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Photoacoustic imaging is a noninvasive biomedical imaging modality for visualizing the internal structure
and function of soft tissues. Conventionally, an image proportional to the absorbed optical energy is
reconstructed from measurements of light-induced acoustic emissions. We describe a simple iterative
algorithm to recover the distribution of optical absorption coefficients from the image of the absorbed optical
energy. The algorithm, which incorporates a diffusion-based finite-element model of light transport, con-
verges quickly onto an accurate estimate of the distribution of absolute absorption coefficients. Two-
dimensional examples with physiologically realistic optical properties are shown. The ability to recover
optical properties (which directly reflect tissue physiology) could enhance photoacoustic imaging techniques,
particularly methods based on spectroscopic analysis of chromophores. © 2006 Optical Society of America

OCIS codes: 110.5120, 170.5120.

1. Introduction

Biomedical photoacoustic (PA) imaging provides a
means of visualizing the internal structure and func-
tion of soft tissues. The image contrast is provided by
light-absorbing chromophores within the tissue. These
may be naturally occuring, such as oxyhemoglobin and
deoxyhemoglobin, or externally administered, e.g.,
dyes, nanoparticles, or other contrast agents. In con-
ventional PA imaging, the spatially varying pressure
increase following the absorption of a laser pulse is
reconstructed from time-resolved measurements of the
subsequent acoustic radiation recorded over the tissue
surface.1–3 Assuming impulsive deposition of the laser
energy and acoustic homogeneity, this image of the
initial pressure distribution is proportional to the ab-
sorbed optical energy density. Because the absorbed
energy density is the product of both the absorption
coefficient and the fluence, this image has the disad-
vantage that it provides a somewhat indirect represen-

tation of the spatial variation of the optical coefficients
and therefore the structure and physiology of the tis-
sue. In this paper, we address this by recovering the
spatial distribution of the optical absorption coefficient
from the absorbed optical energy by using an itera-
tively applied forward model of light transport. Be-
cause this produces a map of the optical absorption
coefficient in absolute units, it is referred to as quan-
titative PA imaging.

There are several important advantages to obtain-
ing an image of the absorption coefficient distribution
rather than the absorbed optical energy. The absorp-
tion coefficient distribution, unlike the absorbed en-
ergy map, is directly related to the spatial distribution
of absorbing chromophores in the tissue and does not
depend on the light fluence. This provides for a truer
image contrast distribution and therefore aids the vi-
sual interpretation of the image—most obviously, for
example, it removes the depth-dependent falloff in con-
trast that is due to optical attenuation. Important
as this is, particularly when one is interpreting images
of complex anatomical structures, its greatest signifi-
cance lies in spectroscopic imaging. Here the objec-
tive is to quantify the concentration of specific
chromophores, perhaps endogenous, such as oxy-
hemoglobin and deoxyhemoglobin for the measure-
ment of blood oxygenation,4–6 or exogeneous contrast
agents, such as those proposed for use in PA molecular
imaging applications,7 by means of their known spec-
tral signatures. Obtaining the latter directly from mul-
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tiwavelength images of the absorbed energy can be
problematic because the wavelength dependence at
any point is, in effect, encoded with the spectral char-
acteristics of all the chromophores throughout the il-
luminated tissue volume. The effect of such spatial-
spectroscopic cross talk is to corrupt the spectral
signature of the chromophore of interest, seriously
compromising the ability to identify its presence and
quantify its concentration. Reconstructing images in
terms of the absolute absorption coefficient at multiple
wavelengths avoids this. Finally, because the image is
quantitatively reconstructed in units of optical absorp-
tion, it offers the prospect of making comparisons over
time of absolute changes in physiological parameters.

Relatively little work has been done in this area,
despite its obvious advantages. Methods for estimat-
ing the depth-dependent absorption in a layered me-
dium from a PA time series measured in the acoustic
far and near fields have been described,8–10 but they
are limited to the one-dimensional case and nonscat-
tering media. The Born approximation was used in
an inversion scheme for small perturbations in the
absorption coefficient distribution over a known back-
ground absorption in an infinite, homogeneous, scat-
tering medium, when both the scattering and
background absorption coefficients are known.11 It
provides a good estimate of the heterogeneous optical
absorption coefficient distribution when the light flu-
ence distribution that is due to the background ab-
sorption is changed little by the absorption
perturbations, i.e., for low absorption perturbations.

