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Abstract
The reconstruction of photoacoustic images typically neglects the effect of
acoustic absorption on the measured time domain signals. Here, a method to
compensate for acoustic absorption in photoacoustic tomography is described.
The approach is based on time-reversal image reconstruction and an absorbing
equation of state which separately accounts for acoustic absorption and
dispersion following a frequency power law. Absorption compensation in
the inverse problem is achieved by reversing the absorption proportionality
coefficient in sign but leaving the equivalent dispersion parameter unchanged.
The reconstruction is regularized by filtering the absorption and dispersion
terms in the spatial frequency domain using a Tukey window. This maintains
the correct frequency dependence of these parameters within the filter pass
band. The method is valid in one, two and three dimensions, and for arbitrary
power law absorption parameters. The approach is verified through several
numerical experiments. The reconstruction of a carbon fibre phantom and the
vasculature in the abdomen of a mouse are also presented. When absorption
compensation is included, a general improvement in the image magnitude and
resolution is seen, particularly for deeper features.

1. Introduction

1.1. Photoacoustic tomography and time-reversal image reconstruction

Photoacoustic tomography (PAT) is an emerging biomedical imaging modality that is
particularly useful for visualizing light-absorbing structures embedded in soft tissue [1].
The technique works by externally illuminating the area to be imaged with short pulses
of monochromatic laser light. Depending on the optical wavelength of the input pulse,
photons are preferentially absorbed by endogeneous chromophores such as hemoglobin,
melanin and water. The transfer of energy due to optical absorption causes a localized
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increase in acoustic pressure via thermoelastic expansion. Due to the elastic nature of soft
tissue, this pressure increase then propagates outwards as an acoustic wave. The acoustic
waves arriving at the tissue surface are detected using an array of ultrasound transducers that
partially or completely surround the tissue sample under investigation. Using the recorded
pressure time signals, an image of the initial pressure distribution can then be reconstructed
[2]. This reconstruction is equivalent to an inverse initial value problem in acoustics, or, in
the homogeneous case, the recovery of a function from a set of its spherical means [3]. The
modality has been demonstrated via high-resolution in vivo images of vasculature and cancer
pathologies in small animals and humans over several length scales [4]. If the distribution
of light within the tissue can be estimated, multiple photoacoustic images made using laser
pulses with different optical wavelengths can be used to extract the concentration of the
embedded chromophores [5]. Molecular imaging is also possible by using targeted exogeneous
contrast agents [6]. Two additional techniques exploiting the thermoelastic generation of
ultrasound analogous to PAT are also available. By using a focused laser source and ultrasound
detector (a technique called photoacoustic microscopy), high resolution imaging of superficial
absorbers can be performed without the need for tomographic reconstruction [7]. Images
can also be formed using lower frequency electromagnetic waves such as microwaves (a
technique often called thermoacoustic tomography), where water is the primary endogeneous
chromophore [8].

The reconstruction of photoacoustic images in PAT requires a mapping from the time-
varying pressure signals recorded on the tissue surface to the three-dimensional initial pressure
distribution within the illuminated sample. A large number of tomographic reconstruction
techniques are currently available [2]. These may be categorized in a number of ways,
for example by their adhesion to mathematical rigour (exact, non-exact, ad hoc), their
assumptions or restrictions (homogeneous acoustic properties, specific detector geometries,
etc), or their algorithmic approach (filtered backprojection, Fourier expansion, time reversal,
etc). Exact reconstruction algorithms for spherical detector geometries based on the inversion
of the spherical Radon transform via filtered backprojection have recently been studied in
detail [9–12]. While mathematically elegant, these algorithms tend to be computationally
intensive which restricts their practical usage. Alternative algorithms based on the harmonic
decomposition of the imaging problem have also been proposed [13]. For a planar detector
geometry, this type of reconstruction can be computed efficiently using the fast Fourier
transform (FFT) [14, 15]. This approach has also been applied to planar detector geometries
in reverberant cavities [16] and cubic detector geometries [17]. Similar decompositions exist
for other geometries, but do not offer the same computational advantages [18, 19]. Other
ad hoc reconstruction techniques have also been proposed, for example the inversion of the
linear Radon transform analogous to x-ray computed tomography [20], and the delay-and-sum
analogous to conventional beamforming [21]. Note the different reconstruction techniques
are not necessarily equivalent and are often based on differing assumptions (for example the
shape of the observation surface or the region of support for the photoacoustic source [22]).
Consequently, the response of the algorithms to different types of measurement noise and
uncertainty will also vary.

As an alternative to the above, image reconstruction can also be achieved by running
a numerical model of the forward problem backwards in time (herein referred to as ‘time
reversal’). This approach works by re-transmitting the measured acoustic pressure signals
into the domain in time-reversed order. It was first proposed as an experimental technique
for focusing ultrasound through scattering media [23, 24]. (A large body of literature has
now evolved covering time reversal in this context [25].) The application of time reversal
to PAT was first suggested by Finch et al [9] and Xu and Wang [26, 27] and has since been
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studied by a number of authors [22, 28–30]. It has recently been described as the ‘least
restrictive’ reconstruction algorithm for PAT [22]. It is applicable to heterogeneous acoustic
media, arbitrary detection geometries, and is not susceptible to image artefacts if part of the
photoacoustic source lies outside the detection surface. Despite this, time reversal has not
been widely used for PAT. This may be due to the lack of a sufficiently fast numerical model
of the forward problem which can be used to compute the time reversal in silico, particularly
for 3D reconstructions. However, as faster forward models become available, it is likely that
time reversal will become an increasingly practical tool for large-scale inversions.

