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An efficient Green’s function solution for acoustic initial value problems in homogeneous media
with power law absorption is derived. The solution is based on the homogeneous wave equation for
lossless media with two additional terms. These terms are dependent on the fractional Laplacian
and separately account for power law absorption and dispersion. Given initial conditions for the
pressure and its temporal derivative, the solution allows the pressure field for any time ¢ > 0 to be
calculated in a single step using the Fourier transform and an exact k-space time propagator. For
regularly spaced Cartesian grids, the former can be computed efficiently using the fast Fourier
transform. Because no time stepping is required, the solution facilitates the efficient computation of
the pressure field in one, two, or three dimensions without stability constraints. Several computa-
tional aspects of the solution are discussed, including the effect of using a truncated Fourier series
to represent discrete initial conditions, the use of smoothing, and the properties of the encapsulated

absorption and dispersion. © 2011 Acoustical Society of America. [DOI: 10.1121/1.3583537]

PACS number(s): 43.35.Bf, 43.20.Bi, 43.20.Hq, 43.80.Cs [TDM]

. INTRODUCTION

There are many applications in acoustics in which the
absorption over the frequency range of interest follows a fre-
quency power law. For example, the absorption in soft bio-
logical tissue over diagnostic ultrasound frequencies follows
a frequency power law in which the exponent is between 1
and 2." Similarly, the absorption in marine sediments follows
a power law where the exponent is close to 1.> Classical vis-
cous loss terms such as that used in Stokes” wave equation
are not sufficiently general to account for power law absorp-
tion with arbitrary frequency dependence.’ Consequently,
there has been a focus on deriving new wave equations
which facilitate this generality. These equations are typically
based on the inclusion of a fractional derivative operator. In
the case of a linear homogeneous medium, this gives an
equation of the form*

, 10 . B |
\Y —zwnhr p(r, 1) =0. (D

€o

Here p is the acoustic pressure at time ¢ and position r € R”
where n = 1, 2, 3, ¢¢ is the sound speed, II is a general de-
rivative operator, and 7 is a proportionality coefficient.
Szabo made the observation that the addition of a deriv-
ative operator of order y yields power law absorption with a
(y — 1) frequency dependence.” Consequently, power law
absorption with a non-integer frequency dependence can be
modeled by using a derivative operator of fractional order.
Several different operators have been proposed based on
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both the fractional temporal derivative® ' and the fractional

Laplacian®'' (see Ref. 4 for a recent review). These equa-
tions represent various extensions of the Blackstock and
Stokes equations to account for power law absorption of ar-
bitrary order. It is the efficient solution of such equations
that is the subject of interest here.

Both finite element and finite difference time domain
solutions of wave equations based on the fractional temporal
derivative have previously been discussed.”'*'? For govern-
ing equations of this type, the computation of the fractional
temporal derivative requires the pressure time history at
each grid node to be stored (such operators are calculated via
convolution). For power law exponents close to 2, only a
small number of previous terms are necessary. However, as
the exponent approaches 1, this number increases rapidly,
making this type of approach intractable for many three
dimensional problems of interest. In the case of Fourier
based k-space and pseudospectral time domain methods, it is
possible to circumvent these memory effects by using a gov-
erning equation based on the fractional Laplacian rather than
the fractional temporal derivative.* The computation of these
operators requires the values of the pressure field at all other
positions (rather than times) which are already inherently
known.

Analytical time domain Green’s functions have also
recently been derived for a generalized lossy wave equation
based on the fractional temporal derivative.'® These solu-
tions are based on dividing the Green’s function into lossless
and lossy components. The latter is then computed using sta-
ble law probability density functions.'* However, for absorp-
tion with an arbitrary frequency dependence in the range 1 to
2, this requires the use of specialized functions and solution
techniques. Other techniques for computing solutions in
one dimension have also been proposed.'”'® While useful
for studying the effects of attenuation and dispersion on
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different pulse shapes, these have not been extended to three
dimensional problems.

