the time deriva-
tive becomes –x2, there is no simple dispersion relation
between x and k. This k does not have a simple physical
interpretation, as it would if cs ¼ 0 or cp ¼ 0.)

As the medium is homogenous the compressional and
shear waves will travel independently and they can therefore
be separated. Formally, we write the displacement as the
sum of scalar and vector potentials. In k-space this is

U ¼ Up þ Us ¼ ik/þ ik' w; (13)

where Up ¼ ik/ and Us ¼ ik' w are the compressional and
shear components of the displacement field. Substituting this
into Eq. (12), and using the dyadic identities

bkbk %k¼ k; ðI& bkbkÞ %k¼ 0
bkbk % ðk'UÞ ¼ 0 ; ðI& bkbkÞ % ðk'UÞ ¼ k'U for anyU;

(14)

allows Eq. (12) to be split into two parts corresponding to
compressional and shear wave propagation

@2

@t2
þ ðcpkÞ2

! "
/ ¼ 0; (15)

@2

@t2
þ ðcskÞ2

! "
w ¼ 0: (16)

These equations are satisfied by the scalar Green’s functions

gpðk; tÞ ¼
0; t < 0
sinðcpktÞ=ðcpkÞ; t ( 0;

%
(17)

gsðk; tÞ ¼
0; t < 0
sinðcsktÞ=ðcskÞ; t ( 0:

%
(18)

Using these solutions, a dyadic Green’s function that satis-
fies Eq. (12) for a vector source term can be written as

Gðk; tÞ ¼ Gpðk; tÞ þ Gsðk; tÞ; (19)

where

Gpðk; tÞ ¼
0; t < 0
bkbksinðcpktÞ=ðcpkÞ; t ( 0;

%
(20)

Gsðk; tÞ ¼
0; t < 0
ðI& bkbkÞsinðcsktÞ=ðcskÞ; t ( 0:

%
(21)

The dyadic Green’s function is required when the source
(forcing) function is a vector. In this case the solution, in
k-space, is

Uðk; tÞ ¼
ð

Gðk; t& t0Þ % Fðk; t0Þdt0: (22)

If the displacement is zero for t < 0, but abruptly becomes
U0ðkÞ at t ¼ 0, this is equivalent to a source term of the form
F ¼ U0d

0ðtÞ and the solution to this initial value problem
becomes30

Uðk; tÞ ¼ cosðcpktÞbkbk % U0 þ cosðcsktÞðI& bkbkÞ % U0:

(23)

C. Second-order model for a homogeneous
medium: Shear and compressional k-space
adjustments

A time-stepping pseudospectral formulation of Eq. (12)
that uses a first order finite difference step in time can be
written as

Uðk; tþ DtÞ & 2Uðk; tÞ þ Uðk; t& DtÞ
Dt2

¼ &k2
#

c2
pðbkbkÞ þ c2

s ðI& bkbkÞ
$
% U: (24)

Using the fact that Up ¼ ik/ so bkbk % Up ¼ Up and
ðI& bkbkÞ % Up ¼ 0, and Us ¼ ik' w so bkbk % Us ¼ 0 and
ðI& bkbkÞ % Us ¼ Us [see Eqs. (14)] gives

Uðk; tþ DtÞ & 2Uðk; tÞ þ Uðk; t& DtÞ

¼ &4
cpkDt

2

! "2

Up & 4
cskDt

2

! "2

Us: (25)

Now, by using the trigonometric identities cos cpkðt6DtÞ
' (

¼ cosðcpktÞ cosðcpkDtÞ ) sinðcpktÞsinðcpkðt6DtÞÞ with Eq.
(23) the following expression can be found:

Uðk; tþ DtÞ & 2Uðk; tÞ þ Uðk; t& DtÞ

¼ &4 sin2 cpkDt

2

! "
Upðk; tÞ & 4 sin2 cskDt

2

! "
Usðk; tÞ:

(26)

This is a time-stepping solution to Eq. (12) which is
exact for any size of time step Dt. Comparing this to
Eq. (24), which is limited to small Dt, shows that by
replacing ðcp;skDt=2Þ2 with sin2ðcp;skDt=2Þ it is possible to
extend the length of the timestep which can be taken
without reducing accuracy. This opens up two possibil-
ities: (a) replacing Dt with Dt sincðcp;skDt=2Þ or (b)
replacing k2 with k2sinc2ðcp;skDt=2Þ. As the k2 arises from
the gradient terms in Eq. (8) when writing r ! ik, an
adjustment to this substitution which would result in
Eq. (26) would be

rp;s ! ik sincðcp;skDt=2Þ: (27)

These k-space adjustments are used below for the calculation
of the derivatives in a first order model.
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D. First-order k-space model for a heterogeneous
medium