1.2. Modelling acoustic absorption

Typically, the temporal length of the excitation laser pulse used for illumination is several orders
of magnitude shorter than the time it takes for the generated acoustic waves to travel to the
tissue surface (nanoseconds compared to microseconds). The distribution of chromophores
is also often strongly compartmentalized. This creates step-like pressure discontinuities
between the optically absorbing regions and causes the generated photoacoustic waves to be
very broadband. For example, for each laser pulse, a superficial network of blood vessels may
generate ultrasound waves containing frequencies from tens of kilohertz to tens of megahertz.
To illustrate, the average amplitude spectrum of the time-varying pressure signals from an
in vivo measurement of the vasculature in the human palm recorded using a broadband Fabry–
Perot sensor as reported in [31] is shown in figure 1(a). Over these frequencies, acoustic
absorption in biological tissue has been experimentally shown to follow a frequency power
law of the form [32]

α = α0ω
y. (1)

Here α0 is the absorption coefficient in nepers (rad/s)−y m−1, ω is the angular frequency in
rad s−1, and y is the power law exponent. For most tissue types, the power law exponent is
in the range 1–1.5 [32]. As the acoustic waves propagate, the frequency-dependent acoustic
absorption will alter the frequency spectrum of the original pulse. Similarly, for a given
measurement sensitivity, this absorption will limit the range of frequency components that can
be detected at the tissue surface.

Given an impulsive acoustic point source with a pressure amplitude of psource (defined at a
distance dsource from the source) and a detector with a noise equivalent measurement pressure
of pnoise, the maximum detectable frequency f max in MHz after the source has propagated a
distance d can be estimated by

fmax(d) =
(

20 log10(psourcedsource/pnoised)

100α0,dBd

)1/y

. (2)

This is obtained by equating the total amount of absorption as a function of frequency with the
detection bandwidth corrected for spherical spreading. Here, α0,dB is the absorption coefficient
in dB MHz−y cm−1, d and dsource are in m, and the initial frequency response is assumed to be
broadband. For a plane wave source, the distance parameters within the log10(. . .) term are
removed. The peak photoacoustic pressures generated in vivo are typically 10–20 kPa while
the noise equivalent pressure of a high sensitivity ultrasound sensor is on the order of 0.2 kPa
[33]. This gives a dynamic range on the order of 40 dB. Figure 1(b) shows the maximum
detectable frequency for psource = 20 kPa, dsource = 0.5 mm and pnoise = 0.2 kPa. The bold
lines correspond to absorption parameters of α0 = 0.75 dB MHz−y cm−1 and y = 1.5 (breast
tissue) and the light lines to α0 = 0.6 dB MHz−y cm−1 and y = 1 (fatty tissue) [32]. The
values for both point (solid lines) and plane wave (dashed lines) sources are shown. Despite an
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Figure 1. (a) The average frequency spectrum of the time-varying pressure recorded using a
broadband ultrasound detector from an in vivo measurement of the vasculature in the human palm
reported in [31]. (b) The maximum detectable frequency for an impulsive point source (solid lines)
and plane wave source (dashed lines) in biological tissue with acoustic absorption parameters
α0 = 0.75 dB MHz−y cm−1 and y = 1.5 (bold lines) and α0 = 0.6 dB MHz−y cm−1 and y = 1
(light lines).

initially broadband frequency response, after 20 mm the maximum frequency detectable from
a point absorber is reduced to between 3 and 7 MHz (depending on the value of absorption
used). This information loss is currently neglected in most photoacoustic image reconstruction
methods and is the subject of interest here.

Notwithstanding the significant effect acoustic absorption can have on the measured
frequency spectrum of photoacoustic waves in biological tissue, very few tomographic
reconstruction methods for lossy media are available. This can in part be attributed to
the lack of suitable acoustic forward models which can account for tissue realistic absorption.
Classical lossy wave equations (such as Stokes’ equation) which can include energy loss due to
viscosity and thermal conduction yield an absorption that is proportional to frequency squared
(i.e. y = 2) [34]. More recently, a number of other wave equations have been proposed that
include phenomenological lossy operators based on convolution or the temporal fractional
derivative (such as Szabo’s equation [35]; see [36] for a recent review). While these equations
can account for arbitrary power law absorption (and as such are suitable for modelling the
absorption observed in biological tissue), they require the storage of the simulated pressure
field at previous time steps and are thus very computationally expensive. To overcome these
deficiencies, a wave equation with a lossy operator based on the fractional Laplacian can
be used. This was first proposed in [37] and later extended to correctly account for power
law dispersion [36]. Using this operator, no additional storage is needed as the value of the
simulated pressure field at other positions (rather than times) is already inherently known. The
corresponding equation of state can also be efficiently encoded using Fourier-based k-space
or pseudospectral methods [38].

