
Estimating optical absorption, scattering,
and Grueneisen distributions with

multiple-illumination
photoacoustic
tomography

Peng Shao,1 Ben Cox,2 and Roger J. Zemp1,*
1Department of Electrical and Computer Engineering, University of Alberta, 9107-116 Street,

Edmonton, Alberta, Canada, T6G 2V4
2Department of Medical Physics and Bioengineering, University College London,

Gower Street, London, WC1E 6BT, UK

*Corresponding author: zemp@ece.ualberta.ca

Received 7 December 2010; accepted 21 April 2011;
posted 10 May 2011 (Doc. ID 139156); published 22 June 2011

While photoacoustic methods offer significant promise for high-resolution optical contrast imaging,
quantification has thus far proved challenging. In this paper, a noniterative reconstruction technique
for producing quantitative photoacoustic images of both absorption and scattering perturbations is
introduced for the case when the optical properties of the turbid background are known and multiple
optical illumination locations are used. Through theoretical developments and computational examples,
it is demonstrated that multiple-illumination photoacoustic tomography (MI-PAT) can alleviate ill-
posedness due to absorption-scattering nonuniqueness and produce quantitative high-resolution recon-
structions of optical absorption, scattering, and Gruneisen parameter distributions. While numerical
challenges still exist, we show that the linearized MI-PAT framework that we propose has orders of
magnitude improved condition number compared with CW diffuse optical tomography. © 2011 Optical
Society of America
OCIS codes: 110.0113, 110.2990, 110.3010, 110.5120, 170.0170.

1. Introduction

Photoacoustic tomography (PAT) is a unique new
imaging technology capable of generating images
with high optical contrast, fine ultrasonic spatial
resolution, and good imaging depth [1]. Despite its
recent attention in the bioimaging community, pre-
sently, quantitative reconstruction of optical proper-
ties in photoacoustic imaging is rather challenging
for several reasons. First, photoacoustic signals
emitted from a subcutaneous location are propor-

tional to the unknown optical fluence, which is, in
turn, a function of the distributed optical properties
to be estimated. This introduces a nonlinear relation-
ship between the measured signals and the optical
properties to be recovered. Second, a given optically
induced heating distribution could be produced by
multiple possible optical property distributions.
Furthermore, the Grueneisen parameters may vary
between tissue types. The present project proposes
an inversion methodology that addresses each of
these challenges.

A number of methods have emerged for quan-
titative estimation of optical properties using
photoacoustics. Cox et al. [2] proposed a fixed-point
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iterative inversion scheme to recover absorption coef-
ficient distribution when the scattering distribution
is known.YuanandJiang [3] reconstructedanabsorp-
tion coefficient map based on the finite-element solu-
tion to the diffuse equation. Ripoll and Ntziachristos
[4] also described an iterative diffusion-regime in-
verse method that can recover small perturbations
in the absorption coefficient distributionwhen the op-
tical properties of the background turbid medium are
known. Jetzfellner et al. [5] investigated the experi-
mental performance of an iterative approach and
found that it was sensitive to errors in the scattering
coefficient. Banerjee et al. [6] proposed a noniterative
scheme to recover the absorption coefficient map,
which is applicable to only highly scattering media.
Yin et al. [7] suggested iteratively estimating ab-
sorbed energy density with PAT and the interior flu-
ence distribution with diffusing light measurements,
and then calculating the absorption coefficient with
quotient of the two quantities. Yuan et al. [8] proposed
the use of a method based on the diffusion equation
with a priori structural information fromPAT images
serving as a means of regularization. Unfortunately,
the PAT image may be biased by the nonuniform flu-
ence and thus theapriori structural information from
the PAT image may not be reliable. Cox et al. [9]
further extended the work of previous literature to
the case where both absorption and reduced scatter-
ing coefficientswere unknown.He showed thatmulti-
ple optical wavelengths, with prior information about
the wavelength dependence of the optical scattering,
could overcome nonuniqueness and estimate chromo-
phore distributions quantitatively, albeit with some
numerical challenges. Guo et al. [10] proposed a
self-calibrating method to quantify absorption coeffi-
cient. By taking the ratio of acoustic spectrals of two
optical wavelengths, factors such as system band-
width and acoustic attenuation are canceled out. This
method is robust to absolute fluence variations. How-
ever, it requires the fluence to follow the Beer–
Lambert law and so it is not generally applicable to
heterogeneous media. With the exception of the dif-
fuse optical tomography (DOT)-PAT hybrid technolo-
gies [7], the literature cited thus far has considered
only a single optical illumination location.

One of the common elements lacking in the afore-
mentioned literature is the inability to decouple the
Greuneisen parameter from the reconstructed opti-
cal parameter distributions. The Grueneisen param-
eter Γ is a unitless thermodynamical parameter
quantifying the efficiency of conversion between
thermal energy and acoustic energy. It is given as
Γ ¼ βc2=Cp, where β is the volume thermal expansiv-
ity of the tissue, c is the speed of sound in the tissue,
and Cp is the specific heat capacity at a constant
pressure. While most reconstruction strategies as-
sume that the Grueneisen parameter is considered
spatially constant, Cox et al. [11] point out that the
Grueneisen parameter may vary considerably be-
tween tissue types such as fat and blood.

