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The Frequency-Dependent Directivity of a
Planar Fabry-Perot Polymer Film

Ultrasound Sensor
Benjamin T. Cox and Paul C. Beard

Abstract—A model of the frequency-dependent direc-
tivity of a planar, optically-addressed, Fabry-Perot (FP),
polymer film ultrasound sensor is described and validated
against experimental directivity measurements made over
a frequency range of 1 to 15 MHz and angles from normal
incidence to 80 . The model may be used, for example, as
a predictive tool to improve sensor design, or to provide
a noise-free response function that could be deconvolved
from sound-field measurements in order to improve accu-
racy in high-frequency metrology and imaging applications.
The specific question of whether effective element sizes as
small as the optical-diffraction limit can be achieved was
investigated. For a polymer film sensor with a FP cavity
of thickness , the minimum effective element radius was
found to be about 0 9 , and that an illumination spot ra-
dius of less than 4 is required to achieve it.

I. Introduction

The use of thin film Fabry-Perot interferometers (FPI)
for the detection of ultrasound in liquids at megahertz

frequencies provides a practical alternative to broadband
piezoelectric receivers for a variety of measurement and
imaging applications [1]–[14]. The sensing element com-
prises a thin film spacer (<50 µm) sandwiched between
optically reflective coatings and overlaying a transparent
acoustically thick substrate. It is termed a planar sensing
structure when the lateral dimensions are on a centimeter
scale and thus large compared to an acoustic wavelength
at megahertz frequencies, in contrast to configurations of
limited, lateral extent, such as when the sensor is formed
on the tip of an optical fiber [2], [3], [4].

The sensor is typically interrogated by illuminating it
with the free-space output of a laser and directing the re-
flected beam onto a photodiode. An incident ultrasound
wave modulates the optical thickness of the sensing struc-
ture. This produces a corresponding optical phase shift be-
tween the light reflected from its two faces and, therefore,
a modulation in the power of the reflected beam. Assum-
ing the phase bias or working point of the FPI is set to the
maximum slope of the FPI intensity-phase transfer func-
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tion (by adjusting the wavelength or angle of incidence of
the interrogating laser beam), the sensor provides a linear
output for acoustically induced phase shifts.

In terms of acoustic performance, the fundamental ad-
vantage of the concept is the ability to provide high-
detection sensitivities, comparable to broadband piezoelec-
tric PVDF receivers, but with significantly smaller element
sizes. The latter is determined by the dimensions of the
optical field that addresses the sensor and, therefore, can
be reduced, in principle, to the optical diffraction limit of
a few microns. This offers the unique prospect of realiz-
ing the small element sizes required to provide an omnidi-
rectional response at frequencies in the tens of megahertz
range.

Several variants of this approach, distinguished by the
materials and methods used to fabricate the FPI and the
means to optically address it, have been demonstrated.
One fabrication method involves sputtering a multilayer
dielectric structure comprising two high reflectivity dielec-
tric mirrors on either side of a SiO2 spacer onto a glass
substrate [5]. The small thickness of the FPI formed using
this method (typically a few microns) offers the prospect
of bandwidths extending to several hundred megahertz.
Another approach has been to use a thicker spacer (typ-
ically tens of microns) fabricated using a polymer film to
provide bandwidths in the tens of megahertz range [6]–[8].
For both types of sensor, a variety of optical addressing
schemes have been used, the simplest being to illuminate
with a focused [5] or collimated laser beam [6] to form a
single-element receiver. More elaborate schemes that ad-
dress different points on the sensor surface, either sequen-
tially or in parallel, enabling the spatial distribution of ul-
trasound fields to be measured also have been described.
These methods include optically scanning a focused laser
beam across the sensor [9]–[11] or illuminating with a large
area laser beam and mapping the reflected sensor output
beam using a mechanically scanned photodiode [12] or an
array of detectors such as a CCD camera [10], [13]. The
ability of these systems to map ultrasound fields with high
spatial-temporal resolution has led to a variety of field
characterization and imaging applications, including map-
ping the output of broadband ultrasound transducers [10]–
[12], high resolution photoacoustic imaging of biological
tissues [8], [14], and transmission ultrasound imaging [12].

Although the practical application of these sensors
has been successfully demonstrated, predictive theoreti-
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cal models that fully describe their acoustic performance
in terms of frequency response and directivity have yet to
be developed. Previously, an experimentally validated an-
alytic model of the frequency response of a planar Fabry-
Perot (FP) polymer film sensor has been described [6].
However, this model provided the sensor response due to
normally incident plane waves only. In this paper, a more
general analytic model is developed that describes the
complex, frequency-dependent, directional response (mag-
nitude and phase) of the sensor. As well as providing in-
sight into the physical mechanisms that underlie the acous-
tic characteristics of the sensor, such a model provides a
valuable simulation tool for developing optimized sensor
designs by careful selection of the geometric and material
parameters. Additionally, it can be used to deconvolve for
the directional response of the sensor to reduce spatial av-
eraging errors in quantitative ultrasound metrology and
blurring and artefacts in imaging applications.