In this paper we describe a simple iterative method
for estimating arbitrary two-dimensional (2D) ab-
sorption coefficient distributions quantitatively from
the absorbed energy map in a scattering medium. In
Section 2 we review the principle of conventional PA
imaging, in which the image is a combination of the
absorption coefficient distribution and the fluence. In
Section 3 we describe a method for removing the
effect of the fluence from the image, leaving just an
image of the absorption coefficient distribution, by
using a forward model of light transport (Subsection
3.A) in a recursive algorithm (Subsection 3.B). Sev-
eral examples that use simulated measurements are
described in Section 4, demonstrating that the tech-
nique can recover arbitrary absorption distributions
from measurements containing noise.

2. Photoacoustic Imaging: Reconstructing for the
Absorbed Energy Distribution

If a region of a fluid is heated through the absorption
of a laser pulse, a sound wave is generated. In a
stationary fluid with isotropic acoustic properties,
under conditions whereby the sound-generation
mechanism is thermoelastic, the effects of viscosity
and thermal conductivity can be neglected (thermal
confinement), and linear propagation can be as-
sumed, the wave equation for the acoustic pressure p
is12,13

�2p �
1

c2

�2p

�t2 �
��

Cp

��

�t , (1)

where c is the sound speed, � is the volume thermal
expansivity, Cp is the constant-pressure specific-heat
capacity, and � is the heat energy per unit volume
and per unit time deposited in the fluid. p and � will
depend, in general, on the position r � �x, y, z� and
time t. When the laser pulse is sufficiently short that
the optical energy is absorbed before the fluid density
has time to change (stress confinement14), the heat-
ing function can be modeled as a � function in time,

��r, t� � H�r���t�, (2)

where H(r) is the heat deposited in the fluid per unit
volume because of the absorbed laser energy. If the
absorption coefficient distribution at a point in the
fluid is �a�r� and the light fluence is ��r; �a�, then the
spatial part of the heating function can be written as

H�r� � �a�r���r; �a�. (3)

The deposited energy density or spatial heating func-
tion, H(r), is termed the absorbed energy map be-
cause it represents the distribution of absorbed
optical energy. As the fluence ��r� will in general
depend on the absorption coefficient distribution
�a�r�, as well as on the scattering coefficient distri-
bution �s�r� and the anisotropy factor g�r�, the ab-
sorbed energy H is noninearly related to �a. In the
case of �-function heating, Eq. (2), the acoustic pres-
sure immediately following the laser pulse, or initial
pressure distribution, p0�r�, is proportional to the ab-
sorbed energy map,

p0�r� � ��c2

Cp
�H�r� � 	H�r�, (4)

where 	 is the Grüneisen coefficient, a dimensionless
constant that represents the efficiency of the conver-
sion of heat to pressure. �	 � 0.11 for water at room
temperature.14) This initial pressure distribution
then propagates away as acoustic waves according
to Eq. (1). In biomedical PA imaging these acoustic
waves are measured at the tissue surface as a func-
tion of time, and backpropagation algorithms are
used to obtain an image proportional to the initial
pressure distribution p0 and consequently the ab-
sorbed energy map.1–3,15,16 This map, referred to here
as the measured absorbed energy Ĥ, is convention-
ally called a PA image.

The final step in the image reconstruction process
might then be regarded as one in which a model of
light transport is fitted to Ĥ to obtain a quantitative
image of the tissue optical properties. It is our objec-
tive in this paper to demonstrate this step, so we
make the reasonable assumption that p0, and hence
Ĥ, has been reconstructed from the acoustic measure-
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ments accurately and with negligible structural dis-
tortion. This is discussed in Section 5.

3. Fitting a Model of Light Transport to the Absorbed
Energy Distribution

Inverse problems in which unknown parameters
must be extracted from measurements of a related
quantity are often solved by adjustment of the pa-
rameters in a model of the corresponding forward
problem until its solution matches the measure-
ments. Here, we solve the inverse problem of estimat-
ing the absorption coefficient distribution by
adjusting �a in a forward model of light transport
until it fits a measured absorbed energy distribution.
We do this by using a simple fixed-point iteration.