Additionally, the Grueneisen parameter is highly
temperature dependent, and several groups have
shown how photoacoustics can track temperature
changes by tracking variations in photoacoustic am-
plitude with temperature [12–19]. In applications
such as thermal therapy, where imaging of local heat-
ing is desired, the Grueneisen coefficient may vary
spatially and may change as much as a few percent
per degree Celcius temperature rise [13]. To our
knowledge, recent articles investigating photoacous-
tic thermometry tracked only changes in the photo-
acoustic signals due to temperature sensitivity of the
Grueneisen parameter and did not consider the re-
construction of this parameter. As with other tem-
perature imaging methods [20–24], those methods
requiring pre- and postheating of images are sus-
ceptible to motion artifacts and other physiological
changes that often confound reliable temperature
estimates. Imaging of the Grueneisen parameter
may lead to opportunities for quantifying tempera-
ture distributions without confounding issues of
tissue motion, although this remains to be seen.

There has been little work done in quantitative
photoacoustic reconstruction of optical properties
when multiple optical source locations are involved.
Zemp et al. [25] and Ranasinghesagara et al. [26]
described a simple method for estimating optical
scattering properties of turbid media using multiple
surface illumination locations. That work also
described a design for flexible light delivery with
accompanying photoacoustic detection. Multiple
optical sources are routinely used in DOT. Multiple
source–detector pair measurements are collected
and then reconstructed to form images of absorption,
scattering, and fluorescence with this technique.
Unfortunately, DOT is limited to light collection from
surface detectors. One potential advantage of multi-
ple optical source photoacoustic imaging is that, for
each optical source, photoacoustic detection effec-
tively provides an optical fluence measurement at
each subsurface location and hence subsurface points
can be viewed as virtual detectors. Bal and Uhlmann
[27] showed mathematically that absorption and
diffusion coefficients can, in principle, be stably con-
structed from “internal data” corresponding to “2n
well-chosen boundary conditions,” where n is the di-
mension. By “internal data,” they mean PAT images,
and by “boundary conditions,” they mean illumina-
tion patterns. Their work, however, provided no com-
putational or experimental studies nor a way to find
the “well-chosen boundary conditions.” Our work
could be viewed as a first step in assessing the prac-
ticality of concepts they discuss, but from a very dif-
ferent theoretical perspective.

We recently proposed a novel reconstruction
methodology utilizing faithful photoacoustic recon-
structions of initial pressure distributions due to
spatially distinct multiple illuminations (MI) [28].
We call the technique MI-PAT. We showed that abso-
lute reconstructions of absorption coefficient pertur-
bations is possible with simulated data, and that
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these MI-PAT reconstructions are robust to spatially
varying Grueneisen coefficients.

Building on that success, the goal of this paper is
to show that photoacoustic imaging with multiple
optical illumination locations (sources) can provide
quantitative estimates of tissue optical absorption
and scattering perturbations with ultrasonic spatial
resolution. For a given optical illumination geometry,
a heating distribution can be reconstructed via PAT.
The heating distribution can, however, be due to
multiple possible absorption-scattering distribution
pairs, hence, nonuniqueness confounds quantitative
reconstruction methods when both absorption and
scattering distributions are unknown. We demon-
strate that alternative illumination geometries can
alleviate this type of ill-posedness and that distribu-
tions of the optical absorption and diffusion coeffi-
cients may be faithfully reconstructed, albeit with
some numerical challenges. To our knowledge, this
is the first report of a framework for reconstruction
of both absorption and scattering coefficient distribu-
tions in a known turbid tissue with a single optical
wavelength. Suggestions for further reducing ill-
conditioning are discussed. One unique aspect of our
framework is that our reconstruction methods are
immune to and able to recover spatially varying
Grueneisen parameter distributions, which may be
important in practice due to large variations in this
parameter for different tissue types or when tem-
perature varies in an imaging subject. We also com-
pare conditioning (singular values) of our methods
with CW-DOT and show that MI-PAT is orders of
magnitude less ill-posed.

2. Theory

We assume that the true subcutaneous heating
distribution at object location r due to a laser pulse
incident at location rsi is given as

hiðrÞ ¼ μaðrÞΦðr; rsiÞ; ð1Þ

where μa and Φ are the optical absorption coefficient
and the optical fluence, respectively. Local heating
induces a thermoelastic expansion with initial photo-
acoustic pressure generation given as

piðrÞ ¼ ΓðrÞμaðrÞΦðr; rsiÞ; ð2Þ

where ΓðrÞ is the Grueneisen parameter as a
function of object position. The initial pressure dis-
tribution can be reconstructed from received photo-
acoustic signals giðrd; tÞ as [1]

p̂iðrÞ ¼ Ofgiðrd; tÞg; ð3Þ

where O is a reconstruction operator, ultrasound
detectors are located at locations rd, and t is time.