Here, an exact Green’s function solution to the absorb-
ing wave equation proposed by Treeby and Cox” is derived.
The governing equation is based on the fractional Laplacian
and represents an extension of that given by Chen and
Holm'" to correctly account for sound speed dispersion. The
derived solution is based on a lossy Green’s function
expressed in the spatial frequency domain or k-space. It
allows the computation of the pressure field for any time
t > 0 in a single step given initial conditions for the pressure
and its temporal derivative. The solution method represents
a generalization of that presented by Cox and Beard'”'® for
initial value problems in lossless media. The derivation of
the Green’s function solution is described in Sec. II and the
corresponding numerical implementation is presented in
Sec. III. Several computational aspects of the solution are
discussed, including the effect of using a discretized compu-
tational domain and the properties of the encapsulated
absorption and dispersion. Summary and discussion are then
given in Sec. IV.

Il. DERIVATION OF AN EXACT GREEN’S FUNCTION
SOLUTION FOR THE ABSORBING WAVE EQUATION

A. Acoustic wave equation for power law absorption

For a homogeneous medium in which the acoustic
absorption follows a frequency power law of the form

o= o’ )

The dispersive wave equation based on the fractional Lapla-
cian is given by*

1 0? d /2 (y+1)/2
(VZ o %@+ T§(7v2)}/ + n(7v2) y+1)/ )

% p(r, 1) = 0. 3)
Here o is the absorption coefficient in Np (rad/s)™> m~!, w
is the angular frequency, y is the power law exponent, V? is
the Laplacian, ¢ is the sound speed, p(r, ¢) is the acoustic
pressure, and 7 and 7 are proportionality coefficients given by

-1
T =200 ,

1 = 2oy tan(my/2). 4)
This equation is valid for power law exponents in the range
0<y<3 for y# 1 under the smallness approximations
o< w/c, and 11(0“%%/6%+1 < 1, where ¢, is the frequency
dependent phase speed. The two additional derivative opera-
tors respectively account for power law absorption along with
the corresponding dispersion (dependence of the sound speed
on frequency) dictated by the Kramers-Kronig relations."’

B. Deriving the Green’s function in k-space

Given initial conditions for p(r, ¢) and Jp(r, 1)/0t, a
solution to Eq. (3) for a homogeneous and unbounded
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medium can be formed using standard Green’s function
methods, where?®

1 0g(r, t|ro, o)
p(l", t) - Cz J |:p(r05 t()) 6[0

0
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(here the integration is performed over R"). In this case, the
Green’s function g(r, f|ro, fo) represents a solution to the
equation

2
<V2 _ li + Té(7v2)}’/2 + n(vz)(y+1)/2>
p
x g(r, 1|ro, o) = —d(r —ro) 8(t — 1o), (6)

where ¢ is the Dirac delta function. Using the Fourier trans-
form conventions defined in Ref. 21, the four dimensional
Fourier transform over r and ¢ is given by

2
(—k2 + w_2 —itwk” + r]k”l) G(k, w|rg, to)
€o

1 . .
— (2 )4 em)l‘neﬂk-rn7 (7)
T

where k and @ are the spatial and temporal frequencies,
respectively, the scalar wave number is given by k*> =k -k,
and the Fourier transform of the fractional Laplacian is
defined as

2

F{(-v*"r(n)} = T}, ®)
(here ' denotes the spatial Fourier transform). Solving for
G(k, wlrg, fy) and then taking the inverse four dimensional
Fourier transform yields an integral form of the required
Green’s function

2

(2‘7(:)4 J J h(k, »)dodk, 9)

where the integrand is given by

g(r, tlro, t0) = —

—iw(t—1y) ,Hik-(r—rp)

e

W? — itcok’ + e+l — (cok)?

e

h(k, @) = (10)

This expression for the Green’s function is not yet computa-
tionally useful due to the singularities in the integrand. Fol-
lowing the approach taken by Jackson for lossless media,?
these singularities can be removed by analytically solving
the integration with respect to @ (denoted herein as [ dw).
For ¢ > to, this can be achieved by integrating the complex
function

e—ic(t=10)

52 — irc%gky + nedkrt! — (cok)2 7

£(é) (11)
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FIG. 1. Integration of the complex function (&) over the contour I'; (R)
+T¢(R) using Cauchy’s residue theorem. There are two poles located in the
lower half plane.

over the contour I'(R) = I'.(R) + I'c(R) shown in Fig. I,
where ¢ is the extension of  to the complex plane. The
function (&) has two poles located in the lower half of the
complex plane