1.3. Image reconstruction in absorbing acoustic media

Within the limited literature on accounting for acoustic absorption in PAT, several different
approaches have been suggested. Tan et al applied a correction to the frequency spectrum of
the recorded signals before reconstruction [39]. This was achieved by applying a frequency
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domain filter of the form eα(ω)d where the propagation distance d was assumed to be known
and fixed. The absorption α was of the form given by (1) and the filter was regularized using
the frequency response of the transducer. Experimental results showed a general deblurring
effect after absorption correction. However, this approach is limited by the assumption of a
constant propagation distance. Although correct when the photoacoustic signal is generated
at this particular depth, for signals originating elsewhere, the spectrum will not be modified
correctly. The filter is thus analogous to those used in conventional image sharpening. (Note
a possible extension to this method might be to use a time-frequency representation to apply
the filter with varying d).

La Rivière et al applied a more sophisticated absorption correction using Szabo’s wave
equation for y = 1 [40]. This correction was based on the computation of the pseudo-
inverse of a discretized matrix equation relating the signals with and without acoustic
absorption. The inversion was regularized by thresholding the matrix eigenvalues. Through
numerical simulation, they showed a general de-blurring effect after their correction was
applied. Burgholzer et al applied a 2D time-reversal reconstruction using a finite-difference
implementation of Stokes’ equation where y = 2 [41]. Regularization was reportedly
performed using Fourier spectral methods. For numerical data simulated using the same
equation, this approach also showed a general deblurring effect. Modgil et al derived
an inversion formula for the initial photoacoustic pressure for y = 1 using singular value
decomposition (SVD) [42]. Through this analysis, they showed that the smaller eigenvalues
typically corresponded to deeper objects. These were, as intuitively expected, recovered less
accurately. While useful as a numerical analysis tool, finding the SVD for experimental data
sets of practical size becomes computationally intractable. Several other studies have also
illustrated the effects of acoustic absorption in the forward problem [43–45]. However, a
general and flexible method to account for acoustic absorption in photoacoustic tomography
has not yet been reported.

Here, the absorption model discussed in [36] is combined with a time-reversed numerical
model of ultrasound propagation to provide a flexible reconstruction algorithm for PAT in
absorbing acoustic media. This represents a generalization of the method presented by
Burgholzer et al [41]. The approach is valid in 1, 2 and 3D, for arbitrary detection geometries,
and for arbitrary power law absorption parameters. The forward model is based on a
k-space pseudospectral solution method to three coupled first-order acoustic equations. The
forward and inverse problems for PAT in absorbing acoustic media are reviewed in section 2.
The stability of the inverse problem when absorption correction is included is investigated
using SVD. The regularization of the reconstruction by filtering the absorption terms is also
discussed. In section 3, several numerical experiments are presented to illustrate the efficacy
of the proposed reconstruction method. This is extended to experimental data in section 4.
Both phantom and applied examples are provided. Summary and discussion are given in
section 5.

2. Modelling photoacoustic waves in acoustically absorbing media

2.1. Forward and inverse acoustic propagation in photoacoustics

In a lossless acoustic medium, the photoacoustic wave equation can be reformulated as
an initial value problem using three coupled acoustic equations. These are, respectively,
the linearized equation of motion (conservation of momentum), the linearized equation of
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continuity (conservation of mass) and the adiabatic equation of state [46]:

∂

∂t
u(x, t) = − 1

ρ0(x)
∇p(x, t), (3)

∂

∂t
ρ(x, t) = −ρ0(x)∇ · u(x, t), (4)

p(x, t) = c0(x)2ρ(x, t), (5)

where the initial conditions are given by

p(x, t)|t=0 = p0(x), u(x, t)|t=0 = 0. (6)

Here, p(x, t) is the acoustic pressure at time t ∈ R
+ and position x ∈ � ⊂ R

n inside the
imaging region � (n is typically 2 or 3), u(x, t) is the acoustic particle velocity, c0(x) is the
sound speed, and ρ(x, t) and ρ0(x) are the acoustic and ambient densities, respectively. In a
lossy medium in which the acoustic absorption follows a general frequency power law in the
form of (1), an alternative equation of state which contains two additional operators dependent
on the fractional Laplacian is used to replace (5), where

p(x, t) = c0(x)2

{
1 + τ(x)

∂

∂t
(−∇2)y/2−1 + η(x)(−∇2)(y+1)/2−1

}
ρ(x, t). (7)

The three bracketed terms correspond to the adiabatic equation of state, absorption and
dispersion, respectively [36]. The latter causes a dependence of the sound speed on frequency.
The absorption and dispersion proportionality coefficients, τ(x) and η(x), are given by

τ(x) = −2α0c0(x)y−1, η(x) = 2α0c0(x)y tan(πy/2), (8)

and α0 and y are the absorption parameters from (1).
Given time-varying measurements pm(xS, t) of the pressure p(xS, t) recorded on an

arbitrary measurement surface xS ∈ S for some time t = 0 to T, the acoustic inverse problem
in PAT is to reconstruct an estimate of the initial pressure distribution p0(x) inside the imaging
region �. In time-reversal imaging, this reconstruction is achieved by enforcing pm(xS, t) in
time-reversed order as a Dirichlet boundary condition on Ŝ ⊂ �̂ (here Ŝ and �̂ are the in silico
equivalents of S and �). In this case, the initial pressure in (6) is set to zero, giving

p(x, t)|t=0 = 0, u(x, t)|t=0 = 0, p(xS, t) = pm(xS, T − t), (9)

where the pressure field in �̂ is computed for t = 0 to T. This is equivalent to the re-
transmission of the pressure in a reflective cavity formed by Ŝ where pm(xS, T − t) is injected
as a source rather than imposed as a boundary condition [26].