One way to approach the case of propagation through a
heterogeneous medium is to consider the perturbations in
the medium properties as time-varying effective source
terms in the second order wave equation. However, in order
to be able to implement an absorbing boundary condition
(ABC) that effectively imposes a radiation condition on the
field by absorbing any outward travelling waves that reach
the edge of the domain of interest it is convenient to work
with the first order coupled equations, Eqs. (5) and (6).
Such an ABC is necessary in Fourier based methods to
avoid wave-wrapping (see Sec. III below). By replacing
each temporal derivative with a forward finite difference
approximation, these equations can be written in a way that
allows them to be numerically integrated sequentially, one
timestep Dt at a time [note that since in the heterogeneous
case the material properties can be a function of space, the
elastic constants and the density have an explicit (r)
dependence]:

rijðr; tþ DtÞ ¼ rijðr; tÞ þ DtkðrÞdij
@vkðr; tÞ
@xk

þ DtlðrÞ @viðr; tÞ
@xj

þ
@vjðr; tÞ
@xi

! "
; (28)

viðr; tþ DtÞ ¼ viðr; tÞ þ
Dt

qðrÞ
@rijðr; tÞ
@xj

þ fiðr; tÞ
! "

:

(29)

(In this section index rather than bold notation will be used,
as its greater flexibility will be useful. The unit dyadic bkbk
will be written as bki

bkj and the p and s components in this
section will be identified with superscripts rather than the
subscripts used in Sec. II C above.)

First, a simple overview of the numerical scheme will
be given for an initial value problem. Essentially, at each
time step the field is split into shear and compressional com-
ponents so that separate shear and compressional derivative
operators can be used on the two components. The two parts
of field are then recombined before being separated again at
the next timestep. Details of the actual implementation used
in the examples, which used staggered time and space grids
and absorbing boundaries will be described in more detail
below, and the implementation of the sources will be dis-
cussed in Sec. III.

Starting with the initial conditions, rijðr; t ¼ 0Þ and
viðr; t ¼ 0Þ, Eqs. (28) and (29) could be solved numerically
using the following sequential scheme:

(1) Separate the particle velocity vector into compressional
and shear (p and s) components, viðk;tÞ¼vp

i ðk;tÞþvs
i ðk;tÞ,

using

vp
i ðk; tÞ ¼ bki

bkjvjðk; tÞ; vs
i ðk; tÞ ¼ ðdij & bki

bkjÞvjðk; tÞ:
(30)

(2) Calculate the particle velocity divergence, @vk=@xk, the
dyadic, @vj=@xi, and its transpose, @vi=@xj, by calculat-

ing the p and s contributions separately using the p and s
k-space gradient operators, from (27),

@p;s½%+
@xj

¼ F&1fikj sincðccp;skDt=2ÞFf%gg; (31)

where, in order to ensure the stability,31 ccp;s is taken as
the maximum value of the compressional/shear wave
speed in the medium, i.e., ccp;s ¼ max cp;sðrÞ

' (
.

(3) Calculate p and s updates to the stress tensor such that

Drp;s
ij ðr; tÞ ¼ kðrÞdij

@p;sv
p;s
k ðr; tÞ
@xk

þlðrÞ @p;sv
p;s
i ðr; tÞ
@xj

þ
@p;sv

p;s
j ðr; tÞ
@xi

 !

; (32)

rp;s
ij ðr; tþ DtÞ ¼ rp;s

ij ðr; tÞ þ DtDrp;s
ij ðr; tÞ: (33)

(4) Recombine the shear and compressional components
and calculate the velocity vector at the next step

@rij

@xj
ðr; tþ DtÞ ¼

@pr
p
ijðr; tþ DtÞ
@xj

þ
@srs

ijðr; tþ DtÞ
@xj

;

(34)

viðr; tþ DtÞ ¼ viðr; tÞ þ
Dt

qðrÞ
@rij

@xj
ðr; tþ DtÞ

! "
: (35)

(5) Return to Eq. (30) to start the next timestep.

Note that mode conversion will occur when the material
parameters are non-homogeneous so it is necessary to com-
bine and re-separate the velocity field to ensure that this
occurs, i.e., the parts of the field that have been converted
from shear wave to compressional are reassigned to the com-
pressional part of the field (and vice versa) when it is re-split.

This scheme was implemented using staggered grids and
absorbing boundaries, details of which are in the next section.

III. NUMERICAL IMPLEMENTATION

A. Implementation using spatial and temporal
staggered grids

Staggered grids have found widespread use in the numerical
models of wave propagation, in particular in finite-difference
methods because (to give a simple example) the calculation of a
central difference estimate of a gradient is more accurate than
the corresponding forward or backward difference. In spectral
methods this improvement in the gradient calculation is not
required, but staggered grids have nevertheless been shown to
improve stability and efficiency in pseudospectral methods.34

The spatial staggered grid scheme shown in Fig. 1 was
used in the examples in Sec. IV. Note that for a two-
dimensional implementation only the top layer of the staggered
grid shown in Fig. 1 is required. In order to use staggered grids
it is necessary to define the material properties on the half-spa-
tial-step grids. Time-staggering was also used: the velocities
were calculated at times half a timestep, Dt=2, different from
the stresses.
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The calculations of the gradients of the field components
at the staggered grid points were calculated by shifting the
Fourier components by half a grid spacing as follows [cf.
Eq. (31)]:

@p;s½%+
@x6

j

¼ F&1 ikjsinc ðccp;skDt=2Þe6ikjDxj=2Ff%g
n o

: (36)

Using these notations allows the full discrete equations to be
written succinctly. The six equations for updating the shear
and compressional parts of each of the three velocity compo-
nents can be written as

vp;s
i

'
r; tþ Dt=2

(
¼ vp;s

i

'
r; t& Dt=2

(

þ Dt

qiðrÞ

%
@p;sr

p;s
ii ðr; tÞ
@xþi

þ
X

j6¼i

@p;sr
p;s
ij ðr; tÞ
@x&j

)
; (37)

where the summation convention is not used. The following
notation is used above and in Eq. (38): qxðrÞ ¼ qðxþ Dx=2;
y; zÞ, qyðrÞ ¼ qðx; yþ Dy=2; zÞ, qzðrÞ ¼ qðx; y; zþ Dz=2Þ,
lxyðrÞ ¼ lðxþ Dx=2; yþ Dy=2; zÞ, lxzðrÞ ¼ lðxþ Dx=2; y;
zþ Dz=2Þ, lyzðrÞ ¼ lðx; yþ Dy=2; zþ Dz=2Þ and on the
normal grid lðrÞ ¼ lðx; y; zÞ and kðrÞ ¼ kðx; y; zÞ.

The twelve stress components (six stress components
split into shear and compressional parts) can be updated
using the following equation:

rp;s
ij ðr;tþDtÞ¼rp;s

ij ðr;tÞþDtkðrÞdij
@p;sv

p;s
k

'
r;tþDt=2

(

@x&k

! "

þDt2l,ðrÞ
@p;sv

p;s
i

'
r;tþDt=2

(

@x&j

 

þ
@p;sv

p;s
j

'
r;tþDt=2

(

@x&i

!

;

(38)

where l,ðrÞ ¼ lðrÞ for i ¼ j (normal grid) and l,ðrÞ¼ lijðrÞ
for i 6¼ j (staggered grids), and in this equation the summa-
tion convention is used. Note when using staggered grids,
the wave number domain unit dyadic ðbki

bkjÞ must be modi-
fied according to Eqs. (39a) and (39b) in order to account for
the shifts in medium properties and field variables.

ðbki
bkjÞstaggeredgrids ¼ ðbki

bkjÞnormalgrids ' nij; (39a)

where nij is as an arbitrary function defined as

nij ¼

(
1 for i ¼ j
eiðkxi Dxi&kxj DxjÞ=2 for i 6¼ j;

(39b)

where the i before the parentheses is the imaginary number,
not to be confused with the subscript i. Notable is that the
staggered grids unit dyadics is not symmetric, in contrary to
normal grids unit dyadics.

B. Absorbing boundary condition

The periodicity in the field implied by using discrete
Fourier transforms to calculate the spatial gradients results in
the wavefield “wrapping”—when a wave leaves one side of
the domain it instantly appears on the opposite side. This
effect, sometimes referred to as a “periodic boundary con-
dition,” means that the computational domain must be larger
(perhaps significantly larger) than the domain of interest to
avoid contamination of the field of interest by the wrapped
field. This would result in a considerable increase in memory
requirements, especially in the 3D case, so measures that
avoid the wave wrapping are desirable. One approach is to
employ a perfectly matched layer (PML) at the edges of the
domain which gradually decreases the magnitude of the
waves in a strip close to the edge so that by the time they
reach the boundary and wrap around, the amplitude of the
wrapped field is negligible. However, it is not sufficient just
to absorb all of the field components in a strip close to each
of the boundaries as this will affect the field in the main
(non-PML) part of the domain. This is tackled, for the case
of acoustic waves, by artificially dividing the scalar pressure
field into subfields associated with each spatial direction31 so
that only the split of the field normal to the boundaries is
attenuated in the PML.

Similar PMLs for elastic wave propagation are imple-
mented by writing the field in terms of potentials, then artifi-
cially dividing them into direction-dependants splits and
attenuating the directional splits normal to the boundaries.35

The disadvantage of this approach for a Fourier based
method is that the potential fields and their dependant auxil-
iary fields would necessarily be calculated everywhere, due
to the nonlocal behavior of the Fourier transform. This
would require the introduction of numerous unnecessary var-
iables at each timestep. In an alternative approach used in
this paper, the components of the vector and tensor fields
themselves are used directly in the implementation of the
PML.36 In order to incorporate this approach into the present
k-space method, in a generic three-dimensional problem, the