One specific application of the model that is of
widespread significance to the practical application of the
technique, and a focus of this paper, is its use to determine
the limits to the commonly held assumption that the ele-
ment size is defined by the dimensions of the optical field
that addresses the sensor. Although intuitively reasonable
for a laser spot radius much larger than the FPI thick-
ness, there will be some limit to this assumption as the
spot radius is reduced, and the question as to whether it
really is possible to obtain element sizes down to the op-
tical diffraction limit of a few microns (as one might hope
for) remains unanswered. Because the directional response
is directly related to element radius, this limit can be de-
termined by using the model to compute the directivity
and comparing it to that of an ideal ultrasound receiver to
obtain an effective element radius as a function of the illu-
mination spot radius. It then should be possible to identify
the smallest element size that can realistically be achieved
for a given sensor geometry and material properties. This
has important implications for the design of the optical in-
terrogation instrumentation. For example, there is little to
be gained in undertaking the nontrivial task of designing
an optical system that provides for truly optical diffrac-
tion limited spot sizes, if the effective element radius for a
specific sensor configuration is significantly larger.

Although the model described in this paper is generally
applicable to planar FPI ultrasound sensors, we consider
by way of an example, the specific case of those that use
a polymer film spacer. Thus in Section II, the sensor fab-
rication, typical material and geometric properties of this
configuration, are outlined. The model and its experimen-
tal validation are described in Sections III and IV. Two
applications of the model are discussed in Section V. First,
it is used to demonstrate how the directional response can
be improved by appropriate selection of the material prop-
erties of the backing substrate. Second, to investigate the
relationship between the dimensions of the region of the
sensor that is optically addressed and the effective element
radius in order to determine the minimum attainable value
of the latter.

Fig. 1. A FP ultrasound sensor comprising a polymer layer (10–
50 µm) with two thin reflective coatings, forming the FP interfer-
ometer, overlying a solid glass or polymer substrate (1–2 cm thick).
The substrate has an angled back-face to prevent optical reflections
within it acting as a second interferometer. The shape and size of
the acoustically sensitive region is determined by the profile of the
interrogating laser beam and the acoustic properties of the materials.
The width is not to scale and is typically of centimeter order.

II. Fabry-Perot Polymer Film
Ultrasound Sensor

A schematic of a FP polymer film sensor is shown in
Fig. 1. It consists of a layer of polymer sandwiched be-
tween two thin, optically reflective coatings and overlying
a transparent solid substrate, typically several centime-
ters thick. The polymer layer is typically 10–50 µm thick
and forms the interior of the FP cavity, with the reflective
layers forming the mirrors of the cavity. Several methods
have been investigated for fabricating FPIs with polymer
spacers. The first involves forming an FPI by depositing
a reflective aluminium coating on either side of a discrete
polyethylene terepthalate film that then is bonded to a
glass or polymer substrate (typically a centimeter or two
thick) using an optically transparent adhesive [6]. More
recently, spin coating [8] and gas phase vacuum deposition
techniques, such as the Parylene process [4], [12], have been
used to directly deposit the polymer spacer on to a sub-
strate precoated with metallic or dielectric layers that form
the first FPI mirror. The second mirror then is deposited
on to the polymer spacer. The use of the Parylene process,
in particular, to form the polymer layer, holds a number
of advantages. It provides a high degree of thickness uni-
formity and excellent surface finish, both of which are re-
quired to form a high-quality FPI and allows the sensors
to be inexpensively batch fabricated with a high degree of
repeatability. For these reasons, sensors fabricated in this
way provide an example of practical importance to study
and are considered in this paper.

As indicated in the previous section, the transduction
mechanism may be considered to consist of two parts: the
sensitivity of the light-intensity modulation to a change in
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optical phase (the intensity-phase transfer function men-
tioned above), and the sensitivity of the optical phase to
the incident acoustic wave. The former can be described
using the well established descriptions of multiple beam
interferometry used to model transfer functions of FPIs
[15]. The latter is the subject of this paper, as its depen-
dence on the direction and frequency of an incoming plane
acoustic wave determines the directionality and frequency
response of the sensor.

III. Model of Directivity and
Frequency Response

As described above, the FP sensor can detect ultra-
sound because an acoustic wave traveling through the sen-
sor changes the thickness of the polymer layer. This results
in a change in the phase between the light reflected from
the surfaces of the polymer layer, which alters the reflected
light intensity. It is this modulated light intensity that is
measured and from which the acoustic pressure is inferred.
The frequency and angle of incidence of the incident wave
will affect the amount by which the thickness of the poly-
mer layer changes. Therefore, the sensor response exhibits
some directionality. This section describes a model to cal-
culate this frequency-dependent directional response.

A. Optical Phase Change

In the absence of an acoustic wave, the difference in
phase between the light reflected from the two sides of the
interferometer is φ = 4πnd/λ0 radians, where n is the re-
fractive index, d is the thickness of the polymer film, and
λ0 is the in vacuo wavelength of the interrogating light
beam. A change in this phase could be due to a physical
change in the thickness of the film or a change in its refrac-
tive index. As the passage of an acoustic wave through the
sensor could, in principle, produce either effect, there are
two possible mechanisms by which the sound wave could
cause a modulation of the intensity of the reflected beam.
In this work, the second mechanism—the refractive index
change—was assumed to be negligible; the reasons for this
are discussed in the Appendix. The optical phase change,
therefore, is modeled as due only to the first mechanism: a
change in the physical thickness of the sensor as the acous-
tic wave propagates through it. To a linear approximation,
the change in phase, ∆φ, may be written as:

∆φ =
∂φ

∂d
∆d =

(
4πn

λ0

)
∂d

∂p
∆p, (1)

where ∆d is a change in the thickness due to a change
in the external acoustic pressure ∆p. ∂φ/∂d = 4πn/λ0 is
the sensitivity of the phase to a change in the thickness,
and ∂d/∂p is the sensitivity of the thickness to a change in
pressure. As the change in thickness, ∆d, is the difference
in the changes in the vertical particle displacements, uz,
on the two sides, z = 0 and z = d, of the FP layer, the

sensitivity of the thickness to a change in pressure may be
written:

∂d

∂p
=

uz(d) − uz(0) − d

∆p
. (2)

In other words, for a unit amplitude incident wave, the
sensitivity of interest, ∂d/∂p, is just the difference in the
particle displacements at the two sides of the polymer film
minus its unperturbed thickness. In Section III-B, a model
of elastic waves in solids is used to calculate this sensitiv-
ity as a wave travels through the sensor. ∂d/∂p, averaged
over the illuminated area of the sensor, weighted by the
laser beam profile S(x), gives the frequency-dependent di-
rectional response of the sensor:

D(f, θ) =

∫ ∞

−∞
(∂d/∂p)S(x)dx

∫ ∞

−∞
S(x)dx

. (3)

B. Elastic Wave Model

The sensor was treated as a linear, elastic, layered
medium characterized by two elastic constants per layer,
e.g., Lamé’s parameters λ and µ, or Young’s modulus E
and Poisson’s ratio σ. It was assumed to be infinitely wide,
with physical properties unvarying in the horizontal direc-
tion, and with a semi-infinitely thick substrate. By taking
advantage of the planar geometry of the sensor in this way,
an analytical model can be formulated that provides con-
siderably greater computational efficiency than numerical
models based on less specific approaches, such as finite dif-
ference or finite-element schemes [16]. It also was assumed
that the optically reflecting layers forming the FP cavity
were much thinner than an acoustic wavelength and, there-
fore, acoustically negligible. This is a good assumption for
the type of sensors and frequency ranges used in the mea-
surements, Section IV, and allows for a simpler mathe-
matical description. For higher frequencies in which this
assumption becomes invalid, the model may be straight-
forwardly extended to include these extra layers.

The equation for the time-varying vector particle dis-
placement, u = (ux, uy, uz), in an isotropic, elastic, mate-
rial is well known [17]:

ρ
∂2u
∂t2

= (λ + 2µ)∇(∇ · u) − µ∇ × (∇ × u). (4)

The task here is to calculate the vertical particle dis-
placement on the boundaries of the polymer (interferom-
eter) layer, uz(0) and uz(d), by solving (4) within each
layer subject to appropriate matching conditions on the
boundaries at which the layers meet. A standard method
of achieving this is described in [17]–[19].

The displacement vector may be written as the sum
u = ∇φ + ∇ × ψ, where φ and ψ are scalar and vector
potentials, respectively. In an isotropic medium, (4) then
splits into two wave equations: one for the scalar potential,
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Fig. 2. The coordinate system and notation for the wave approach to
characterizing the acoustic response of the sensor. The FP layer has
thickness d in the absence of an acoustic wave. The solid lines are
compressional (P) waves and the dotted lines shear waves. Assum-
ing an incident wave of known amplitude, there are seven unknown
wave amplitudes (A−, B±, C±, D+, E+) and so seven boundary
conditions must be specified.

which describes longitudinal waves traveling with speed
cl =

√
(λ + 2µ)/ρ, and one for the vector potential, which

describes shear waves with speed cs =
√

µ/ρ:

∂2φ

∂t2
− c2

l ∇2φ = 0, (5)

∂2ψ

∂t2
− c2

t ∇2ψ = 0. (6)

The shear wave propagates as a transverse wave, and
ψ points in a direction perpendicular to both the dis-
placement ∇ × ψ and the direction of travel. Any shear
wave may be considered as a combination of horizontally
and vertically polarized shear waves in which the parti-
cle motion is in the horizontal or vertical plane, respec-
tively. The two-dimensional (2-D) model described below,
and shown in Fig. 2, does not include horizontally polar-
ized shear waves; therefore bulk shear horizontal (SH) and
Love waves are excluded. This is not a limitation, however,
as such waves by definition do not cause displacements in
the z direction, which are the only movements of interest
for this application. With this simplification, the vector
potential can be written, without loss of generalization, as
ψ = (0,ψ, 0), where ψ is a scalar. In this case, the dis-
placement vector becomes:

u =
(

∂φ

∂x
− ∂ψ

∂z
,
∂φ

∂y
,
∂φ

∂z
+

∂ψ

∂x

)
. (7)

Single-frequency, plane wave, solutions to the wave
equations (5) and (6) will take the forms:

φ ∝ ei(k·x−ωt), (8)

ψ ∝ ei(kt·x−ωt), (9)

where ω is the temporal frequency, t is the time, x =
(x, y, z) a position vector, and k = (kx, ky, kz) and kt =
(ktx, kty, ktz) are wavevectors for the compressional (lon-
gitudinal) and shear waves, respectively. Here we study a

2-D model (Fig. 2) because, for a plane wave incident at
any angle θ on another plane, the coordinate axes always
can be aligned with the wavefront to reduce the problem
from three to two dimensions. Here the axes have been
chosen such that ky = kty = uy = 0.