To account for the acoustic absorption evident in the forward problem, the absorption term
in (7) must be reversed in sign when computing the time-reversal reconstruction (the frequency
content must grow according to (1) rather than decay). In contrast, to account for the dispersion
evident in the forward problem, the frequency-dependent phase speed must remain unchanged
(i.e., the dispersion term in (7) must not be reversed in sign). This is because, if higher
frequencies have travelled to the detector faster than the lower frequencies, when the signal is
reversed, they will again need to travel faster than the lower frequencies to correctly recover
the original source shape (see figure 2). This is an important point that precludes the use of
lossy wave equations in which the absorption and dispersion are encapsulated by a single term
(such as Szabo’s equation [35]). In this case, reversing the sign of the absorption coefficient
would also incorrectly reverse the dispersion.
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Figure 2. Time-reversal image reconstruction in absorbing acoustic media. To correctly account
for absorption and dispersion, the absorption term must be reversed so it amplifies the signal as
time progresses. In contrast, the dispersion term (dependence of the sound speed on frequency)
must remain unchanged.

2.2. Artifact trapping

A consequence of the measured pressure field being enforced as a Dirichlet boundary condition
within the imaging region �̂ during time reversal is that additional reconstruction artefacts can
appear due to trapped vestigial waves [47]. This occurs when the acoustic properties of the
propagation medium are heterogeneous, but only the average acoustic properties are known as
input values for the reconstruction (this will most likely be the case in practice). In this case, the
time-reversed waves do not interfere exactly to reproduce the outward going pressure field that
resulted in the boundary measurements. As such, vestiges of the original reflections produced
by the acoustic heterogeneities remain within the imaging region. When these waves reach
the boundary Ŝ, the enforced Dirichlet boundary condition causes these vestigial waves to be
reflected back into the imaging region, ultimately resulting in additional image reconstruction
artefacts (the problem of artifact trapping is discussed in detail in [47]). Here, to mitigate the
effects of artifact trapping, a truncated data approach based on Huygens’ principle is used. In
3D, for an acoustically homogeneous medium and a spherical measurement surface, no signals
will be recorded after time tH = 2r/c0 (where r is the radius of the sensor surface). If c0 is
chosen to be the minimum sound speed in a heterogeneous medium, any signals arriving at
the measurement surface after this time must arise from reflections from impedance interfaces
(or otherwise are simply noise in the measurement data). The effects of artifact trapping can
thus be reduced by truncating the measurement signals at tH. Although Huygens’ principle
does not hold in 2D, the approach is still practically useful in this dimension for mitigating
the effects of artefact trapping [47].

2.3. k-space methods

The most common method for solving partial differential equations in acoustics for broadband
sources is the finite-difference time domain method [48]. In this approach, both spatial and
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temporal derivatives are computed using finite differences. The accuracy of the solution
is controlled by modifying the number of grid points per wavelength used to discretize
the computational domain along with changing the length of the time steps. However,
computational efficiency in the spatial domain can be significantly improved by using Fourier-
based pseudospectral methods in which the spatial derivatives are calculated globally using
the FFT [49]. This approach reduces the number of grid points per wavelength required to
maintain a given level of accuracy (from ten points per wavelength for a second-order finite-
difference to two points for a Fourier pseudospectral method). As the size of the time step
is also related to the density of the grid points, this reduction can have a substantial effect
on computational economy. The accuracy of the calculation of temporal derivatives can be
further improved by using k-space pseudospectral methods [50]. In the homogeneous case,
these models are exact for arbitrarily large time steps [51, 52]. In the case of heterogeneous
media, the k-space adjustments lead to improved stability, and thus allow larger time steps for
the same degree of accuracy [53]. For the range of heterogeneity evident in soft biological
tissue, this increase is on the order of three to four times.

The coupled acoustic equations introduced in section 2.1 written in the discrete form
using a k-space pseudospectral method are

∂

∂ξ
p(x, t) = F

−1{ikξ κ F{p(x, t)}}, (10)

uξ (x, t + �t) = uξ (x, t) − �t

ρ0(x)

∂

∂ξ
p(x, t), (11)

∂

∂ξ
uξ (x, t + �t) = F

−1{ikξ κ F{uξ (x, t + �t)}}, (12)

ρξ (x, t + �t) = ρξ (x, t) − �tρ0(x)
∂

∂ξ
uξ (x, t + �t), (13)

p(x, t + �t) = c0(x)2

⎛
⎝∑

ξ

ρξ (x, t + �t) + abs + disp

⎞
⎠ . (14)

Here, i is the imaginary unit, kξ is the spatial wavenumber component in the ξ direction where

k = ( ∑
ξ k2

ξ

)1/2
, F {. . .} and F

−1{. . .} are the n-dimensional forward and inverse Fourier
transforms, κ is the k-space adjustment to the spatial derivative where κ = sinc(c0(x)k�t/2)