The reconstructed photoacoustic image due to
illumination si can be thought of as the true initial
pressure distribution filtered by an imaging system,

represented as functional operator H, which is linear
but not necessarily shift invariant:

p̂iðrÞ ¼ HfpiðrÞg þ n ¼ HfΓðrÞμaðrÞΦiðrÞg þ n ð4Þ

where n is additive noise and we use the abbreviated
notationΦðr; rsiÞ ¼ ΦiðrÞ. When the reconstruction is
ideal, H is modeled as a linear shift-invariant delta
function. In general, however, H is linear and shift
variant.

A. Problem of Absorption-Scattering Nonuniqueness

Arridge and Lionheart [29] showed that, in DOT,
there is a nonuniqueness between optical absorption
and scattering to the extent that it is not possible to
recover a unique internal absorption distribution
from dc measurements of the boundary fluence un-
less the scattering is known. Does the same non-
uniqueness plague PAT? The situation differs in
two ways: first, the data for the optical inversion
in PAT consist of measurements proportional to ab-
sorbed energy, h, rather than the fluence, Φ, so the
data depend more strongly on absorption than
scattering; second, the data consist of internal mea-
surements, i.e., the initial pressure is known for all
interior points in contrast to DOT’s measurements of
Φ on the boundary. Despite these differences, a simi-
lar nonuniqueness does affect PAT, although this has
yet to be proven analytically. Numerical examples
calculated by minimizing an error functional are
given in Fig. 1 and [9].

Figure 1 shows two pairs of absorption and scatter-
ing distributions with background absorption
coefficients of 0:02 cm−1 and reduced scattering coef-
ficients of 5 cm−1. Absorption coefficient A has a

Fig. 1. (Color online) Given heating distribution (c) = (f) can be
produced by the fμa; μ0sg distributions A fðaÞ; ðbÞg or B fðdÞ; ðeÞg.
Because two pairs of absorption and scattering distributions, A
and B, can produce the same heating distribution for a given op-
tical illumination geometry, approaches attempting to reconstruct
optical properties using single-illumination PAT are ill-posed due
to nonuniqueness. However, when illuminated by a spatially dis-
tinct alternate optical source (source 2), the heating distribution
from A is distinct from that of B. The error image (difference) be-
tween (g) and (h) is shown in (i). This example demonstrates the
potential to remedy nonuniqueness using multiple sources.
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circular heterogeneity of 1:2 cm−1. Reduced scatter-
ing coefficient A is constant at the background value
in contrast to reduced scattering coefficient B, which
has the two circular scattering heterogeneities with
μ0s ¼ 15 cm−1. Absorption coefficient B was calculated
to ensure that the absorbed energy distributions
resulting from placing a point source centrally at the
top of the 20mm× 20mm domain were identical to
machine precision. The calculations were performed
using a finite-element model of light transport [30]
on a 40 × 40 element square mesh with a boundary
condition of zero incoming photon current.

This example shows that nonuniquenesses can ap-
pear in PAT when a single optical source is used to
illuminate the sample. This makes the extraction
of quantitative estimates of absorption coefficient
from absorbed energy distributions difficult, if not
impossible. Additional independent information is
necessary in order to mitigate the nonuniqueness.
As mentioned in Section 1, Cox et al. [9] proposed
using knowledge of the wavelength dependence of
the scattering in conjunction with multiple wave-
lengths to assist in recovering chromophore con-
centrations. Yin et al. [7] avoided the question of
nonuniqueness by using DOT to estimate the flu-
ence, thereby allowing μa to be estimated from
μa ¼ h=Φ. Here, we propose using MI patterns to
provide the extra information necessary to recover
absorption coefficients.

B. MI Locations as a Potential Remedy for
Absorption-Scattering Nonuniqueness

The diffusive nature of light propagation in highly
scattering media and the resulting randomness of
the photons within the tissue at depths greater than
one scattering depth might suggest that the position
of the illuminating source is not a significant factor
in determining a photoacoustic image at greater
depths. However, when the illumination comes from
just one direction, or from a small illumination re-
gion, the fluence can vary significantly within the
tissue. This raises the prospect of obtaining extra in-
formation by taking PAT images of the same sample
using different illumination patterns (here point
sources of light are used for simplicity).

Figures 1(g) and 1(h) show the absorbed energy dis-
tributions generated from the pair of absorption and
scattering coefficients calculated in Subsection 2.A
but with the point source positioned centrally at
the left of the image, rather than at the top. There
are clearly significant differences in the images: not
just around the point source itself, which is perhaps
unsurprising, but also at a depth of 10mmat the posi-
tion of the absorption heterogeneity. This suggests
that a set of PAT images obtainedwith sufficiently in-
dependently placed sources might contain sufficient
additional information to enable the separation of
μa and Φ.