As a plane pressure wave propagates through the sen-
sor, part of it will be reflected and part transmitted at
each boundary. No reflections occur other than at the
boundaries between the layers because the sensor’s phys-
ical properties were assumed to be constant in the hori-
zontal direction. In the steady state, all the (multiply re-
flected) upward-traveling compressional waves within the
polymer layer can be summed and treated as one wave
with a complex amplitude, C−. Similarly, all the downward
traveling waves can be lumped together with the com-
plex amplitude, C+. In this way, the field in the polymer
layer can be described by four wave amplitudes, B± and
C±, corresponding to downward/upward traveling shear
and compressional waves, respectively. A similar approach
and notation is used to describe the wave amplitudes in
the surrounding media too. Surface waves, such as leaky
Rayleigh waves, are implicitly included in this model as
they are combinations of shear and compressional motions.
The medium above the sensor is fluid, chosen here to be
water, so it does not support shear waves. In the poly-
mer layer and the substrate, however, both shear (dotted)
and compressional (solid) waves are excited (see Fig. 2).
If, with no loss of generality, the incident pressure wave
is assigned unit amplitude, there are seven unknown wave
amplitudes, denoted in Fig. 2 by A−, B±, C±, D+, and
E+ (+ indicates waves traveling in the positive z direc-
tion. A, C, and E are amplitudes of compressional waves
and B and D of shear waves). If the displacements in the
three layers of the model are denoted with subscripts 1, 2,
and 3 for water, polymer layer, and substrate, respectively,
the displacement potentials may be written, for this 2-D
case as:

φ1 = Ψ(A+eikz1z + A−e−ikz1z), (10)

ψ2 = Ψ(B+eiktz2z + B−e−iktz2z), (11)

φ2 = Ψ(C+eikz2z + C−e−ikz2z), (12)

ψ3 = ΨD+eiktz3z, (13)

φ3 = ΨE+eikz3z , (14)

where the common factor Ψ = exp(i(kxx − ωt)) appears
because the wavenumbers in the x direction, kx, always
must be the same as that of the incident wave (Snell’s
law). Eq. (10)–(14) are for displacement potentials, so the
known amplitude A+ = P0/(ρ1ω2), where P0 is the inci-
dent pressure amplitude. Here, we set P0 = 1.

To solve for the seven unknown amplitudes, seven con-
ditions of continuity at the boundaries are required. It is
assumed that the solid polymer layer and solid substrate
are in welded contact, but that the fluid can slip over the
solid. This results in the following seven requirements:

• the normal particle displacement is continuous across
both boundaries (1 and 2),
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• the tangential particle displacement is continuous
across the polymer layer/substrate boundary (3),

• the normal stress is continuous across both boundaries
(4 and 5),

• the shear stress is continuous across both boundaries
(6 and 7).

Conditions 4–7 are written in terms of stress. The
displacement-strain and strain-stress relationships are
well-known and allow the seven conditions to be rewrit-
ten as:

uz1(0) = uz2(0), (15)
uz2(d) = uz3(d), (16)
ux2(d) = ux3(d), (17)

λ1

(
∂ux1

∂x

∣∣∣∣
0
+

∂uz1

∂z

∣∣∣∣
0

)
= λ2

∂ux2

∂x

∣∣∣∣
0

+ ν2
∂uz2

∂z

∣∣∣∣
0
,

(18)

λ2
∂ux2

∂x

∣∣∣∣
d

+ ν2
∂uz2

∂z

∣∣∣∣
d

= λ3
∂ux3

∂x

∣∣∣∣
d

+ ν3
∂uz3

∂z

∣∣∣∣
d

,
(19)

µ2

(
∂ux2

∂z

∣∣∣∣
0
+

∂uz2

∂x

∣∣∣∣
0

)
= 0, (20)

µ2

(
∂ux2

∂z

∣∣∣∣
d

+
∂uz2

∂x

∣∣∣∣
d

)
= µ3

(
∂ux3

∂z

∣∣∣∣
d

+
∂uz3

∂x

∣∣∣∣
d

)
,
(21)

where ν = 2µ + λ. Substituting expressions for the poten-
tials obtained from (10)–(14) and (7), into these match-
ing conditions results in seven equations in the seven un-
known amplitudes A–E. These can be written in matrix
form as (22) (see next page), where e1 = exp(iktz2d),
e2 = exp(ikz2d), e3 = exp(iktz3d), and e4 = exp(ikz3d).
The following shorthand also was used: λ̄2 = λ2 − ν2,
λ̄3 = (λ3 − ν3), γ2 = λ2k2

x + ν2k2
z2, and γ3 = λ3k2

x + ν3k2
z3.

This matrix equation may be solved efficiently using stan-
dard matrix techniques [18], [19] to yield the unknown
wave amplitudes A−, . . . , E+. Using (7), (11), and (12),
the vertical component of the displacement vector within
the polymer layer may be written:

uz2(x, z) =
∂φ2

∂z
+

∂ψ2

∂x
(23)

= ikz2Ψ(x)(C+eikz2z − C−e−ikz2z)

+ ikxΨ(x)(B+eiktz2z + B−e−iktz2z). (24)

Once the system of equations has been solved for the seven
unknown amplitudes using (22) the difference in vertical
particle displacements uz2(0) − uz2(d) can be ascertained,
and the required sensitivity ∂d/∂p can be calculated from
(2) as a function of frequency ω and incidence angle θ =
sin−1(kx/k) where k = ω/c. The final task in calculating
the sensor response is to average over the area of the spot
illuminated by the interrogating laser, taking into account
the laser beam profile.