(this makes the finite-difference approximation of the temporal derivative exact in the
homogeneous case [52]), �t is the time step, and (10)–(13) are repeated for each Cartesian
direction where ξ = (x) in R

1, ξ = (x, y) in R
2 and ξ = (x, y, z) in R

3. The density
is artificially divided into Cartesian components to allow an anisotropic absorbing boundary
layer to be applied [51]. Here, (10) and (12) are gradient calculations, (11) and (13) are update
equations, and (14) is an equation of state which is explicitly included to allow absorption
and dispersion to be incorporated in a transparent manner. The corresponding absorption and
dispersion terms are given by

abs = τ(x)F−1

⎧⎨
⎩(k κ)y−2

F

⎧⎨
⎩ρ0(x)

∑
ξ

∂

∂ξ
uξ (x, t + �t)

⎫⎬
⎭

⎫⎬
⎭ ,

disp = η(x)F−1

⎧⎨
⎩(k κ)y−1

F

⎧⎨
⎩

∑
ξ

ρξ (x, t + �t)

⎫⎬
⎭

⎫⎬
⎭ . (15)
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The equations are solved iteratively starting with the initial conditions for p(x, t), uξ (x, t)

and ρξ (x, t). For the forward problem in PAT, the initial conditions for the pressure and
velocity are given by (6). If temporal staggered grids are used, the latter is enforced by setting
u(−�t/2) = −u(�t/2). The corresponding initial acoustic density distribution is calculated
using (5), where the value for each Cartesian direction is chosen such that∑

ξ

ρ0,ξ (x) = p0(x)/c0(x)2, (16)

where ρξ (x, t)
∣∣
t=0 = ρ0,ξ (x). The time step �t is chosen based on the Courant-Friedrichs-

Lewy (CFL) number

�t = CFL �x

cmax
, (17)

where �x is the size of the grid elements, and cmax is the maximum sound speed within the
simulation medium. For the k-space model described here, a CFL number of 0.3 typically
provides a good compromise between simulation accuracy and computational speed [51].

The k-space simulations and reconstructions presented here were computed using the
k-Wave MATLAB toolbox [38]. This provides an implementation of (10)–(15) in one, two
and three dimensions. The simulation functions within the toolbox also include an absorbing
boundary layer to prevent waves leaving one side of the computational domain re-entering on
the opposite side (in this case a perfectly matched layer or PML [51]). The computational grids
are also spatially and temporally staggered to improve accuracy. Unless stated otherwise, the
simulations are based on the acoustical properties of breast tissue in which the sound speed,
density and absorption parameters are 1510 m s−1, 1020 kg m−3, α0 = 0.75 dB MHz−y cm−1

and y = 1.5, respectively [32].

2.4. Singular value decomposition of the forward problem

To investigate the effect of acoustic absorption on the stability of the image reconstruction
(inverse) problem, the discretized equations presented in the previous section may be rewritten
using linear matrix operators which can then be analysed using SVD. In 1D, these become

u+ = u− − T1p−, ρ+ = ρ− − T2u+, p+ = T3ρ+ + T4u+. (18)

Here the matrix operators are given by T1,2,... (these can be derived using (10)–(15) and the
matrix form of the discrete Fourier transform), the subscript + and − symbols represent the
solution at the next and previous time steps, respectively, and the function dependence has
been omitted for clarity. Using these expressions and the initial conditions

p− = p0, u− = 0, ρ− = T5p0, (19)

it is possible to derive a single matrix operator Sm to define the mapping of p0 to pm (the
pressure field after m time steps). In this case pm = Smp0. For example, after one time step
the pressure is given by p1 = S1p0 where S1 = T1T2T3 − T1T4 + T3T5. The information
loss due to acoustic absorption after m time steps can then be investigated by examining the
singular values of the matrix operator Sm using SVD.

The singular values for S1, S5, S10 and S15 are shown in figure 3. These were computed
using MATLAB’s SVD function. The required matrix operators were calculated using a
grid size of 512 pixels (10 mm in length supporting frequencies up to 38 MHz), a time
step of 3 ns and the acoustic properties of breast tissue. The absorption coefficient was
increased to α0 = 50 dB MHz−y cm−1 to emulate the effect of taking a larger number of time
steps (calculating Sm directly for m � 1 becomes intractable). For S15, this is approximately
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Figure 3. Singular values of the matrices S1, S5, S10 and S15 for absorption parameters
α0 = 50 dB MHz−y cm−1 and y = 1.5.

equivalent to taking 1000 time steps for α0 = 0.75 dB MHz−y cm−1 with the wave propagating
on the order of 5 mm. It is clear from figure 3 that as the number of time steps increases, some
of the singular values of Sm become very small. Consequently, its inverse (an equivalent of
which is required for image reconstruction accounting for acoustic absorption) will be poorly
conditioned and the reconstruction will be very sensitive to noise in the measurement data.
Numerically, if an image is reconstructed from real measurement data using time reversal
based on (10)–(15) without regularization, noisy data at high frequencies (where the signal to
noise ratio is typically much lower) will quickly grow to be larger than the signal data at lower
frequencies, effectively masking the desired reconstruction of initial pressure.