C. Multiple Optical Source Photoacoustic Reconstruction
Methododology for Absorption and Scattering Perturbations
in a Known Turbid Background

Here, we consider the case where distributed absor-
bers perturb the fluence from the homogenous case
such that

Φðrj; rsiÞ ¼ Φ0ðrj; rsiÞ þΦSCðrj; rsiÞ; ð5Þ

where Φðrj; rsiÞ is the fluence at location rj (with
j ¼ 1; 2; :::;J) due to illumination spot at location
rsi . Figure 2 provides an illustration of the vector geo-
metry of the problem. Φ0ðrj; rsiÞ is the fluence due to
the known homogenous turbid background with ab-
sorption and reduced scattering coefficients fμa; μ0sg if
no additional absorption or scattering perturbations
were present, andΦSCðrj; rsiÞ is the fluence perturba-
tion due to optical property variations. In this paper,
we use the diffusion coefficient D, which is defined
as 1=½3ðμa þ μ0sÞ�, instead of μ0s to depict scattering
for simplicity. For both absorption and scattering
perturbations such that μaðrjÞ ¼ μa þ δμaðrjÞ and
DðrjÞ ¼ D0 þ δDðrjÞ, we have that [31]

ΦSCðrj; rsiÞ ¼ −

Z δμaðr0Þ
D0

G0ðrj; r0ÞΦðr0; rsiÞdr0

þ
Z δDðr0Þ

D0
∇G0ðrj; r0Þ ·∇Φðr0; rsiÞdr0;

ð6Þ

where D0 is the diffusion coefficient of the homoge-
nous background, and G0ðrj; r0Þ is the Green’s func-
tion representing propagation from rj → r0. Using the
first-order Born approximation, such thatΦSC ≪ Φ0,
we have that Φ ≈ Φ0. Although this limits the inver-
sion to the linear case, it is sufficient to show that MI
ameliorates the nonuniqueness without the addi-
tional complexity the nonlinearity imposes. For cases
in which the linear assumption is not sufficient, this
framework can be extended to the nonlinear case,
as discussed in Section 4. We can discretize the inte-
gral as

Fig. 2. Light propagation geometry.
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ΦSCðrj; rsiÞ ¼
X
n

Wa
fijgnδμaðr0nÞ þ

X
n

Ws
fijgnδDðr0nÞ ð7Þ

with si representing a source index ði ¼ 1; 2; :::;SÞ,

Wa
fijgn ¼ −G0ðrj; r0nÞΦ0ðr0n; rsiÞΔV=D0; ð8Þ

Ws
fijgn ¼ ∇G0ðrj; r0nÞ ·∇Φ0ðr0n; rsiÞΔV=D0; ð9Þ

whereΔV is a volume element. The fijg elements are
grouped together in this way because they could be
rastorized into a single index kij ¼ iþ jS so that this
may be written in matrix form as

ΦSC ¼ Wu; ð10Þ

where W ¼ ½WajWs� with Wa and Ws being SJ ×N
matrices corresponding to absorption and scatter-
ing, respectively. Here, u ¼ ½δμTa ; δDT �T , where δμa
and δD are N × 1 column vectors. For example, δμa ¼
½μaðr01Þ; μaðr02Þ; :::; μaðr0NÞ�T . The locations fr0n∶ n ¼
1; 2; :::;Ng could represent, for example, points on a
mesh and represent locations at which optical prop-
erties are to be reconstructed.

If we multiply the expression for ΦiðrjÞ≡Φðrj; rsiÞ
by ΓðrjÞμaðrjÞ, we obtain the initial pressure distribu-
tion piðrjÞ due to point source rsi . Let us take a ratio of
reconstructed initial pressure distribution estimates
from photoacoustic images taken at source positions
si and sℓ. If we consider locations frj∶ j ¼ 1; 2; :::;Jg,
which have high signal-to-noise ratio (SNR) in the re-
constructed image to avoid instability, then the ratio
is well approximated as

p̂iðrjÞ
p̂ℓðrjÞ

≅
HfΦiðrjÞΓðrjÞμaðrjÞg
HfΦℓðrjÞΓðrjÞμaðrjÞg

: ð11Þ

We now assume that the fluence distribution is
slowly varying (essentially a constant) compared to
the scale of a point-spread function, which should be
a good approximation when absorption and scatter-
ing perturbations are not too strong. In this case, ifH
is linear and noise is small enough to be neglectable,

p̂iðrÞ ≅ ΦiðrÞHfΓðrÞμaðrÞg: ð12Þ

With this approximation, the ratio becomes

p̂iðrjÞ
p̂ℓðrjÞ

≅
ΦiðrjÞ
ΦℓðrjÞ

: ð13Þ

Fortuitously, the terms HfΓðrjÞμaðrjÞg cancel and
we are left with a ratio of fluences due to different
illumination locations. By expanding these fluence
distributions in terms of homogeneous and perturba-
tion terms, we have

p̂iðrjÞ
p̂ℓðrjÞ

≅
Φ0ðrj; rsiÞ þΦSCðrj; rsiÞ
Φ0ðrj; rsℓÞ þΦSCðrj; rsℓÞ

: ð14Þ

The local unknown absorption coefficients cancel
and we are left with a ratio of fluences. The left-hand
side represents a set of measurements, while the
right-hand-side consists of model calculations. Then,
ΦSC is expressed in terms of the distributed absorp-
tion perturbations and we can rewrite Eq. (14) as