FIG. 1. Three-dimensional spatial staggered grid scheme. In the two-
dimensional implementation just the top layer of the staggered grid was
implemented. Time-staggering was also used: the stresses were calculated at
times nDt; n ¼ 0; 1;…, and the velocities at the shifted times ðnþ 1=2ÞDt.
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six components of the velocity field and the twelve compo-
nents of the stress field (recall that each component has a
shear and compressional part) are split into three directions,
to allow the x, y, and z splits to be attenuated independently.
This increases the number of variables that must be stored,
but its greater effectiveness as a PML allows the absorbing
region to be reduced in thickness. Three PML absorption
coefficients are used to effect this, ax, ay, and az. This is
shown below, suppressing for the moment the temporal stag-
gering. For the velocity fields,

@p;s

@t

#
iv

p;s
i ðr; tÞ

$
¼ ai

#
iv

p;s
i ðr; tÞ

$

þ 1

qiðrÞ
@p;sr

p;s
ii ðr; tÞ
@xþj

( )

; (40a)

@p;s

@t jv
p;s
i r; tð Þ

# $
¼ aj jv

p;s
i r; tð Þ

$#

þ 1

qi rð Þ
@p;sr

p;s
ij ðr; tÞ
@x&j

( )

; j 6¼ i:

(40b)

For the stress fields,

@p;s

@t kr
p;s
ii ðr; tÞ

' (
¼ ak kr

p;s
ii ðr; tÞ

' (
þ kðrÞ þ lðrÞdkið Þ

'
@p;sv

p;s
k ðr; tÞ
@x&k

! "
; k ¼ x; y; z;

(41a)
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p;s
ij r; tð Þ

# $
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@p;sv

p;s
j ðr; tÞ
@xþi

 !

; j 6¼ i;

(41b)

@p;s

@t

#
j r

p;s
ij ðr; tÞ

$
¼ aj jr

p;s
ij r; tð Þ

# $

þ lij rð Þ @p;sv
p;s
i ðr; tÞ
@xþj

 !

; j 6¼ i

(41c)

where k; i; j ¼ x; y; z. Note that the summation convention is not
used in Eqs. (40a), (40b), (41a), (41b), and (41c). Labeling the
artificially direction-dependant splits of each field is based on
gradients of that field along each particular spatial direction. To
see this, consider the stress field rxx in the 2D plane ðx; yÞ rxx is
calculated at each timestep as ðkþ 2lÞ@ux=@xþ k@uy=@y. The
x-part is then referred to be as ðkþ 2lÞ@ux=@x (proportional to
the gradient along x direction) and the y-part is considered as
k@uy=@y (proportional to the gradient along y direction).

Following Tabei et al.,31 the equations above are in the
form of @R=@t ¼ aRþ Q so can be rearranged as
@ðeatRðtÞÞ=@t ¼ eatQðtÞ which is in a form more stable for
calculation. The full equations as they were implemented,
including the staggered temporal and spatial grids and PML
in the above form are given in the Appendix. Here, the
absorption coefficients ðaxj ; j ¼ x; y; zÞ are chosen according
to a power law attenuation as

axj ¼ amax
cmax

Dxj

xj & xj0

xjmax & xj0

! "n

; (42)

where xj0 is the coordinate at the inner edge of the PML,
xjmax is the coordinate at the outer edge of the grid, cmax is
the maximum value of the compressional and shear wave
speeds, Dxj is the grid spacing in the PML, and amax is the
maximum absorption in Nepers per cell, within the PML.

C. Source implementation

For the numerical simulations, two types of sources,
compressional monopoles and plane waves, were modeled in
the two-dimensional space ðx; yÞ. For implementation pur-
poses, the source given with profile f ðtÞ is first considered in
the form of the displacement compressional potential ð/Þ,
and then the elasticity constitutive equations [Eqs. (1) and
(2)] are applied to calculate the stresses for each timestep; so
that a short pulse in ultrasound or its counterpart in seismol-
ogy and oceanography, an explosive source, can be modeled
by adding a known value to stress components, while keep-
ing the initial velocities equal to zero.

Given the source profile as f ðtÞ, an incident cylindrical
compressional wave may be written as / ¼ f ðt& r=cpÞ=

ffiffi
r
p

,
where r is the distance from the origin, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. This

form can be used to model a line source in the 3D space or a
monopole source in 2D planes. Using constitutive equations
[Eqs. (1) and (2)], we can write,

rxx ¼ qc2
p 2gþ r

@g

@r

% )
& 2qc2

s gþ y2

r

@g

@r

% )
; (43a)

ryy ¼ qc2
p 2gþ r

@g

@r

% )
& 2qc2

s gþ x2

r

@g

@r

% )
; (43b)

rxy ¼ qc2
s

xy

r

@g

@r
; (43c)

where g ¼ &ð1=2c2
pr2

ffiffi
r
p
Þff ðt& r=cpÞ þ 2

ffiffi
r
p

f 0ðt& r=cpÞg.
To fulfill these conditions, one can equally add a known
value to the normal stresses at the same nodal point, while
keeping the shear stress equal to zero. This equivalency has
been shown by Refs. 13 and 37. In the 3D space, where a
monopole propagates spherical waves in the form of
/ ¼ f ðt& r=cpÞ=r, a similar approach could be undertaken
and the same conclusion would be drawn.38