Epl, épz = *cokY — locgco ky (12)
where Y is defined as
Y= \/1 — 02 k® 2 — 20cpk tan(my/2). (13)

Setting 7y = 0 without loss of generality (the function is
invariant to temporal translations in ¢ and #,), by Cauchy’s
residue theorem the integration can be written as

JR G IWIGT:
R re(®)
= —2mi(Res{f(&); &1 } +Res{f(§): &a ),
(14)
where
R
[ deo = ka@dé]. (1)

The required residuals are given by

—i( i(?(]kT*l’Dt()('(‘-?lky)f

ZCOkY

e

Res{f(g); gpl}a Res{f(f); EpZ} ==
(16)

As R — oo, the integration around the contour J} R)f
dé — 0 and thus the solution for the analytical integration
can be written as

efotoc(‘;rlkyt . .
do = 2ni| ————— e TORLE _ plcok
J 26’0/{Y ( >’

y+1gy
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where the second term has be simplified using the Euler
identity ¢’ — e~ = 2isin 0. Note, for t < t,, the contour
integration shown in Fig. 1 is instead closed by a semi-circle
in the upper half plane. As there are no poles located within
the contour, the integrand is holomorphic and the Green’s
function is equal to zero. This demonstrates the causality of
the govermng equation given in Eq. (3) under the condition
Im[Y] < ogc) k.

Returning to Eq. (9), the required Green’s function is
now given by

2

(27I)

g(r, 7lrg, 0) = JTp(k 1) e T gk (18)

where the time propagator Tp(K, 7) is defined as

. JHlpy
sin(cok Xt) e~ %% K1
CQkY ’

To(k, 1) = (19)

The corresponding temporal derivative of the Green’s func-

tion can be written as

(9g(r, l‘|l’07 0)
ot

C% J ik-(r—rop)
= Tr(k, " dk 20
) (k, 7) ¢’ ; (20)

where the gradient time propagator Tp (k, 1) is defined as

fp(k, l) _ ei%(‘ﬂﬂk}.’

apcpk? ! sin(cok Y)
Y

X [cos(cokYt) 21

If o9 = 0, i.e., the medium is lossless, Y = 1 and the two
time propagators reduce to
sin(cokt) .
Tp(k, 1) = — Tp(k, 1) = cos(cokt). (22)
Co

For lossless media, a Green’s function of this form can also
be derived by taking the Fourier transform of the free space
Green’s function and then simplifying using the spherically
symmetric part of the corresponding spherical harmonic
expansion.*

C. Green’s function solution for the initial value
problem

Equations (18)—(21) can now be combined with Eq. (5)
using the result Jg/0f) = —0g/0t (due to the temporal
translational invariance of the Green’s function) to give

pr 1) = (zl)jj[m 07+ 2000y,

x ™ (F=T0) gkdr,,. (23)
This equation is an exact solution to Eq. (3) for the acoustic
pressure at any time ¢ > 0 given initial conditions for the

pressure and its temporal derivative. The required integrals
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may be calculated sequentially and written succinctly using
the Fourier transform

p(l‘, [) = F_l {F{p(ro, 0)}TP + F{ap(g;o)} Tp}, (24)

where I and ' represent the forward and inverse spatial
Fourier transforms, respectively, and the expression is valid
in one, two, and three dimensions. A solution of this form
for lossless media was previously presented by Cox and
Beard to model initial value problems in photoacoustics in
which 9p(r, 0)/0t = 0.'"7'® This was later extended to
account for acoustic absorption with linear frequency de-
pendence but no dispersion.>> Because the solution is com-
puted by transforming to and from the spatial frequency
domain, there are obvious analogies to other spectral techni-
ques, including k-space,? pseudospectral time domain,**
and angular spectrum methods.? In the lossless case, the so-
lution can also be related to exact nonstandard finite differ-
ence methods®® which form the basis for other k-space
techniques.?’