2.5. Regularizing the absorption parameters

The inherent separation of the absorption and dispersion parameters from the adiabat (the c2
0ρ

term) in (7) simplifies the task of regularizing the reconstruction. Here, this regularization
is performed by filtering the abs and disp parameters in (15) in the spatial frequency domain
before taking the inverse FFT. This prevents unwanted frequency content from growing in
magnitude as the time-reversal reconstruction progresses. Assuming the smaller singular
values correspond to higher spatial frequencies, this is similar to performing a truncated-SVD
inversion. A frequency domain symmetric Tukey window (or tapered cosine window) scaled
to a particular frequency cutoff was chosen as the filter shape so that the correct power law
absorption and dispersion characteristics were maintained within the filter pass band. An
example of the filter shapes in 1D for taper ratios of 0.5 and 0.25 and a cutoff frequency
of 15 MHz are shown in figure 4(a). The analogous window in 2D for a taper ratio of 0.5
(constructed using rotation) is shown in 4(b).

The effect of the filter on the frequency-dependent absorption and dispersion experienced
by a 1D monopolar plane wave pulse is shown in figures 4(c) and (d). A Tukey window
with a cutoff frequency of 15 MHz and a taper ratio of 0.5 (solid lines) or 0.25 (dashed lines)
was used to regularize the absorption parameters. The absorption and dispersion values were
extracted from the time series recorded at 1 and 5 mm from the source [54]. The grid size
was 2048 pixels (60 mm) supporting frequencies up to 25 MHz, and the medium parameters
were based on breast tissue. Reference values from 0.1 to 20 MHz are also shown with open
circles for comparison. These were calculated using (1) and the corresponding Kramers–
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Figure 4. (a) One-dimensional symmetric Tukey window with a frequency cutoff of 15 MHz
and taper ratios of 0.5 (solid line) and 0.25 (dashed line). (b) Two-dimensional symmetric Tukey
window with a frequency cutoff of 15 MHz and a taper ratio of 0.5. (c) Effective acoustic
absorption after filtering the absorption parameters with the Tukey windows shown in (a) for
α0 = 0.75 dB MHz−y cm−1 and y = 1.5. Reference values are shown as open circles for
comparison. (d) Effective acoustic dispersion analogous to (c).

Kronig relations [55]. The reference frequency for the latter was chosen to be 5 MHz and
the corresponding sound speed extracted from the simulated data. In the filter pass band,
the absorption and dispersion correctly display the required frequency dependences. The
parameters then smoothly change to be non-absorbing and non-dispersive in the filter stop
band. For noisy data, a suitable filter cutoff frequency can be chosen by examining the power
spectrum of the measured pressure signals and identifying a value based on where the observed
signal spectrum reaches the noise floor.

3. Numerical simulations

3.1. Reconstruction of a point source

To demonstrate the effect of absorption compensation on images reconstructed using time
reversal, the simulation and reconstruction of a point source in a 2D absorbing medium was
investigated. A grid size of 476 × 476 pixels was used for the simulation (22 × 22 mm with
an external 20 pixel PML), supporting frequencies up to 16 MHz. The medium parameters
were again based on breast tissue. The initial pressure was set to be a single pixel positioned
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Figure 5. Reconstruction of a point source in an absorbing medium. The maximum and FWHM of
the reconstruction are shown as a function of the propagation distance (sensor radius). The results
from reconstructions both with (solid lines) and without (dashed lines) absorption compensation
are shown.

in the centre of the grid and was smoothed using a frequency domain Hanning window. The
pressure signals were recorded using a continuous circle of point detectors with a radius
varying from 1 to 10 mm (see the inset in figure 5(a)). The signals were then time reversed
using the same grid size with the absorption proportionality coefficient τ reversed in sign,
and the absorption and dispersion operators filtered using a Tukey window with a taper ratio
of 0.5 and a cutoff frequency of 16 MHz. The reconstruction was also performed with no
absorption compensation. The maximum and the full width at half maximum (FWHM) of
the reconstructed initial pressure were then extracted as a function of the propagation distance
(i.e. the radius of the sensor). These are plotted in figure 5. The values for the absorption
compensated reconstruction are shown as solid lines with the values without compensation
shown as dashed lines for comparison. For this idealized example (using noiseless data and
a complete measurement field of view), the absorption compensation significantly improves
the reconstruction.