X
n

½p̂iðrjÞWfℓjgn − p̂ℓðrjÞWfijgn�uðr0nÞ

¼ p̂ℓðrjÞΦ0ðrj; rsiÞ − p̂iðrjÞΦ0ðrj; rsℓÞ: ð15Þ

For S optical source locations fs1; s2; :::; sSg, we con-
sider SðS − 1Þ=2 unique pairs fðsi; sℓÞ; i ≠ ℓg of optical
sources. In matrix form, Eq. (15) is written as

Qu ¼ b; ð16Þ

where Q ¼ ½QajQs� is a ½SðS − 1Þ=2�J × 2N matrix,
where Qa has elements ½Qa�fiℓjgn ¼ p̂iðrjÞWafℓjgn−
p̂ℓðrjÞWafijgn, and Qs has elements ½Qs�fiℓjgn ¼
p̂iðrjÞWsfℓjgn − p̂ℓðrjÞWsfijgn. These consist of measure-
ments p̂ from the reconstructed photoacoustic image
(due to different optical source positions) and model
calculations based on a known homogenous back-
ground. b is a ½SðS − 1Þ=2�J × 1 column vector with
elements ½b�fiℓjg ¼ p̂ℓðrjÞΦ0ðrj; rsiÞ − p̂iðrjÞΦ0ðrj; rsℓÞ,
which are a mixture of measurements and model
calculations. The unknown perturbations can be
estimated quantitatively by inverting the lineari-
zed model via a Moore–Penrose pseudoinverse:
u ¼ ðQTQÞ�1QTb. We may alternatively need to use
singular value decomposition to decompose the ma-
trix Q as Q ¼ UΣVT, where Σ is a diagonal matrix of
singular values of the same dimension as Q, and U
and V are unitary matrices consisting of columns
of the “right” and “left” singular vectors ui and vi,
respectively. The inversion is then given as u ¼
VΣ�1UTb ¼ P

i
uTi b
σi vi. Tikhanov regularization or

other regularization procedures may be used to avoid
instabilities due to poor matrix conditioning. It
should be noted that the above should produce
absolute estimates of fδμaðrÞ; δDðrÞg.

D. Recovery of the Spatially Varying Grueneisen
Parameter

With the ability to recover absorption coefficients
perturbations quantitatively in a way that is robust
to spatially varying Grueneisen parameters, we can
estimate the Grueneisen coefficient distributions as
Γ̂ðrÞ ¼ p̂ðrÞ

Φ̂ðrÞbμaðrÞ, where p̂ðrÞ is the reconstructed photo-

acoustic image, bμaðrÞ is the reconstructed absolute
absorption coefficient distribution, and Φ̂ðrÞ is the es-
timated fluence distribution (computed with knowl-
edge of the absorption perturbations). To improve
robustness to noise, we choose to use all illumination
sources as follows:
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Γ̂ðrÞ ¼

P
i
bpiðrÞ

bμaðrÞP
i

cΦiðrÞ
; ð17Þ

where bpi is the reconstructed photoacoustic image
due to source i, and cΦi is the estimated fluence dis-
tribution due to point source i.

3. Computational Reconstruction

Two-dimensional simulations are considered here
for simplicity. True absorption and diffusion coeffi-
cient maps are simulated on a 20 × 20 grid spanning
2 cm × 2 cm, as shown in Figs. 3(a) and 3(b), re-
spectively. The grid sampling interval is 1mm.
The reduced scattering coefficient of the turbid
background is taken as 10 cm−1 everywhere. The
background absorption coefficient is taken as μa ¼
0:1 cm−1, while two absorbing regions are taken to
have a 0:025 cm−1 absorption perturbation. One re-
gion of increased diffusion coefficient (reduced scat-
tering coefficient) corresponds to a δμ0s ¼ 0:9 cm−1.
Eight optical sources fs1; s2; � � � ; s8g, as is illustrated
in Fig. 4, located 3mm back from each edge around
the object are simulated. The fluence due to source s1
is shown in Fig. 3(d). The 3mm gap between the tis-
sue surface and the reconstruction region permits
isotropic point sources in an infinite medium to be
used as a good approximation to the true pencil-beam
illumination situation that would occur in an experi-
ment. Photoacoustic images are simulated by multi-

plying the computed optical fluence distribution,
Grueneisen parameter distribution and the absorp-
tion map, as shown in Fig. 3(h). One way to estimate
the absorption perturbations could be to estimate
the local fluence as Φ0ðrÞ, the fluence computed in
a homogenous medium with no absorption perturba-
tions. By normalizing the photoacoustic images by