I1l. NUMERICAL IMPLEMENTATION
A. Discrete solution

The numerical implementation of Eq. (24) can be
achieved as follows. Given initial conditions compactly sup-
ported within a computational domain Q C R" in n-dimen-
sional space, the first step is to discretize Q. The use of a
regularly spaced Cartesian grid allows the Fourier transform
to be computed efficiently using the fast Fourier transform
(FFT). The values for the initial conditions at each of the
grid nodes are then assigned. Next, an n-dimensional plaid
wavenumber matrix £ is created based on the properties of
Q.%® The pressure within the domain at some time 7 > 0 can
then be computed using the forward and inverse FFT via Eq.
(24) using the coefficients defined in Egs. (13), (19), and
(21). If the temporal evolution of the pressure field is
required, only one additional inverse FFT is needed for each
additional value of 7. Note, the use of the FFT to compute
the discrete solution of Eq. (24) implicitly assumes the pres-
sure field is periodic in space. Consequently, waves leaving
the computational domain on one side will reappear on the
opposite side. For the examples given here, the size of the
computational grid was extended to avoid these effects.

B. Discrete initial conditions and oscillations

The application of Eq. (24) for particular discrete initial
conditions can result in oscillations in the numerical solution
for the pressure field that are not intuitively expected. These
oscillations are also encountered in other spectral methods
and occur because the discretization of the computational
domain causes the corresponding Fourier space to become
discrete and bounded (i.e., there is only a finite number of
spatial wavenumbers the computational grid can support).?’
In this case, a discrete spatial delta function can be consid-
ered as the discrete sampling of a continuous function
derived from a truncated Fourier series with the correspond-
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ing finite number of expansion coefficients (this function is
often referred to as the band-limited interpolant).?

In general, any discrete initial conditions for p and
Op/Ot can be decomposed into a weighted sum of discrete
spatial delta functions located at the grid nodes. Conse-
quently, a more detailed understanding of the origins of
these oscillations can be derived from studying the response
of the numerical solution to a single discrete delta function
located at one of the nodes. For example, consider the one-
dimensional lossless problem in which dp(x, 0)/0¢t = 0 and
the initial pressure p(x, 0) = po(x) is given by a discrete spa-
tial delta function

pols) = {(1) o (25)

(here x, = nAx for n € 7). In this case, Eq. (24) reduces to

p(x,, 1) = Ffl{F{po(xn)} cos(cokmt) }, (26)

where k,, = mAk for m € Z. The discrete Fourier transform
of po(x,) can be written explicitly as

N/2-1

an
> polx)eN™, 27)

n=-N/2

Py (km) -

where the number of grid nodes N is taken to be even, and
AxAk = 2n/N. For the initial conditions given by Eq. (25),
the Fourier expansion coefficients are given simply by
Po(kn) = 1,Vm. The corresponding continuous function
Po(x) derived from the finite set of expansion coefficients
(i.e., the band-limited interpolant) is then given by>°

R dmims
Po(x) = > Polkn)e N Ax

m=—N/2

= ]lV [i + cot(xmt/AxN)] sin(xn/Ax), (28)

where the limit of py(x) as x — 0 is equal to 1. The discrete
initial pressure given by Eq. (25) can then be obtained by
sampling po(x) at x = nAx. The discrete source function
po(x,) and the corresponding band-limited interpolant pg(x)
are shown in the upper panel of Fig. 2. The oscillations in
Po(x) arise because the function is derived from the summa-
tion of a finite number of sinusoids. Their appearance can
thus be considered analogous to Gibbs’ phenomenon.

A solution for p(x,7) for Jp(x,0)/Jr=0 and
p(x, 0) = po(x) can now be written as a function of the
band-limited interpolant

1. 1.
plx, 1) = Epo(x —tco) + EPO(X + 1cp). (29)

This expression allows the origin of the oscillations in the
pressure field calculated by Eq. (26) to be easily explained.
If r = [Ax/co and [ is an integer, the band-limited interpolant
Po(x) will be translated by an integer multiple of the grid
spacing. Consequently, if p(x, 7) is sampled at x = nAx, the
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FIG. 2. Propagation of a discrete spatial delta function in one dimension.
The discrete pressure is shown as a stem plot with the corresponding band-
limited interpolant shown as a solid line (top panel). If = /Ax/co and [ is
not an integer, the band-limited interpolant is translated by an non-integer
multiple of the grid spacing. This causes oscillations to appear in the dis-
crete solution for the pressure field.

discrete solution for the pressure field will only depend on
the values of py(x) at the grid nodes. As these values are
equal to the discrete initial pressure, the shape of this distri-
bution will be maintained. This is illustrated in the middle
panel of Fig. 2 where [ = 4. The discrete pressure field is
shown as a stem plot with the continuous pressure field
p(x, t) overlaid as a solid line. In this case, the solution is
given as two discrete spatial delta functions of half the origi-
nal magnitude as expected.