3.2. Shepp–Logan phantom

A second numerical example illustrating the effect of absorption compensation is shown in
figure 6. Here the Shepp–Logan phantom [56] was used to define the initial photoacoustic
pressure distribution using the phantom function in the MATLAB image processing toolbox
(see figure 6(a)). The forward simulations were computed using a 984 × 984 pixel grid
(52 × 52 mm with an external 20 pixel PML) which supported frequencies up to 14 MHz. The
medium properties were based on breast tissue with the absorption coefficient increased to
α0 = 3 dB MHz−y cm−1 (based on human skin [57]). The signals were detected using a circle
of 200 evenly distributed point detectors defined in Cartesian space with a radius of 25 mm.
The pressure at the sensor points was calculated from the pressure at the grid points at each
time step via linear interpolation. After the forward simulation, random Gaussian noise was
added to the recorded signals to give a signal to noise ratio of 40 dB (based on the peak of the
recorded signal and the rms noise level). The power spectrum of the signal recorded at the first
sensor element is shown in figure 6(b). The average power spectrum of all the measurement
signals is overlayed in bold. The time-reversal reconstructions were then computed using a
different sized 974 × 974 pixel grid (with an external 25 pixel PML). Before reconstruction,
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Figure 6. Time-reversal reconstruction of the Shepp–Logan phantom in absorbing acoustic media.
(a) The initial acoustic pressure. (b) An example of the power spectrum of the measured signals.
The average power spectrum of all the measured signals is overlayed in bold. (c) Time-reversal
reconstruction with no compensation for acoustic absorption. (d) A profile through z = 0. The
equivalent initial pressure is also shown for comparison. (e) Time-reversal reconstruction including
compensation for acoustic absorption. (f) A profile through z = 0 analogous to (d).
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the recorded signals were interpolated onto a continuous sensor surface with the same radius
using linear interpolation [38]. These signals were then enforced as a time-varying Dirichlet
boundary condition during the reconstruction. A Tukey window with a taper ratio of 0.5 and
a cutoff frequency of 3 MHz was used to regularize the absorption parameters. The cutoff
frequency was chosen based on the noise floor observable in figure 6(b).

The reconstructions both without and with absorption compensation are shown in
figures 6(c) and (e), respectively. Profiles through z = 0 for both reconstructions are shown
in figures 6(d) and (f) for comparison. Without correction for absorption, the edges of
the reconstructed pressure become blurred, and the overall magnitude is reduced. When
compensation for acoustic absorption is included into the reconstruction, the sharpness
and magnitude of the reconstructed pressure is considerably improved. Due to the band-
limited frequency response of the detected signals (high frequencies are not detected because
their magnitudes are below the noise floor when the acoustic waves reach the sensor),
the reconstruction is unable to completely recover the frequency content of the initial pressure
distribution. This results in the Gibbs phenomenon appearing in the reconstruction where
there are sharp changes in gradient.

4. Experimental measurements

4.1. Carbon fibre phantom

To illustrate the applicability of time reversal with absorption compensation (and the use of
time reversal more generally) to experimental data, images from both phantom and ex vivo
experiments were reconstructed. Figure 7 shows the 2D reconstruction of a 7 μm diameter
carbon fibre phantom in distilled water. The fibre was illuminated with nanosecond laser
pulses from a fiber coupled laser. The laser source used was a Q-switched Nd:YAG operating
at 1064 nm with a pulse duration, energy and repetition frequency of 5.6 ns, 45 mJ and
20 Hz, respectively. A 7 mm line scan with a step size of 3 μm was taken perpendicular
to the fibre axis using a photoacoustic scanner based on a Fabry–Perot interferometer [33].
Each waveform was acquired for 3 μs with a temporal resolution of 0.8 ns. The time-
reversal reconstruction including absorption compensation is shown in figure 7(b) with a
profile through z = 0 shown in figure 7(c). The reconstruction was performed using a 2048
× 1024 pixel grid supporting frequencies up to 215 MHz. The absorption parameters were
set to α0 = 2.17 × 10−3 dB MHz−y cm−1 and y = 2 [32]. A Tukey window with a taper
ratio of 0.5 and a cutoff frequency of 200 MHz was used for regularization. A profile of the
corresponding reconstruction without absorption compensation is also shown in figure 7(c) for
comparison. The inclusion of absorption compensation increases the peak pressure by 17%
and reduces the FWHM from 29.0 to 27.0 μm in the x-direction, and 14.7 to 13.9 μm in the
z-direction (on the order of 6%). In this case the achievable resolution is also constrained by
the limited measurement aperture and the frequency response of the detection system.

4.2. Ex vivo imaging of the vasculature in the mouse skin

Figure 8 shows the 3D time-reversal reconstruction of the vasculature in the skin around the
abdomen of a mouse. The acquisition of the measurement data is reported in detail in [31].
The skin was illuminated by the output of a fibre coupled type I optical parametric oscillator
pumped by the 355 nm frequency tripled output of a Q-switched Nd:YAG laser. The pulse
duration, incident fluence, repetition rate and wavelength used were 8 ns, 6.8 mJ cm−2, 10 Hz
and 590 nm, respectively. A 10 mm area scan with a step size of 100 μm was performed,
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Figure 7. 2D reconstruction of a carbon fibre phantom in distilled water. (a) Schematic of the
experimental setup. (b) Reconstructed fibre. (c) The x-profile through z = 0 both with (solid line)
and without (dashed line) compensation for acoustic absorption.

with each waveform acquired for 2 μs with a temporal resolution of 8 ns. The measured
pressure signals were interpolated using linear interpolation to give a twofold increase in
lateral resolution before reconstruction. The time-reversal reconstruction was performed
using a 200 × 200 × 295 pixel grid (10 × 10 × 3.6 mm with a 10 pixel external PML) which
supported a maximum frequency of 15 MHz in the lateral direction and 62.5 MHz in the depth
direction. The disparate grid size was chosen to match the resolution of the acquired data (the
depth resolution is dependent on the temporal resolution of the acquisition system). A Tukey
window with a taper ratio of 0.5 and a cutoff frequency set to 15 MHz in the lateral direction
and 30 MHz in the depth direction was used to regularize the absorption parameters. The
medium properties were set to breast tissue.