A compressional plane wave propagating along an arbi-
trary direction xj of a 2D space with an arbitrary time profile
f ðtÞ may be written as f ðt& xj=cpÞ; using constitutive equa-
tions in Cartesian coordinates, assuming that the wave prop-
agates in the x direction, we then can write,

rxx¼
kþ2l

c2
p

f 00 t& x

cp

! "
; ryy¼

k
c2

p

f 00 t& x

cp

! "
; rxy¼ 0;

(44)

where f 00 ¼ @2f=@t2. Equations (44) show that including a
compressional plane wave source in x direction involves
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unequally adding a known value proportional to the Lamé
parameters to normal stresses at a line of nodes perpendicu-
lar to the direction of propagation while keeping the shear
stress equal to zero. Note that in the case of acoustic waves,
l ¼ 0, rxx ¼ ryy ¼ &P, where P is the acoustic pressure;
therefore, normal stress fields are updated equally. Likewise,
similar relations could be written for a plane wave propagat-
ing in the 3D space.

In all the following examples, the time profiles of the
sources for the normal stresses are considered to be the first
and the second derivatives of a Gaussian pulse with the cen-
ter frequency a and the time delay to.

IV. EXAMPLES

A. Monopole in an infinite homogenous medium

As a first example, consider a point source in an
unbounded homogenous medium. An explosive source is
modeled using the derivative of a Gaussian shape with the
center frequency a ¼ 6:4 Hz and the time delay to ¼ 0:225 s
(allowing sufficient time before the pulse reaches its peak to
ensure that the input pulse is effectively zero at t ¼ 0). With
a medium with the compressional wave speed of
cp ¼ 4000 m s&1, the shear wave speed of cs ¼ 2400 m s&1

and the density of q ¼ 2700 kg m&3, the number of grid ele-
ments is set 150 in each direction with equal grid-spacing of
100 m (which corresponds to only 3 points per minimum
wavelength in the medium). The Courant–Friedrichs–Lewy
criterion is CFL ¼ c0Dt=Dx, where c0 for elastic waves
should be replaced by the maximum of the compressional
and shear wave speeds, and was set to 0.3. The receiver is
located at 400 m from the source. A PML is used on all the
edges of the grid to simulate a two-dimensional unbounded
space. For effective attenuation on the edges of the bound-
ary, a PML thickness of 20 grid points, together with a maxi-
mum PML absorption coefficient of amax ¼ 4 and absorption
power of n ¼ 4, were empirically found to be sufficient to
minimize boundary reflection and wraparound effects.

Figure 2 shows the radial component of the displace-
ment compared with the analytical solution for the case of
an infinite (unbounded) homogenous medium, which is
obtained by numerically convolving the pulse shape with
the Green’s function solution given by Ref. 39, which
shows excellent agreement. In Fig. 3 the net energy of the
propagating elastic wave is plotted versus time to first
ensure that the method well-preserves the energy and sec-
ond demonstrate the effectiveness of the PML by showing
how the energy of the propagating wave decreases as a
function of time once it reaches the PML. Region (a) corre-
sponds to the time when the source energy is input. Region
(b) is the main portion of the simulation in which the wave
travels towards the boundaries. As it can be observed, the
energy is well-preserved as an important characteristic of a
numerical method. Region (c) is when the wavefront
reaches the boundary and is being absorbed and finally
region (d) is after all the energy is absorbed. For this pur-
pose, the total duration of the simulation was extended to
4 sec to ensure that all the travelling energy is absorbed
effectively.

B. Two homogenous half-spaces

The second example considers an explosive source in a
fluid half-space overlying an elastic half-space. The explosive
source is modeled as the second derivative of a Gaussian (also
known as the Ricker wavelet), with the center frequency a
¼ 4 Hz and the initial time delay to ¼ 0:5s. The acoustic
(fluid) region is modeled simply by letting l ¼ 0, or equiva-
lently, cs ¼ 0. The source is located in the fluid at 870 m above
the interface and the receiver is positioned at 870 m above the
interface with the horizontal distance of 600 m from the source.
The acoustic properties of the fluid are considered as those of
water (the sound speed of cf ¼ 1500 m s&1 and the density of
q ¼ 1000 kg m&3) and the elastic region is considered as soil
with the compressional wave speed of cp ¼ 3400 m s&1, the
shear wave speed of cs ¼ 2500 m s&1 and the density of
q ¼ 1963 kg m&3. The PML is set as in the previous example.

In order to demonstrate the accuracy, the velocity com-
ponents time series for the recorded signal at the receiver are
compared with the analytical solution. In order to obtain the
analytical solution, the Green’s function given by Ref. 40,
for acoustic wave reflection from a solid-fluid flat interface,

FIG. 2. The radial displacement as a function of time 400 m from an explo-
sive source in a 2D homogenous elastic medium (i.e., cylindrical wave prop-
agation). Analytical solution (solid), k-space method (circles).