Conversely, if / is not an integer, the band-limited inter-
polant po(x) will be translated by an non-integer multiple of
the grid spacing. If p(x, ¢) is sampled at x = nAx, the solu-
tion will depend on values of py(x) in between the grid nodes
(i.e., at x # nAx). Because the function py(x) is oscillatory
between the grid nodes, oscillations in the pressure field will
also arise. This is illustrated in the lower panel of Fig. 2
where [ = 4.2. In this case, the discrete solution for the pres-
sure field (shown by the stem plot) now contains oscillations.
For generalized initial conditions, the equivalent response
can be obtained by superposition.

Note, the interpolation function given by Eq. (28) has
both real and imaginary components, however, the latter is
always exactly zero at the grid nodes. As the pressure is a
real quantity, it is assumed that the required pressure field
corresponds to the real part of the obtained solution and only
these parts are plotted. It is also possible to avoid the com-
plex part by splitting the end limits of the summation.*

C. Smoothing the initial conditions

In higher dimensions, oscillations will always appear
within the calculated pressure field when the initial pressure
is given by a discrete spatial delta function. This is because,
for a regularly spaced grid, the time taken to travel horizon-
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tally or vertically between the grid nodes will be different
from the time to travel diagonally. As a result, the discrete
solution will always depend on values of the underlying
band-limited interpolant at positions where it is oscillatory.
As discussed in the previous section, the occurrence of these
oscillations is deterministic and an intrinsic property of the
discretization of the computational domain. However, in
some situations a practical method of reducing the visible
oscillations may be desirable. For example, in many cases
the discrete initial conditions represent an approximation to
a continuous function for which the analogous pressure field
does not contain any oscillations.

The oscillations can be reduced by changing the charac-
teristics of the band-limited interpolant by applying a win-
dow in the spatial frequency domain. This modifies the
properties of the bounded Fourier space by forcing the
expansion coefficients to decay. Selecting the most appropri-
ate window requires a trade off between maintaining an ac-
ceptable main lobe width (which affects the amount of
smoothing) whilst minimizing the side lobe levels (which
affects the observable oscillations). Note, the rectangular
window is equivalent to the unwindowed case and produces
the smallest possible main lobe width.

Figure 3 illustrates the initial pressure distribution,
recorded time series, and the corresponding amplitude spec-
trum for the propagation of a spatial impulse in one dimen-
sion. Here, N, = 256, Ax = 0.05 x 1073 m, and ¢y = 1500
m s~ ' (supporting a maximum frequency of 15 MHz),
At =1 x 107 s, and the source and receiver are positioned
are 3 x 1073 m apart. The top row is for the unwindowed
case. The middle and lower panels of Fig. 3 show the same
example with the initial pressure smoothed using frequency
domain Hanning and Blackman windows, respectively. The
magnitudes of the smoothed initial pressure distributions
have been corrected by the corresponding coherent gain of
the windows. The Blackman window has a lower side lobe
level and thus the oscillations in the recorded time series are
less apparent. However, it also has a larger main lobe width
and thus the spatial delta function appears more heavily
smoothed. Both windows have high side-lobe roll-off rates so
the oscillations decay quickly away from the peak. A large
number of other variations are also possible by choosing
from the families of existing window functions. For minimiz-
ing oscillations, the Blackman family of windows is a good
choice. Note, the application of the Hanning window pro-
duces the three point optimum source pattern discussed by
Lin and Thylén.*" Similarly, the application of the Cosine
window is analogous to the corresponding two point optimum
source pattern.®'?