C. Spatial Averaging Over the Beam Profile

The interrogating laser beam has a finite spot radius,
so rather than measuring at one point on the sensor, it

measures the spatial average over the spot. This averaging
will affect the directional response of the sensor, i.e., the
response to a wave incident at an oblique angle θ ̸= 0.

In (23) the factor Ψ(x) contains all the x-dependence,
so the integral in the numerator of (3) becomes the inte-
gral of Ψ(x)S(x) over x, where S describes the spot size
and profile. S could describe any beam profile, such as a
Gaussian, but here a top-hat beam of radius a is used:

S(x) = 1 for − a ≤ x ≤ a

= 0 elsewhere.
(25)

Averaging over x gives the normalized directivity factor
Ψ as:

Ψ =

∫ ∞

−∞
Ψ(x)S(x)dx

∫ ∞

−∞
S(x)dx

. (26)

For the top-hat case in 2-D this becomes:

Ψ =
1
2a

∫ a

−a
eikxxdx =

sin(kxa)
kxa

, (27)

where the time-dependent phase factor exp(−iωt) has been
omitted for convenience.

In 3-D Cartesian coordinates (x, y, z), the profile S, as
given in (25), represents a line source of width 2a, infinitely
long in the y direction. In order to model a circular spot,
rather than a line source, the beam profile must be de-
scribed as a function of a radial coordinate, r =

√
x2 + y2.

If r is chosen to be zero at the center of the beam, then the
beam profile for the top-hat circular beam is the same as
(25), except with x replaced by r =

√
x2 + y2. By trans-

forming from the Cartesian coordinates (x, y) to the cylin-
drical polar coordinates (r, ζ), the corresponding directiv-
ity factor becomes:

Ψ =
1

πa2

∫ a

0

∫ 2π

0
eikxr cos ζ rdζdr (28)

=
2
a2

∫ a

0
J0(kxr)rdr =

2J1(kxa)
kxa

. (29)

So, using (2) and (3), the overall directivity D(f, θ) now
can be written:

D = ikz2Ψ
(
C+(eikz2d − 1) − C−(e−ikz2d − 1)

)

+ ikxΨ
(
B+(eiktz2d − 1) + B−(e−iktz2d − 1)

)
− d. (30)

Eq. (30) can be used to calculate the complete, frequency-
dependent, complex directional response, i.e., both mag-
nitude and phase.

IV. Directivity Measurements

As a first test of the model described in Section III,
it was compared to a previous, experimentally validated
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⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

kz1A+

0
0

λ1k2
1A

+

0
0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

kz1 kx kx kz2 -kz2 0 0
0 kxe1 kx/e1 kz2e2 -kz2/e2 -kxe3 -kz3e4
0 -ktz2e1 ktz2/e1 kxe2 kx/e2 ktz3e3 -kxe4

−λ1k2
1 -λ̄2kxktz2 λ̄2kxktz2 γ2 γ2 0 0

0 λ̄2kxktz2e1 -λ̄2kxktz2/e1 -γ2e2 -γ2/e2 -λ̄3kxktz3e3 γ3e4
0 µ2(k2

tz2 − k2
x) µ2(k2

tz2 − k2
x) -2µ2kxkz2 2µ2kxkz2 0 0

0 µ2(k2
tz2 − k2

x)e1 µ2(k2
tz2 − k2

x)/e1 -2µ2kxkz2e2 2µ2kxkz2/e2 −µ3(k2
tz3 − k2

x)e3 2µ3kz3kxe4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

A−

B+

B−

C+

C−

D+

E+

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)

Fig. 3. Experimental arrangement for the plane-wave directivity mea-
surements.

model [6], which describes the sensor’s normal-incidence
frequency response. This other model has been shown to
agree with normal-incidence, plane-wave, pressure mea-
surements for a variety of different substrates and poly-
mer layers. Both models give the same normal-incidence
response; the model described here, however, can also ac-
count for waves with oblique angles of incidence. An ex-
periment with which to compare the model output for
obliquely incident waves was therefore devised.

Fig. 3 shows the experimental arrangement used to
measure the directional response of the detector, i.e., the
response to plane waves incident at oblique angles. A
Panametrics V312-SU ultrasound transducer (6-mm di-
ameter, 10 MHz center frequency, −6 dB points at 6.3
and 12.9 MHz) driven with a Panametrics 5052 PR pulser-
receiver was mounted on an arm capable of being rotated
such that the sound beam from the transducer always was
incident on the same point on the sensor, from the same
distance away. To ensure that the wavefronts arriving at
the sensor were plane, the transducer was placed in the far
field, 140 mm from the sensor face. This is in the far field
for frequencies up to about 20 MHz. The maximum output
of the transducer was 130 kPa, well within the linear range
of the sensor [12]. The sensor used in these measurements,
described in detail in [12], consisted of a 3.8-mm thick sub-
strate of borosilicate glass (cl ≈ 5640 m/s, cs ≈ 3280 m/s,
ρ = 2240 kg/m3) and a 40-µm thick Parylene C (Spe-
cialty Coatings Systems, Indianapolis, IN) polymer layer
(cl ≈ 2200 m/s, cs ≈ 1100 m/s, ρ = 1180 kg/m3). The
reflective coatings were aluminium in this case and with a

thickness of ≈ 50 nm were considered acoustically negligi-
ble. The lateral dimensions of the sensor were 5×3 cm. The
laser beam used to interrogate the sensor was a 70 mW,
850 nm, distributed Bragg reflector laser diode. Its output
was collimated and expanded to provide a large area el-
liptical beam of dimensions 16 × 12 mm. The bias point
to ensure a linear response was chosen by angle tuning
the incident beam [12], [20]. The light reflected from the
sensor was directed through an aperture, 400-µm radius,
to give a top-hat profile, to a photodiode. The high-pass
filtered (> 300 kHz) output of which was recorded using
a 500 MHz digitizing oscilloscope. The arm was manually
rotated in steps of 1◦, and a measurement of the acoustic
signal from the transducer was made at each angle (av-
eraged over 100 pulses). These measurements were then
Fourier transformed to give the frequency-angle sensor re-
sponse.