FIG. 3. The net energy of the propagating wave vs time. After the source is
added to the field [region (a)], the energy is preserved [region (b)] until the
wave reaches the PML [region (c)], where it is attenuated, after which grad-
ually there is no energy remaining in the domain [region (d)].
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is convolved numerically with the time-profile of the source,
using the code obtained from Ref. 41. The number of grid
nodes is 400 (to allow the wavefronts evolve sufficiently to
capture all types of the waves as discussed below) in each
direction with equal grid spacing of 15 m, which corresponds
to 8 points per minimum wavelengths (PPMW). Figure 4
shows the comparison of the results of the k-space method
and the analytical solution for CFL¼ 0.25, which shows
excellent agreement.

First, in order to assess the temporal accuracy and stabil-
ity, the method is compared with the staggered leapfrog
pseudospectral (PSTD) method, in which the time integra-
tion is implemented using the classical finite differencing.
For this purpose, the CFL number (which in essence is repre-
senting the size of the timestep) was varied from 0.1 up to
1.4 to measure the accuracy of each of the schemes. The effi-
ciency of the k-space approach becomes apparent when the
L2 error of the time series is plotted versus various choices
of CFL for both the k-space and the staggered leapfrog meth-
ods. This is shown in Fig. 5. It is not surprising that for small
timesteps, both numerical methods are accurate, but once a
larger CFL is chosen, the leapfrog PSTD becomes inaccurate

and eventually unstable. Note that the L2 errors for the
leapfrog PSTD method are not given for the CFL numbers
above 0.5 because the computation becomes severely unsta-
ble for higher CFL numbers while, the k-space method
remains stable. The error of the k-space method does
increase as the timestep increases, but much more slowly.

In the second step, the spatial accuracy of the method is
also verified by making comparisons with the second and
fourth-order finite difference time domain (FDTD)
schemes13,14 of the same model problem (i.e., stress-velocity
formulation) of elastodynamics. The codes for this purpose
were obtained from Ref. 42. The error of each method was
evaluated against the analytical solution for different points
per minimum wavelengths (from 2 up to 15). To realize this,
the grid spacing was varied accordingly from 60 m to 8 m
and the CFL number was set to 0.2 to ensure a sufficient
temporal accuracy for each of the methods. Figure 6 shows
the trend of the L2 error versus the choices of the PPMW. As
evident, even compared with the fourth-order FDTD, the
k-space method has a major improvement in accuracy for the
same PPMW, up to about 7 PPMW. Of course, for large
PPMW all the methods converge to the exact solution but as
far as the computational efficiency is concerned, the k-space
method can result in significant reduction in the computa-
tional effort for a same degree of accuracy, especially in
large scale problems.

For completeness, a snapshot of propagation of the
absolute value of the velocity field is also presented in Fig. 7
in the dB scale. Several wavefronts are clearly distinguish-
able. These waves are labeled as “a,” Direct Wave; “b,”
Reflected Wave; “c,” Head Wave; “d,” Transmitted Com-
pressional Wave; and “e,” Transmitted Shear Wave.

C. Heterogeneous medium: Scattering of plane waves
by cylindrical inclusions

An example of scattering of compressional plane waves
by a cylindrical inclusion is modeled. In this example, the

FIG. 4. Velocity components time-series at the receiver for the example of
an explosive source above a fluid-solid interface (Sec. IV B). Analytical so-
lution (solid), k-space method (circles). (a) Horizontal particle velocity. (b)
Vertical particle velocity.

FIG. 5. Comparison of accuracy of the k-space method and the staggered
leapfrog pseudospectral method: L2 error of the “measured” time series as a
function of CFL number.
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scattering of elastic waves from an elastic cylindrical fiber is
modeled and the results are compared with the analytical so-
lution. The cylindrical inclusion is a Silicon Carbide fiber
imbedded in a Titanium alloy matrix, which is a composite
material of interest in aerospace applications. The properties
of the matrix are given as cp ¼ 4500 m s&1, cs ¼ 2000 m s&1

and q ¼ 4800 kg m&3 and the fiber as cp ¼10 000 m s&1,
cs ¼ 4100 m s&1 and q ¼ 2800 kg m&3. The excitation is a
pulsed plane wave with the time profile of the derivative of a
Gaussian, with the center frequency a ¼ 5 MHz and the
time delay to ¼ 300 ns. The adjustments of the PML are sim-
ilar to the previous examples; however, to efficiently model
a plane wave propagating along the horizontal direction,

the PML is switched off on the top and bottom edges of the
domain. This is necessary to avoid the diffraction resulting
from the two end nodes of the line of source points, therefore
to create a plane wave consistent with the theoretical
definition of pulsed plane waves. However, in the stimula-
tion of plane wave scattering from cylindrical inclusions,
since periodic boundary conditions have been used, the dura-
tion of the simulation is limited to the time when the points
being monitored have not been contaminated by the wrapped
wave field. In the example shown here it has been ensured
that the results are not affected by this limitation. The num-
ber of grid nodes is 256 in each direction with equal grid
spacing of 50 lm (this corresponds to 9 points per minimum
wavelength in the medium). The CFL is considered as 0.25

FIG. 6. Comparison of accuracy of the k-space method and the 2nd and 4th
order FDTD methods: L2 error of the “measured” time series as a function
of PPMW number.