D. Absorption and dispersion

To demonstrate the characteristics of the acoustic
absorption and dispersion encapsulated by Eq. (24), the
propagation of a spatial delta function smoothed back a
Blackman window through a one dimensional homogeneous
medium was investigated. The absorption and dispersion
were extracted from the time series recorded at two points
where N, = 2048, Ax = 12.8 x 1073 m, ¢y = 1500 m s~ ',

B. E. Treeby and B. T. Cox: Initial value problems in absorbing media
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FIG. 3. Propagation of a spatial delta function in one dimension. The pressure field is sampled with a high temporal resolution at a single position 3 x 107> m
from the source. The resulting time series displays significant oscillations. These can be mitigated by windowing the source distribution. The main lobe width
of the window affects the amount of smoothing, while the side lobe level affects the amount of observable oscillations. The effect of two windowing functions

on the initial source shape, recorded time history, and frequency content of the propagated wave is illustrated.

and Ar =1 x 107% s.* The extracted parameters are shown
in Figs. 4(a) and 4(b) with open circles. The solid lines show
the theoretical comparisons derived from Eq. (2) and the cor-
responding Kramers-Kronig relation.'® The three curves cor-
respond to absorption values of oy q4g = 0.1 and y =19
(equivalent to og = 1.40 x 1071%), 0tg g = 0.25 and y = 1.5
(equivalent to oy = 1.83 x 1019, and oo,a = 0.5 and
y = 1.1 (equivalent to o= 1.91 x 1077). Here oo qp is
given in units of dB MHz > cm™! and o in units of Np
(rad/s)™ m~!. For the range of absorption values displayed,
there is a very good agreement between the theoretical val-
ues of absorption and dispersion and those exhibited by the
model.

At high frequencies and high values of the absorption
parameters, the smallness approximations under which the
lossy terms are derived are no longer valid. Consequently,
the absorption operator will have an unintended second order
effect on the dispersion (and vice versa for the dispersion op-
erator). This is illustrated in Figs. 4(c) and 4(d). The two
curves correspond to absorption values of oy ¢g = 0.25 and
y=2 (equivalent to o9 = 7.29 x 10~'), and o 45 = | and
y = 1.5 (equivalent to oy = 7.31 x 107'9). Although the
absorption for y =2 should be non-dispersive, for high val-
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ues of w and o, a small perturbation is introduced. As the
corresponding dispersion term is zero for y =2, there is no
equivalent second order modification to the encapsulated
absorption and this remains exact. For y = 1.5, a perturba-
tion to both the absorption and dispersion is seen. However,
the high values of frequency and absorption (in this case
more than 200 dB cm™') at which these effects become no-
ticeable means that they will be negligible for most simula-
tions of most practical interest.

E. Numerical example

To illustrate the capabilities of the developed numerical
solution, a simple example of an initial value problem in two
dimensions is given (see Fig. 5). Initial value problems of this
kind can arise in many areas of acoustics in which the time
scale over which the acoustic source is applied is much
shorter than the time scale of interest for the acoustic propa-
gation. There are several mechanisms by which such a source
may be produced, for example mechanical or flow induced
vibration, magnetic induction, or electromagnetic absorption.
These mechanisms may act as a pressure source, or may
move the fluid directly (changing the particle velocity and

B. E. Treeby and B. T. Cox: Initial value problems in absorbing media 3657



200 T T T T
(a)

180

160

140

120

100

aldBem 71

80

60

40

20

Frequency [MHz]

400 T T T

350

300

250

200

aldBem ™"

150

100

50

20
Frequency [MHz]

30 40 50

C [ms™1

1520 T T T T

1516

1504

1500
0

20 30

1530

1525

1520

1515

1510 -

1505

y=2

g
00000
M 0.0.000000000000000

0 10 20 30 40
Frequency [MHz]

1500

50

FIG. 4. Properties of the (a) absorption and (b) dispersion encapsulated by Eq. (24). The three curves correspond to absorption parameters of oy gz = 0.1 and
y=1.9, 0048 =0.25 and y = 1.5, and oy gz = 0.5 and y = 1.1. Analytical values are shown as a solid line for comparison. (c) and (d) At high values of w

and o, second order effects become noticeable.

thus producing a pressure gradient). Here, the utilized source
function was chosen to be two circular disks of radius 4Ax
and 3Ax with corresponding amplitudes of 4 and 3. Practi-
cally, for the case of an initial pressure distribution, this could
correspond to a photoacoustic source produced by two disk-
shaped optical absorbers, however, any other source distribu-
tion could equally be used. The source function was
smoothed using a 2D Blackman window and the simulation
parameters were given by N, and N, =64, Ax and
Az=0.1%x10"% m, ¢g=1500 m s7!, o094 =0.75 dB
MHz ™ cm™! and y = 1.5 (equivalent to oy = 5.48 x 10710
Np (rad/s)> m™1).