Fig. 4 shows a measurement of the frequency-angle re-
sponse for angles from 0◦ (normal incidence) to 80◦ for a
frequency range from 1 to 15 MHz. These measurements
were normalized to the frequency response at normal inci-
dence predicted by the model. The prediction of the model,
using the estimated material parameters stated above, is
shown in Fig. 5. The minima that form the series of con-
cave curves are due to spatial averaging over the illumi-
nated spot. This occurs when the horizontal component
of the wavelength is an integer multiple of the spot diam-
eter, i.e., at the zeros of Ψ (29), which is approximately
kxa = π(n + 1/4) for n = 1, 2, . . . . The two vertical fea-
tures, labeled A and B, are caused by critical angle ef-
fects. At low frequency, these minima occur close to the
critical angles for transmission of compressional (15◦) and
shear waves (27◦) from water to glass, a consequence of
the fact that, at these low frequencies, the polymer layer
is much thinner than a wavelength and thus loses its abil-
ity to influence the waves’ behavior. At these critical an-
gles, the wavefronts are traveling horizontally in the glass
and, hence, almost horizontally in the polymer. Therefore,
there is little displacement in the vertical direction and the
sensor response falls to a minimum. At higher frequencies,
more complex interference effects affect the response, as
the polymer layer becomes a significant proportion of a
wavelength.

The comparison between the measurement and the
model can be seen more clearly in the horizontal profiles
through Figs. 4 and 5 for frequencies from 1 to 13 MHz,
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Fig. 4. The measured, plane-wave, frequency-angle response in deci-
bels, for a frequency range of 1–15 MHz and incidence angles of
0–80◦, for a glass-backed, Parylene film FP ultrasound sensor with
aluminium reflective coatings and a 40-µm Parylene C layer. The
response has been normalized to show the same normal incidence
response as the model, shown in Fig. 5.

Fig. 5. The plane-wave, frequency-angle response of a glass-backed
sensor predicted by the model of Section III, and corresponding to the
measurements in Fig. 4. The parameters used were: 40-µm Parylene
C layer (cl = 2200 m/s, cs = 1100 m/s, ρ = 1180 kg/m3), glass
substrate (cl = 5640 m/s, cs = 3280 m/s, ρ = 2240 kg/m3), and
400-µm radius top-hat interrogation beam.

shown in Fig. 6. From these directivity plots and the full,
frequency-angle plots, it is clear that there is good qualita-
tive agreement between the model and the measurements
overall and good quantitative agreement at lower frequen-
cies and smaller incidence angles. However, there are dis-
crepancies in the amplitude if not the shape of the response
at higher angles of incidence and higher frequencies, largely
due to signal-to-noise limitations. Three factors contribute
to the low signal-to-noise ratio (SNR): the reduced out-
put of the transducer at higher frequencies (at 15 MHz
it is 10 dB below its maximum output at 10 MHz), the
increased attenuation at higher frequencies and the large
(140 mm) transducer-sensor distance leads to at least a
further 7 dB of attenuation, and the sensor itself is less

Fig. 6. Directivity plots at frequencies of 1–13 MHz obtained by
taking horizontal profiles through Figs. 4 and 5 and normalizing to
normal incidence. ‘-’ model, ‘o’ measurements.

Fig. 7. The plane-wave, frequency-angle response of a polycarbonate-
backed sensor predicted by the model of Section III. The parameters
used were: 40-µm Parylene C layer (cl = 2200 m/s, cs = 1100 m/s,
ρ = 1180 kg/m3), polycarbonate substrate (cl = 2180 m/s, cs =
960 m/s, ρ = 1180 kg/m3), 400-µm radius top-hat interrogation
beam.
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sensitive at large angles of incidence and high frequencies.
The large transducer-sensor separation was a necessary re-
quirement to ensure that the sensor was in the transducer’s
far field so that the wavefronts were essentially plane when
they reached it. As well as the noise introduced by the low
SNR, there was some experimental error due to the diffi-
culty of aligning the experimental system to ensure that
the illuminated, sensitive point on the detector remained
at the same point in the field of the ultrasound transducer
for every measurement angle.

V. Applications

A. Sensor Design

Perhaps the most direct application of the model is its
use as a predictive tool to improve the sensor design itself
through careful investigation of the effects of the mate-
rial and geometric parameters. For instance, by replacing
the glass substrate with polycarbonate (cl = 2180 m/s,
cs = 960 m/s, ρ = 1180 kg/m3), which has a lower shear
speed than the sound speed in the water, the vertical fea-
ture, B, can be eliminated, Fig. 7. The minimum in Fig. 7
at 42◦ corresponds to the compressional wave critical an-
gle, feature A in Fig. 4, although clearly shifted from 15◦

because of the slower wave speed. At the critical angle the
compressional wave is traveling perpendicular to the sen-
sor inside the polymer layer and so causes no motion in the
vertical direction. The minimum remains at a constant an-
gle as the frequency increases because the acoustic prop-
erties of the polycarbonate and Parylene are similar (so
there is no significant acoustic boundary between them);
therefore, even when the polymer layer is a significant pro-
portion of a wavelength, interference effects do not dom-
inate (d is no longer a characteristic length scale for the
problem).