Fig. 3. (Color online) (a) True 2D μa distribution. (b) True 2D diffusion coefficient distribution. (c) True 2D Grueneisen parameter dis-
tribution. (d) Normalized fluence distribution from source s1. (e) Normalized fluence distribution from source s2. (f) Fluence perturbation
from source s1 due to only absorption perturbation. (g) Fluence perturbation from source s1 with the presence of only diffusion coefficient
perturbation. (h) Photoacoustic image with source s1. (i) Photoacoustic image normalized by the fluence distribution Φ0 due to source s1,
whereΦ0 is calculated under the assumption of a homogeneous medium. If the Gruneisen parameter were constant, this would represent
one approximation to the absorption map. This estimate exhibits unacceptable errors. (j) Reconstructed image of the optical absorption
map using our multiple-source photoacoustic inversion technique. (k) Reconstructed image of the diffusion coefficient. (l) Reconstructed
image of the Grueneisen parameter.

Fig. 4. (Color online) Simulation configurations. (a)–(c) two, four,
and eight sources located around the object for MI-PAT and DOT
imaging simulation. (d) Detector distribution for DOT imaging
when using two, four, and eight sources. (e) 20 source–detector
pairs positioned on top of the object for DOT. (f) 80 source–detector
pairs around the tissue. For all configurations, sources and trans-
ducers are positioned 3mm back from the object surfaces.
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these fluence estimates, we produce estimates of the
absorption map, as shown in Fig. 3(i) for source s1 as
an example. These estimates possess unacceptable
errors that we aim to correct with the reconstruction
method described in this article. When we apply our
algorithm to the “measured” photoacoustic images,
we are able to produce a fairly good estimate of the
optical absorption map, as shown in Fig. 3(j). Recon-
structed diffusion (scattering) distribution map is
shown in (k). No crosstalk has been found in the
two recoveredmaps. Themaximum error without ad-
ditive noise is less than 12 orders of magnitude below
the true values. However, we find the reconstruction
quality deteriorates quickly as the amount of noise
increases, revealing sensitivity of the algorithm to
noise. In the examples we show here, SNR of the
simulation photoacoustic images at each detection
location is no lower than 40dB, and only data with
SNR higher than 60dB for each source pair are used
for reconstruction to ensure the image quality. Key to
numerical stability and robustness to noise is the
conditioning of the matrix Q. We plot the singular
values ofQ (normalized by the maximal value of each
curve to compare the condition numbers) in Fig. 5.
We find that the matrix condition number improves
with the number of optical sources used for condi-
tion numbers of corresponding cases). With two
optical sources, Eq. (16) is underdetermined. For
two sources, Q is of size J × 2N with J ¼ N ¼ 202,
hence there are only 400 rather than 800 singular
values. Matrix conditioning improves by using four

sources rather than two, and further improves by
using eight. Interestingly, the diffusion coefficient
seems to be reconstructed with higher accuracy than
the absorption coefficient despite the fact that photo-
acoustic signals, in reality, are more sensitive to
absorption. This is consistent with the fact that the
matrix condition number of Qa is larger than that of
Qs for the case of eight sources (data not shown). The
nature of our inversion strategy might account for
this phenomenon. Based on our assumptions, the ra-
tio of photoacoustic signals is simplified into a ratio
of fluences, which is sensitive to scattering perturba-
tions. We also plot singular values from the linear-
ized CW-DOT technique [31] when recovering optical
properties. Three kinds of configuration were used
for the CW-DOT imaging, as is shown in Fig. 4. In the
first one, the same sources locations as the MI-PAT
simulation are used, but only diffuse reflectance of
light exiting from four tissue surfaces were measured
by detectors for the imaging task. A more realistic
configuration is to place all 20 sources and 20 detec-
tors on top of the turbid tissue (also with a 3mm
gap from the tissue edge). Finally, we also consider
80 sources and 80 detectors placed around the object
as a case where the DOT simulations are not under-
determined (but are still ill-conditioned).

The condition number of a matrix, defined as the
ratio of maximum to minimum singular values, typi-
cally determines the numerical stability of inversion.
Compared with CW-DOT, while trying to accomplish
the same imaging task with the same number of
sources, the MI-PAT scheme has a condition number
that is orders of magnitude smaller, which implies
that it is better conditioned and thus more informa-
tive (refer to Table 1 for the overdetermined cases).
The positioning of the sources matters, too. We found
that sources positioned around the object were more
informative than cases with sources all on the top of
the object. It is interesting to note that our simula-
tions could recover the fμa; μ0sg distributions accu-
rately with only three sources (data not shown),
albeit with a matrix condition number that is orders
of magnitude worse, hence more sensitivity to noise.
Nevertheless, this point is interesting because the
work of Bal and Uhlmann [27] predict 2n ¼ 4 sources
are needed for stable reconstruction (where n ¼ 2 is
the dimension of the space in our simulations). They
also point out (mathematically) that fewer than 2n
illumination patterns are possible at the expense
of reconstruction stability. Our findings support their
theory.