FIG. 7. Snapshot of the absolute value of the velocity field in the dB scale
at time t¼ 1.47 s for the example in Fig. 4. Various wavetypes are clearly
distinguishable: (a) direct and (b) reflected P-waves in the fluid, (c) head
waves, (d) transmitted P waves in the solid, and (e) S-waves (converted
from P-waves) in the solid. (f) Demonstrates the critical angle.

FIG. 8. Amplitude of the (a) horizontal and (b) vertical displacements at a
distance of 3a (where a is the radius of the scatterer) at 5 MHz. Analytical
solution (solid), k-space method (circles).
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for a satisfactory degree of accuracy. The radius of the scat-
terer in is assumed to be 1.2 mm.

The comparisons of the frequency domain analytical so-
lution given by Ref. 43 and the numerical results for both the
vertical and the horizontal displacements are presented in
Fig. 8. In order to obtain the numerical results in the fre-
quency domain, a broad band pulse was used, and the scat-
tered field at r ¼ 3:6 mm was transformed to the frequency
domain. The results were then compared for an arbitrary fre-
quency of 500 kHz, and show excellent agreement. Snap-
shots of propagation of the wavefronts for the net velocity
amplitude are presented in Fig. 9 in the dB scale.

This example shows that the presented k-space method
can conveniently handle scattering problems of interest in
several fields, and can result in significant efficiency gains
compared to other methods such as FD, especially when the

scattering effects of complex geometries are to be investi-
gated. This is of interest in many different applications,
including ultrasonic Non-Destructive Evaluation (NDE) of
inhomogeneous materials with complex microstructure,
ultrasound scattering from solid particles in colloidal sys-
tems, seismology, geophysics and biomedical engineering.

V. DISCUSSION

The k-space model presented here for elastic waves can be
significantly more efficient than conventional finite element and
FD methods, and even pseudo-spectral models. Like PSTD
models, the k-space method describes the high-frequency elastic
waves in a Fourier basis so requires fewer mesh points per
wavelength than FD methods. However, the use of the k-space
adjustment permits larger time steps without reducing accuracy

FIG. 9. Snapshots of absolute value velocity field in the dB scale for the example of scattering of a pulsed plane wave by a single elastic cylindrical fiber
imbedded in an elastic matrix (Sec. IV C) at times t¼ 1.31, 1.5, 1.7 and 2.25 ls (the incident plane wave is propagating from left to right).
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or introducing instability. The method maintains the advantages
of the previous acoustic and elastic k-space methods; like those,
the present method is temporally and spatially exact for homo-
geneous media, and spectrally accurate in space for smoothly
varying heterogeneous media. In practice, it is still useful for
modeling non-smooth media, although in such cases more than
two PPW are typically required.

When the heterogeneous elastic wave equation [Eq. (7)]
is re-written in the form of the stress-velocity formulation
[Eqs. (5) and (6)], the spatial derivatives of the medium
properties (i.e., density, and compressional and shear wave
speeds) are eliminated. In such cases, first order operators
are applied for the spectral calculation of the spatial deriva-
tives of the field variables. In comparison with Liu’s second
order k-space approach,30 both methods essentially have the
same accuracy for homogenous media since they are mathe-
matically identical. On the one hand, Liu’s method requires
computation and storage of only the displacement fields,
while the present method requires computation and storage
of the stresses as well as the velocity components. However,
the first order k-space method has the capability of conven-
iently incorporating PML absorbing boundary conditions.
For large computations, the high performance of the PML
allows the grid size to be substantially reduced without intro-
duction of wraparound or boundary-reflection errors, so that
the present k-space method can often perform more effi-
ciently, especially in three-dimensional problems.

The developed k-space method could also be thought of
as a modified leapfrog pseudospectral (PSTD) method for the
stress-velocity formulation of elastodynamics. The modifica-
tion is via introducing two temporal propagators, each of
which is associated with propagation of one mode. In leapfrog
pseudospectral methods, although the first order spatial deriva-
tives are accurately calculated using the fast Fourier transform
(FFT), for higher degrees of accuracy schemes such as
Adams–Bashforth iteration are commonly required.44,45 The
temporal correction provided by the k-space method elimi-
nates the need for higher-order time schemes. However, the
previous studies have shown that the pseudospectral methods
employing fourth-order Adams-Bashforth time integration
shows trends similar to that of PSTD in Fig. 5.46,47

The other advantages of this method are (a) the ability of
being used for modeling the acoustic medium by simply let-
ting the shear speed be zero, and more importantly, (b) the
capability of efficiently and accurately modeling interactions
of elastic and fluid media with significant savings in computa-
tions compared to other approaches such as Virieux’s stress-
velocity FD method.13 For highly heterogeneous media, where
discontinuities exist in medium properties, numerical artifacts
(Gibbs phenomena) may arise from applying FFTs. The
resulting inaccuracies could be minimized by smoothing the
media using an appropriate smoothing algorithm such as a
spatial-frequency domain Hanning window.