B. Effective Element Radius

It is often assumed that the size of the acoustically sen-
sitive measuring “element” is given by the size of the region
illuminated with the interrogation light beam. In fact, a
signal arriving at the sensor outside the illuminated area
may propagate as a surface wave to the illuminated region
and be detected. This phenomenon has also been noted
in piezoelectric PVDF detectors such as membrane hy-
drophones, in which Lamb waves propagate to the sensi-
tive region from outside it. These guided surface waves and
other modes cause the directivity of the sensor to deviate
from that of a purely spatially-averaging pressure detector.
The “effective” element radius is a useful but approximate
measure of a sensor’s directional characteristics [21], [22],
obtained by comparing the directivity of the real sensor
to the directivity of a rigid, circular, pressure detector of
radius aeff, whose directivity is due purely to spatial aver-
aging and is given by:

Deff =
2J1(kxaeff)

kxaeff
, (31)

Fig. 8. Directivity plots at frequencies of 1–13 MHz obtained by
taking horizontal profiles through Fig. 7 and normalizing to normal
incidence. Also shown is the directivity function J1(kxaeff)/(kxaeff),
for an ideal, rigid, circular, pressure detector of radius a = 400 µm
(dashed line) indicating that, in this case, the effective element radius
equals the illuminated spot radius.

The value of aeff for which Deff(aeff) most closely
matches the measured directivity is called the effective el-
ement radius, irrespective of the radius of the illuminated
spot. The effective and optically defined element radii dif-
fer when the sensor does not behave like a rigid, circular,
pressure detector. In this section the directivity model is
used to answer two, related, questions:

• Under what conditions is the effective element radius
the same as the illumination spot radius?

• Is there a minimum, attainable, effective element ra-
dius for a given sensor thickness d? Is there a limit be-
yond which a smaller illumination spot radius makes
no difference to the directivity pattern?

In Fig. 8 the solid lines show the directivity of a 40-
µm thick, polycarbonate-backed sensor with a circular il-
luminated spot of 400-µm radius (i.e., horizontal profiles
through Fig. 7), and the dashed lines are the function Deff,
also with radius aeff = 400 µm. The good agreement be-
tween the two directivity functions suggests that, in this
case, with an illuminated spot radius much larger than the
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Fig. 9. Directivity plots from the model (solid line) of a 40-µm thick,
polycarbonate-backed sensor at a frequency of 25 MHz for illumina-
tion spot radii of 160, 80, 40, 20, 10, and 5 µm shown on a linear scale.
Also shown (dashed-dotted line) is the function J1(kxaeff)/(kxaeff)
at which the radius aeff has been found through a best-fit over angles
from 0 to 40◦ (the dashed part of the line).

sensor layer thickness, the effective element radius corre-
sponds closely to the illumination spot radius, at least for
frequencies above 3 MHz, confirming our intuitive expec-
tation.

Fig. 9 shows an example in which the approximation
aeff ≈ a begins to break down as the illuminating spot ra-
dius is reduced. The solid lines show the directivity, on a
linear scale, at 25 MHz for the 40-µm sensor for decreas-
ing illumination spot radii of 160, 80, 40, 20, 10, and 5 µm
(from 4 to 1/8 times the FP layer thickness). Eq. (31)
was fitted to these directivity patterns in a least-squares
sense for angles from 0 to 40◦, as at larger angles the rigid
disc approximation differs significantly from the sensor
model, and the comparison would have been meaningless.
Similarly, approximate but useful small-angle comparisons
have been made in the past for hydrophone directivities,
by comparing the widths of the first lobe (beamwidths)
and ignoring higher-angle effects [21], [22]. In Fig. 9 we
see that, for large a, the spatial-averaging term, Ψ from
(29), dominates the behavior, and we see good agreement
between aeff and a. As a is reduced in size, Ψ approaches
unity and interference effects within the sensor affect the

Fig. 10. The effective-element radius, aeff, as a function of the illumi-
nated spot radius, a, for a sensor thicknesses d = 40 and 25 µm at a
frequency of 25 MHz (polycarbonate-backed sensor). As the illumi-
nated spot radius a is reduced, the effective-element radius eventually
reaches a minimum value below which further reductions in a have
no effect.

response more noticeably, so that, when a has been re-
duced to half the sensor thickness d/2, the effective radius
aeff is still twice this size. By reducing a still further, we
see that a minimum aeff = 36 µm is reached at a = d/4,
10 µm, so that any further reductions in a lead to no fur-
ther reduction in aeff.