Fig. 5. (Color online) Singular value spectra (normalized by
the largest value) of the matrix Q used in the example of Fig. 3
for recovering both absorption and scattering perturbations. For
n ¼ 2 sources, the number of singular values is underdetermined.
Matrix conditioning improves when using more sources. The
MI-PAT method is better conditioned than DOT imaging.

Table 1. Condition Number for Different Configurations

Case Condition Number

MI-PAT, eight sources around 1:9654e5
MI-PAT, four sources around 7:3810e6
CW-DOT, 80 sources and
80 detectors around

1:0776e16
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4. Discussion

We have demonstrated an inversion method to re-
cover both absorption and scattering perturbations
in a known homogeneous turbid background when
multiple optical source locations are used. A number
of approaches have been discussed in the literature
to recover absorption-only perturbations without
multiple sources. Recovery of both absorption and
scattering perturbations, however, has remained a
challenge. In part this is due to the ill-posedness as-
sociated with absorption-scattering nonuniqueness.
We have demonstrated that the nonuniqueness pro-
blem is remedied by the use of multiple optical source
illumination locations. The method presented here is
not iterative, is not underdetermined (although like
many methods may be ill-conditioned), and is the
first, to our knowledge, to address multiple optical
sources in a quantitative photoacoustic reconstruc-
tion framework. Very little has been done to recover
optical properties using photoacoustics when the
Grueneisen parameter ΓðrÞ (note κðrÞ ∝ ΓðrÞ) is spa-
tially varying. Surveying the literature, Cox et al.
[11] noted that the Grueneisen parameter Γ can vary
considerably between different tissue types and, as
such, may serve as a significant challenge for quan-
titative photoacoustic inversion of optical properties.
Because the present framework can reconstruct op-
tical properties independently of the local Gruenei-
sen parameter, we believe it worthwhile to explore
further. From the ability to estimate tissue optical
properties, we can predict local fluence and hence
estimate the Grueneisen parameter distribution,
which may have diagnostic value in and of itself,
but may also prove important for temperature
imaging due to the temperature dependence of this
parameter.

While our theoretical framework accounts for a
spatiotemporal system response, the present simula-
tions are restricted to an ideal photoacoustic imaging
system response. For the theoretical developments to
work when a more realistic imaging system is used,
the conditions for the approximations discussed
must hold well (i.e., the fluence must be slowly vary-
ing compared to the size of the point-spread function,
and spatial variations of optical properties must not
be too strong), otherwise additional errors will be in-
troduced and reconstructions may fail.

We believe that ill-conditioning arises due to the
diffusive nature of light propagation in tissue.Matrix
condition number worsens with penetration depth—
or equivalently, the dynamic range of fluence values
throughout the image (data not shown). Illumination
from points around the object rather than just the top
surface was shown to be significantly advantageous
in this regard. A challenge our framework faces is its
sensitivity to data noise. This may be due to our hy-
pothesis behind the derivation of the ratiometric
quantity in Eq. (16). As such, we only consider points
in the photoacoustic images that have a high SNR.
The SNR of photoacoustic images is important
to avoid reconstruction instabilities when matrix

condition numbers are large. Although we use only
high SNR locations as virtual detectors, we must
have enough source–(virtual) detector pair combina-
tions to produce adequate estimates of the subsur-
face fluence and absorption distributions if we
have an adequate number of optical sources. In the
presence of increasing amounts of noise, we found
that regularization methods become important. In-
vestigation of various regularization schemes to sta-
bilize the inversion should be a topic of future work.

When the linear assumption made in Section 2
proves restrictive, the inversion scheme could be
extended to nonlinear case in a number of ways.
Iterations of the present method may be attempted,
and should be the subject of future work. This will
entail computations of Jacobian matrices J ¼h
∂Φ
∂μa ;

∂Φ
∂D

i
(e.g., using finite-element methods) at each

iteration, rather than using the analytical Green’s
function approximation J ≈ W for a homogenous
turbid background. Then, the kþ 1th iteration of the
optical properties ukþ1 would use the previous itera-
tion’s estimates as follows: ukþ1 ¼ invðQkÞbk, where
Qk and bk are the kth estimate of the Q matrix and
b vector, respectively. However, for large scale three-
dimensional (3D) reconstruction, the Jacobian
matrix might be computationally expensive and re-
quires large memory space. To overcome this pro-
blem, Gao et al. [32] proposed a gradient-based
method for quantitative photoacoustic imaging. Al-
ternatively, techniques for the inversion of a Born
series for diffuse waves could be exploited [33]. More
generally, nonlinear optimization-based schemes for
image reconstruction should be considered, which
additionally permits various constraints to be in-
cluded as terms modifying an objective function.
For example, Gao et al. [34] proposed using the
Bregman method combined with the total variation
regularization for recovering both absorption and
scattering information in turbid media with photo-
acoustic imaging. Numerical simulation showed that
their methods surpass Jacobian matrix-based meth-
ods in terms of computational efficacy. Furthermore,
piecewise features can be better reserved with the
proposed regularization scheme. Nevertheless, The
present linearized inversion problem could serve as
a starting point for such iterative procedures. 3D
reconstructions should be tested numerically, then,
future work should, of course, involve experiments to
test the practicality of our methods.