After reconstruction, a first-order correction for the optical attenuation in tissue was
applied, where p0(x)corrected = p0(x) eμeffz. Here, z is the distance in the depth direction, and
a value of μeff = 0.5 cm−1 was used for the effective scattering coefficient. The resulting
reconstructed initial pressure distributions with and without absorption compensation are
shown in figure 8. The plots correspond to maximum intensity projections through the
depth and lateral directions and an x-y slice at a depth of z = 1.6 mm. One-dimensional
profiles through these images are also shown in figure 9 for comparison. When absorption
compensation is included, the underlying vasculature becomes slightly more visible and the
edges of the vessels become sharper. Although the images look qualitatively very similar,
the peak pressure of the particular vessel profile shown in figure 9(b) is increased by 50%,
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Figure 8. 3D time-reversal image reconstruction of the vasculature in the skin around the abdomen
of a mouse. The upper plots show the reconstruction without compensation for acoustic absorption.
The plots on the left show maximum intensity projections through the z (depth) and x (lateral)
directions. An x–y slice at a depth of z = 1.6 mm is shown on the right. The lower plots show the
analogous information when absorption compensation is included. The magnitude and sharpness
of the deeper vessels are improved.

and the FWHM is reduced by 10%. In the context of quantitative imaging where absolute
pressure values are required, variations of this order could significantly alter estimates of the
underlying chromophore concentrations.
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Figure 9. (a) 1D profile through the lateral maximum intensity projections shown in figure 8
for y = 6.7 mm. The magnitude of the three deeper vessels when compensation for acoustic
absorption is included appears almost equal. (b) 1D profile through the x-y slices shown in
figure 8 for x = 4 mm. The peak pressure of the main vessel is increased by 50%, and the FWHM
is reduced by 10%. The solid and dashed lines in both plots correspond to the reconstructions with
and without compensation for acoustic absorption, respectively.

5. Summary and discussion

A new method to compensate for acoustic absorption and dispersion in the reconstruction
of images in photoacoustic tomography is described. The method is based on the idea of
time-reversal image reconstruction in which a numerical model of the forward problem is run
backwards in time. Here, a forward model which utilizes an absorbing equation of state based
on the fractional Laplacian is used. This model contains terms which separately account for
the acoustic absorption and dispersion evident in biological tissue. Absorption compensation
in the inverse problem is achieved by reversing the absorption proportionality coefficient in
sign but leaving the dispersion term unchanged. This is not possible when the absorption and
dispersion are encapsulated by a single operator. The reconstruction is regularized by filtering
the absorption and dispersion terms in the spatial frequency domain. A Tukey window is
used to maintain the correct frequency dependence of these parameters in the filter pass band.
The approach is demonstrated through the reconstruction of numerical and experimental data
in both 2D and 3D. After reconstruction, a general improvement in image magnitude and
resolution is seen, particularly for features at lower depths.

The practical application of the proposed absorption compensation technique raises several
interesting questions. First, a method is required to select the properties of the filter used to
regularize the absorption and dispersion parameters. Here, a filter cutoff frequency was chosen
based on visual inspection of the average power spectrum of the recorded data. The cutoff
was chosen at the frequency where the signal spectrum reached the noise floor. This selection
(which is equivalent to selecting a regularization parameter) represents a compromise between
correctly accounting for acoustic absorption and the desired reconstruction becoming masked
by amplified high frequency noise. The exact balance between obtaining an image with
adequate signal to noise and improving the accuracy of the reconstruction is dependent on
the intended application. For example, if extracting quantitative information, the accuracy of
the reconstructed initial pressure within regions of interest (e.g. within the vasculature) will
likely take precedence. In this case, the accurate compensation of acoustic absorption is of
particular importance, as errors in the magnitude of the reconstruction will manifest as errors
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in the estimation of chromophore concentrations. Alternatively, if the images are simply for
qualitative analysis or display, a reconstruction that yields a better overall signal to noise ratio
may be preferable.

Second, for the compensation to be accurate, tissue realistic parameters for the acoustic
absorption must be used in the reconstruction. While values for the absorption coefficient
and power law exponent for several tissue types are readily available (e.g. [32]), the majority
of these reference measurements have been taken over a limited frequency range (typically
below 10 MHz). The validity of these values over a wider frequency range applicable to
photoacoustics is not inherently assured. Additionally, the properties of many tissue types
(for example human skin, or the tissues in mouse or other small animal models) have not been
studied in detail. Further characterization of the relevant tissue parameters is thus required.
If accurate maps of the tissue properties can be obtained (for example from a complementary
imaging modality), it may be possible to assign segmented maps of acoustic absorption.
This would provide a more realistic compensation for the absorption observed in the forward
problem.

Finally, it is important to note that the achievable resolution of the reconstructed image
will be limited by the properties of the photoacoustic scanning system used to take the
measurements. If the features in the reconstructed image in a particular dimension are only one
pixel in width, adding absorption compensation will have no effect on the resolution (although
the magnitude of deeper structures may still be improved). Similarly, if the measurement
system is bandlimited such that higher frequencies are not recorded, the effect of absorption
correction on resolution will also be limited. However, given sufficiently high resolution
measurement data and a realistic characterization of the absorption parameters, the proposed
technique can accurately compensate for the effects of acoustic absorption in photoacoustic
tomography.
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