In Fig. 10, which shows the effective radius, aeff, as a
function of the illuminated spot radius, a, for sensor thick-
nesses of 40 and 25 µm and a frequency of 25 MHz, this
effect can be seen clearly. The effective radius reduces to a
minimum below which any further reductions in the illu-
minated spot radius leave the effective radius unchanged.
Fig. 11, which shows the normalized effective-element ra-
dius as a function of the normalized wavenumber ka for
a number of fixed spot radii, gives a more general result.
From Fig. 11, it is clear that, to achieve the absolute mini-
mum, requires both an illuminated spot size less than d/4
and a sufficiently high frequency. At lower frequencies, to
the left of the graph, a cosine-type dependence charac-
teristic of a gradient or difference detector dominates the
response, and the effective element radius becomes much
larger than the illuminated spot radius. We can now see
that the examples in Figs. 9 and 10 were all chosen so
that the frequency was sufficiently high to ensure the min-
imum effective radius reached was the absolute minimum
achievable.

Three conclusions may be drawn from these graphs:

• for sufficiently large spot sizes and frequencies (a > 2d
and ka ≫ 1) the effective element radius equals the
spot radius aeff = a,

• it is not possible to achieve an effective element ra-
dius smaller than ∼ 0.9d however small the illumi-
nated spot radius, and

• to achieve this minimum, effective-element radius, the
illuminated spot radius must be less than d/4, and the
frequency sufficiently high, kd ! 4.
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Fig. 11. The effective-element radius, aeff, normalized by the FP layer
thickness d, as a function of ka, the wavenumber normalized by the
illumination spot radius, showing that, for a > 2d and ka ≫ 1, the
effective element radius aeff = a; however small the illuminated spot
radius, it is not possible to achieve an effective element radius smaller
than ∼ 0.9d; and to achieve this minimum effective-element radius
the actual spot radius must be less than d/4 and the frequency such
that kd 4 (polycarbonate-backed sensor).

So, for the 40-µm thick polymer layer studied here,
the minimum attainable, effective-element radius is about
36 µm, and this can be achieved only with an illumination
spot radius of about 10 µm and at frequencies above about
20 MHz.

VI. Conclusions

A model of the directivity and frequency response of a
planar, FP ultrasound sensor has been described and ex-
perimentally validated. Although a three-layer geometry
was used here, the model may be straightforwardly ex-
tended to sensors with an arbitrary number of layers [19].

Such sensor directivity models have many possible uses.
Examples of two applications were given here: the model
was used as a design tool to improve the sensor’s direc-
tional characteristics, and the relationship between ac-
tual and effective element radius was investigated. It was
found that, for a given sensor thickness, d, the mini-
mum achievable, high-frequency, effective-element radius
is about 0.9d. There are many other potential applications.
To improve accuracy in high frequency ultrasonic calibra-
tion and metrology, it is becoming increasingly common to
take into account the normal-incidence frequency response
of the sensor [23], [24]. For sound field characterization, in
which the sound waves are not necessarily normally in-
cident, an improvement in accuracy may be achieved by
using the model to deconvolve the directional response of
the sensor too. In a similar way, deconvolution of the sen-
sor response could reduce artefacts and blurring in imag-
ing applications, in which images are formed by spatially
mapping the output of the sensor. As well as removing the
effects of the detector response from measurements, the

model could be included in a forward model of ultrasonic
propagation to predict more accurately real measurements
of an ultrasound field [25].

Appendix A

As stated in Section III-A, a change in the optical phase
could be due to a physical change in the thickness of the
FP layer or by a change in its refractive index. This second
mechanism, whereby a strain causes a change in refractive
index, is called the photoelastic effect. In Section III this
mechanism was assumed to be negligible, and the optical
phase change was modeled as purely due to a change in
the thickness. The reasons for making this assumption are
discussed in this appendix.

If an acoustic wave traveling through the sensor causes
a time-varying stress birefringence in the sensor, the direc-
tivity measurements would be expected to depend on the
polarization of the interrogating laser beam. Experiments
with beams of different polarization showed no significant
differences in the directivity measurements. However, al-
though this rules out an anisotropic change in refractive
index due to stress birefringence, it does not eliminate the
possibility of an isotropic change in the refractive index
due to the density changes induced by the wave. This pos-
sible transduction mechanism is discussed below, and it
also is found to be insignificant for the examples studied
here.

In the absence of an acoustic wave, the difference in
optical phase between light reflected from the two sides
of the interferometer is φ = 4πnd/λ0 radians. The change
in phase due to the two mechanisms, therefore, may be
written as:

∆φ =
∂φ

∂d
∆d +

∂φ

∂n
∆n =

4π

λ0
(n0∆d + d∆n) .

(32)

The second term—due to the photoelastic effect—may
be neglected if:

∆n

n0
≪ ∆d

d
. (33)

Following Pitts and Greenleaf [26], a change in the re-
fractive index of an isotropic, dielectric medium may be
related to a small change in the density, ∆ρ = ρ − ρ0, by:

∆n =
(

n2
0 − 1
2n0

)
∆ρ

ρ0
, (34)

where ρ and ρ0 are the densities in the presence and ab-
sence of a wave, respectively. As the dilatation ∇ · u, the
sum of the volumetric strains is related to the density by:

∇ · u =
ρ0

ρ
− 1, (35)

the change in refractive index can be written:

∆n =
(

n2
0 − 1
2n0

)(
−∇ · u

1 + ∇ · u

)
. (36)
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This change can be calculated using the wave model
described in Section III-B. Calculations of the ratio
d∆n/n0∆d showed it be to below 0.001 for the range of
frequencies, layer thicknesses, and types of materials dis-
cussed here. In addition, this isotropic photoelastic mech-
anism predicts a frequency response quite different from
that measured experimentally [6] and exhibits peaks and
troughs in the directional response that disagree with ex-
periment results (Fig. 4).
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