The left column of Fig. 5 shows the pressure field
obtained by assigning the source function to p(r, 0) with
dp(r, 0)/0t = 0 for t=0, 250, 500, and 1000 ns. Because no
time stepping is required, these results are obtained directly
via Eq. (24). Moreover, for the same source condition, only
one additional inverse FFT is required to compute the pres-
sure field at each additional time point. The central column
shows the equivalent results obtained by assigning the source
function (scaled by 5 x 10°) to dp(r, 0)/0t with p(r, 0) = 0,
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and the right column by assigning the source function to both
p(r, 0) and dp(r, 0)/0r.

Note, the small grid size used in this example was chosen
to generate images suitable for display (the complete example
took less than a second to run using MATLAB on a standard
workstation). As the solution relies only on the efficiency of
the FFT, it is straightforward to run simulations with dense
computational grids, including in three dimensions. For
example, a simulation using a three dimensional grid with
128 x 128 x 128 voxels evaluated at 100 different time val-
ues took around forty seconds to compute on the same work-
station. The FFT has also been shown to perform well when
computed using graphics processing units (GPUs) which pro-
vides a convenient mechanism for parallelization.?®

IV. SUMMARY AND DISCUSSION

An efficient Green’s function solution for initial value
problems in homogeneous media with power law absorption
has been derived. This allows the pressure field for any time
t > 0 to be computed given initial conditions for the pressure
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FIG. 5. Simulation of the pressure field within a two dimensional domain using a source function given by two circular disks smoothed using a Blackman win-
dow. The left column shows the pressure field obtained by assigning the source function to the initial pressure with the gradient set to zero. The central column
shows the equivalent results obtained by assigning the source function to the initial pressure gradient with the pressure set to zero. The right column shows the

analogous results obtained by setting both initial conditions.

and its temporal derivative. The solution is obtained in a sin-
gle step using the Fourier transform and a k-space time prop-
agator. For regularly spaced Cartesian grids, the former can
be computed efficiently using the FFT. Because no time
stepping is required, this provides an efficient method for
calculating the pressure field in one, two, or three dimen-
sions without stability constraints. The numerical implemen-
tation of the solution has also been discussed, including the
use of source smoothing to avoid oscillations arising from
the discretization of the computational domain.

The derived solution is based on the fractional Laplacian
wave equation and is exact in continuous form. This govern-
ing equation encapsulates power law absorption and disper-
sion under the smallness approximations described in Sec.
IL.B. Considering the strength of typical acoustic sources,
the fidelity of acoustic measurement systems, and the range
of absorption values normally encountered, in practice these
smallness approximations will almost always be satisfied.
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Compared to the pseudospectral time domain model dis-
cussed in Ref. 4 (based on the same governing equation), the
Green’s function solution accurately encapsulates the
absorption and dispersion characteristics without additional
numerical errors.

In comparison to other finite difference or finite element
solutions of absorbing wave equations discussed in the litera-
ture, the Green’s function solution developed here has sev-
eral advantages. First, because the gradients are effectively
calculated spectrally, only two points per wavelength are
required. This provides a significant reduction in the size of
the required computational grid, particularly for three dimen-
sional problems. Second, because the governing equation is
based on the fractional Laplacian, no temporal history of the
pressure field is needed. Third, there are no imposed stability
constraints and thus the pressure field can be evaluated only
at the specific times required. Overall, this allows the pres-
sure field to be computed very efficiently. On the other hand,

. E. Treeby and B. T. Cox: Initial value problems in absorbing media 3659



the solution presented here is restricted to a homogeneous
domain. Similarly, the utilized Green’s function approach
cannot be extended to model nonlinear wave propagation.

While applicable to many areas of acoustics, the devel-
oped solution has particular relevance to the efficient simula-
tion of short acoustic pulses through soft biological tissue.
For example, in the field of biomedical photoacoustics, simi-
lar models for lossless media have been used as part of itera-
tive approaches to extract quantitative tissue information.>
In this case, accurately accounting for acoustic absorption is
of critical importance as errors in the magnitude of the mod-
eled pressure directly manifest as errors in the estimation of
the tissue properties.”*
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