VI. SUMMARY

A new k-space method for numerical modeling of elastic
waves, using the first order stress-velocity formulation, has
been described. The exact second order k-space solution has

been derived for homogenous media, and then, the leapfrog
pseudospectral scheme for time integration has been modified
with the k-space second order operators, which makes time
integration more stable. The k-space second order operators,
when decomposed into first order operators were applied to
discretize the stress-velocity equations for modeling elastic
wave propagation in heterogeneous media. Staggered spatial
and temporal grids were used. The step by step formulation of
the method when incorporating the staggered grids has been
described and a new model that can incorporate perfectly
matched layers (PMLs) as the absorbing boundary conditions
has been explained. For validation of the method, examples of
propagation of elastic waves in homogenous and heterogene-
ous media have been compared with the analytical solutions
and the results have been discussed with regards to the accu-
racy and efficiency of the method. Further examples have
been given to show the efficiency and flexibility of the method
when applied to large scale scattering problems.

APPENDIX

To avoid confusion with the use of subscripts when devel-
oping the full 3D relations of the k-space method by using
Eqs. (37) and (38) combined with the PML [Eqs. (40) and (41)],
the full development is presented here for arbitrary selections of
velocity and stress components in the three-dimensional space.
As each field is subdivided into compressional and shear wave
splits, the following development is represented for both by
using superscripts. As an example of the velocity fields, vx is
presented; rxx and rxy are fully developed as examples of the
stress tensor field. Denoting xþ ¼ xþ Dx=2, yþ ¼ yþ Dy=2,
zþ ¼ zþDz=2, tþ ¼ tþDt=2, t& ¼ t&Dt=2, and tþþ ¼ tþDt,

(1) Velocity field ðvxÞ:

xvp;s
x ðx

þ; y; z; tþÞ

¼ eaxDt=2

(

eaxDt=2
xvp;s

x ðx
þ; y; z; t&Þ

þ Dt

qðxþ; y; zÞ
@p;srp;s

xx ðx; y; z; tÞ
@xþ

 !)

;

yvp;s
x ðx

þ;y;z; tþÞ

¼ eayDt=2

(

eayDt=2
yvp;s

x ðx
þ;y;z; t&Þ

þ Dt

qðxþ;y;zÞ

 
@p;srp;s

xy

'
xþ;yþ;z; t

(

@y&

!)
;

zvp;s
x ðx

þ;y;z; tþÞ

¼ eazDt=2

(
eazDt=2

zvp;s
x ðx

þ;y;z; t&Þ

þ Dt

qðxþ;y;zÞ

 
@p;srp;s

xz

'
xþ;y;zþ; t

(

@z&

!)

;
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vx ¼ xvp
x þ yvp

x þ zvp
x þ xvs

x þ yvs
x þ zvs

x:

(2) Normal stress field ðrxxÞ:

xrp;s
xx ðx;y;z; t

þþÞ¼ eaxDt=2

(

eaxDt=2
xrp;s

xx ðx;y;z;tÞ

þDt½kðx;y;zÞþ2lðx;y;zÞ+

'

 
@p;svp;s

x

'
xþ;y;z;tþ

(

@x&

!)

;

yrp;s
xx ðx; y; z; t

þþÞ

¼ eayDt=2

(

eayDt=2
yrp;s

xx ðx; y; z; tÞ þDtkðx; y; zÞ

'
@p;svp;s

y

'
x; yþ; z; tþ

(

@y&

 !)

;

zrp;s
xx ðx; y; z; t

þþÞ

¼ eazDt=2

(
eazDt=2

zrp;s
xx ðx; y; z; tÞ þ Dtkðx; y; zÞ

'

 
@p;svp;s

z

'
x; y; zþ; tþ

(

@z&

!)

;

rxx ¼ xrp
xx þ yrp

xx þ zrp
xx þ xrs

xx þ yrs
xx þ zrs

xx:

(3) Shear Stress field ðrxyÞ:

xrp;s
xy ðx

þ; yþ; z; tþþÞ

¼ eaxDt=2

(

eaxDt=2
xrp;s

xy ðx
þ; yþ; z; tÞ þ Dtl xþ; yþ; zð Þ

'
@p;svp;s

y

'
x; yþ; z; tþ

(

@xþ

 !)
;

yrp;s
xy ðx

þ; yþ; z; tþþÞ

¼ eayDt=2

(
eayDt=2

yrp;s
xy ðx

þ; yþ; z; tÞ þ Dtl xþ; yþ; zð Þ

'

 
@p;svp;s

x

'
xþ; y; z; tþ

(

@yþ

!)

;

rxy ¼ xrp
xy þ yrp

xy þ xrs
xy þ yrs

xy zrp
xy ¼ zrs

xy ¼ 0:

Other field components, velocities vy and vz, and stresses ryy,
rzz, rxz, and ryz could be developed in a similar manner.
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