Combining multiple optical source locations with
multiwavelength photoacoustic imaging may provide
quantitative estimates of chromophore concentra-
tions that, in turn, may pave the way for reliable
mapping of oxygen saturation of hemoglobin and
quantitative molecular imaging applications. Addi-
tionally, similar to Cox et al. [9], prior knowledge
of the wavelength dependence of the scattering
coefficient may further alleviate ill-conditioning
and absorption-scattering nonuniqueness. This list
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of future projects can now proceed given the present
groundwork.

5. Summary and Conclusions

We have presented, for the first time to our knowl-
edge, a theoretical framework and numerical results
for quantitative estimation of optical properties with
multiple-source photoacoustic optical tomography.
The reconstruction algorithm presented is able to
reproduce optical absorption, scattering, and Grue-
neisen distributions in a known turbid media back-
ground with high accuracy. Compared with CW-DOT,
our methods are better conditioned. We also show the
reconstruction of spatially varying Grueneisen para-
meter for the first time. Despite some challenges our
method faces in terms of robustness to noise, this
article may be a first step toward a number of tech-
niques for quantitative reconstruction of optical
properties with high spatial resolution.

Appendix A: Models of Light Transport

For monochromatic light, the diffusion equation of
optical transport can be written as [31]

∂Φðr; tÞ
∂t

þ cμaΦðr; tÞ − c∇ · ½D∇Φðr; tÞ� ¼ qðr; tÞ;
ðA1Þ

where q denotes the photon density source strength,
c is the speed of light in the medium, and D is the
diffusion coefficient. For photoacoustic imaging, we
often use lasers with multiple-nanosecond pulse
lengths. Over a time scale of a few nanoseconds, light
can propagate distances of meters, whereas we are
concerned with centimeter distance scales for biolo-
gical imaging applications, hence, we can effectively
consider q to be time independent for our present
purposes.

If we assume that all light propagation, scattering,
and absorption will finish in a time scale much short-
er than the acoustic time scale, the optical part of
the propagation is independent of time. For a time-
independent point source qðr; tÞ ¼ AδðrÞ of strength
A in an effectively infinite turbid homogeneous med-
ium, we have

μ2effΦ0ðrÞ − ∇2Φ0ðrÞ ¼
A
cD

δðrÞ; ðA2Þ

where μeff ¼
ffiffiffiffiffiffiffiffiffiffiffi
μa=D

p
. Taking the spatial Fourier

transform, this equation can be written as

½k2 þ μ2eff �Φ0ðkÞ ¼
A
cD

; ðA3Þ

where k is the magnitude of k, the spatial frequency
vector conjugate to r. The solution in 3D space is
given by taking the inverse Fourier transform of
Φ0ðkÞ as

Φ0ðrÞ ¼ A
expð−μeffrÞ

4πcDr
; ðA4Þ

where r ¼ jrj. For two-dimensional (2D) space, the
solution is found as the inverse Hankel transform of
Φ0ðkÞ, which is

Φ0ðrÞ ¼
1
2π

A
cD

K0ðμeffrÞ; ðA5Þ

where K0 is the modified Bessel function of the
second kind of order zero. The 2D solution will
prove useful for proof-of-principle numerical studies.
The corresponding Green’s functions solution to
μ2effG0ðr; r0Þ − ∇2G0ðr; r0Þ ¼ δðrÞ for 3D and 2D are

G0ðr; r0Þ ¼
expð−μeff jr − r0jÞ

4πjr − r0j ; ðA6Þ

G0ðr; r0Þ ¼
1
2πK0ðμeff jr − r0jÞ; ðA7Þ

respectively.
Our modeling requires computation of the gradi-

ents of bothG0ðr; r0Þ andΦ. Because of radial symme-
try about the source,

∇G0ðrj; r0Þ ¼ r̂
∂G0ðrj; r0Þ

∂r
: ðA8Þ

For the 2D models, the Green’s function is given by
Eq. (A7), and using properties of Bessel functions,

∂K0ðμeffrÞ
∂r

¼ −μeffK1ðμeffrÞ: ðA9Þ

Hence, for 2D, Eq. (9) becomes

Ws
fijgn ¼ −

1

4π2
Aμ2eff
cD0

K1ðμeff jrj − r0njÞ

× K1ðμeff jr0n − rsi jÞ
ðrj − r0nÞ · ðr0n − rsiÞ
jrj − r0njjr0n − rsi j

ΔV
D0

:

ðA10Þ
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