A. Forward Models of Light Transport

An appropriate forward model must be able to calcu-
late the absorbed energy density distribution in a
scattering medium, given an arbitrary absorption
distribution as a parameter, and, because several it-
erations may be required for finding the solution,
must be able to calculate it quickly. As we assume
�-function heating, Eq. (2), a time-independent light-
propagation model is sufficient.

Although Monte Carlo (MC) models provide a reli-
able and accurate way to calculate light transport in
turbid media,17 they are unsuitable as the forward
model in this inverse problem because the geometry
of absorption and scattering inhomogeneities must be
encoded directly and they are slow to converge. Other
numerical methods may be found that satisfy both
criteria. A finite-element (FE) model of light trans-
port based on the P1 (diffusion) approximation to the
transport equation was chosen for this study. Such
models are well established in inverse schemes for
optical tomography18,19 because of their accuracy and
speed. The P1 approximation is valid when �a �� �s

and for distances inside scattering tissue signifi-
cantly greater than 1��t, where �t � �a 
 �s is the
total attenuation coefficient. There may be occasions
in biomedical PA imaging when the conditions do not
hold, such as when one is imaging superficial targets
close to the surface of the scattering medium. To
account for this case, a simple adjustment to the scat-
tering parameters in the P1 model, based on consid-
eration of the �-Eddington phase function, was used
to more accurately model the fluence at short dis-
tances inside the scattering medium.5,20 The P1 ap-
proximation assumes almost isotropic radiance,
which is not the case close to the tissue surface, where
the light from an incident collimated beam remains
highly directed. At depths much greater than 1��t,
where the P1 approximation is accurate, the fluence
depends on only the reduced scattering coefficient
�s� � �s�1 � g� and not on �s and g separately. When
the scattering coefficient is reduced by a factor of
f to �s�1 � f� and the new anisotropy factor is chosen
to be �g � f���1 � f� (so that �s� remains the same),
more of the incident light remains unscattered close

to the surface, as required, but the solution at depths
much greater than 1��t remains unchanged. Follow-
ing comparisons with MC models, the fraction f was
found to be well approximated by f � g3 for the range
of optical coefficients used here. The P1 approxima-
tion, with these modified scattering coefficients, was
encoded into a FE model by use of the Galerkin
method with a Robin boundary condition18,19 on a
uniform rectangular mesh.

Although we have been discussing a FE model
based on the diffusion equation, and we use it
throughout the paper, the recursive inversion algo-
rithm described below is not necessarily restricted to
using this FE model but could use a FE model based
on a higher-order approximation to the transport
equation or, indeed, any other suitably efficient
model of light transport in turbid media that can
accept an arbitrary absorption distribution as a pa-
rameter.

B. Recursive Algorithm for Quantitative Estimation of
Absorption Coefficient Distributions

In general, the absorbed energy H depends on both
the absorption and the scattering coefficients. In
Eq. (3), H does not depend explicitly on the scattering
but rather depends on it implicitly through the flu-
ence distribution �; reconstructing for the scattering
would therefore require fitting to a model for the
fluence. This, however, is likely to suffer from the
nonuniqueness problem identified by Arridge and Li-
onheart.21 There are several possible approaches to
addressing this issue, such as incorporating prior in-
formation about, or constraints on, the scattering dis-
tribution, the simplest being to assume that the
scattering is constant over the reconstructed volume.
This may be reasonable for soft tissues such as post-
menopausal breast, liver, and subcutaneous fat, es-
pecially when imaging small volumes. Because our
main purpose in this paper is to show that a recursive
algorithm can quickly recover the absorption coeffi-
cient distribution in examples with realistic geomet-
ric and optical properties, we make this simplifying
assumption and assume that the scattering is known
a priori. A similar assumption was made by Ripoll
and Ntziachristos,11 as well as in early work in dif-
fuse optical imaging.21

If the measured absorbed energy distribution Ĥ,
the illumination geometry, and the scattering distri-
bution are known, then the absorption coefficient dis-
tribution may be recovered iteratively as follows: (1)
The initial estimate for the absorption is set at zero,
�a

�0� � 0; (2) the fluence ��0� that would result from an
absorption distribution of �a

�0� is calculated with a
forward model of the propagation of light in a scat-
tering medium; (3) a new absorption estimate is
calculated from �a

�1� � Ĥ���0�; and (4) calculations of
��k� and �a

�k� are iterated until the error in the ab-
sorbed energy, �H�k� � Ĥ � �a

�k���k�, is sufficiently
small. This algorithm is shown as a flow chart in
Fig. 1 and summarized below.
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Quantitative PA imaging algorithm:

Ĥ has been measured
set stopping criterion �

�a
�0� � 0

k � 0

while ��H�k��  �
calculate fluence ��k� using a forward model
�H�k� � Ĥ � �a

�k���k�

�a
�k
1� � Ĥ���k�

k � k 
 1

end

Here �a, �, and Ĥ are all nonnegative and in �N2,
where N2 is the number of pixels in the image. It has
been shown elsewhere that this iterative algorithm
converges to within machine precision of the true
absorption in the noise-free case without regulariza-
tion.23 However, the estimate of the absorption is
more sensitive to errors in the estimate of the fluence,
wherever the fluence is low, which can cause insta-
bilities when the measurements contain noise. To see
this we differentiate �a � Ĥ�� to get

��a

��
� �

Ĥ

�2, (5)

and we note that, at points where � is small, ��a���
will be large. This potential cause of instability can be
dealt with in a number of ways. If the inversion can
be restricted to a region of the tissue where the flu-
ence is never low, the instability will not arise. This,

however, requires the fluence to be known, at least
approximately, in advance, which will not necessarily
be the case. A more general approach is to add a
positive regularization parameter � to the denomina-
tor and calculate the absorption update by use of

�a
�k
1� �

Ĥ

��k� 
 �
. (6)

If the measurements are split into the exact absorbed
energy H and noise �, so Ĥ � H 
 �, then the
sensitivity can now be written as two terms,

��a

��
� �

H

�� 
 ��2 �
�

�� 
 ��2, (7)

where the effect of the regularization parameter be-
comes apparent. Increasing � reduces the sensitivity
of the absorption estimate to the noise at the expense
of reducing the rate of convergence to the, now ap-
proximate, solution H��� 
 ��. The advantage of this
method of regularization is that, in addition to pre-
venting the estimates where the fluence is low from
blowing up and corrupting the whole solution, it also
does not blur the edges, which represent the sharp
changes in absorption. This is in contrast to regular-
izing the solution by smoothing (i.e., by removing the
high-spatial-frequency components on the basis that
the required solution varies more smoothly than the
noise), which would blur the sharp boundaries
throughout the image.

The regularization parameter � could, in principle,
be chosen to be spatially dependent and adjusted be-
fore each iteration. It could be proportional to the re-
ciprocal of the spatially dependent signal-to-noise ratio

Fig. 1. Flow chart showing the recursive algorithm for quantitative PA imaging.
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(SNR), for instance, thereby maximizing the accuracy
of the absorption estimate at points where the SNR is
large but preventing instability at points where it is too
small. For simplicity, we take � as constant in the
examples below. An appropriate value, or values, for �
can be found in a number of ways, for example, by
using the L-curve method,24 or, as we have done in the
examples below, by running the inversion several
times, increasing � each time, until no divergence is
detected and a stable solution is reached.

4. Numerical Examples

Four examples are provided to demonstrate the
above algorithm by recovering the 2D absorption co-
efficient distribution from simulated measurements
of absorbed enery density. In the first example, a 2D
MC model of light transport17 was used to simulate
the measured absorbed energy map that would be
obtained from a conventional PA reconstruction. For
the subsequent examples, with more complex absorp-
tion distributions, the MC model was replaced with
the FE model described above because of its much
greater flexibility and faster run time. Using exactly
the same model for the simulation and the recon-
struction is considered an inverse crime as the inver-
sion may unwittingly be given a priori information
that aids the inversion, such as the mesh geometry.
To mitigate this inverse crime, the simulated mea-
surements obtained with the FE model were first
calculated on a 150 � 150 mesh and then linearly
interpolated to a coarser, noncoincident 71 � 71
mesh. Noise was added to the simulated data in all
the examples. The illumination was chosen to have a
top-hat beam profile of 2 mm radius and was incident
from left to right. The optical coefficients used are
realistic for blood and background tissue in the near-
infrared wavelength range.

A. Example Using Data Simulated with the Monte
Carlo Model

The first example, which consisted of two rectangular
absorbers with absorption coefficients of 0.2
and 0.1 mm�1, within a background absorption of
0.01 mm�1, is shown in Fig. 2A. The scattering coef-
ficient and anisotropy factors were constant, with
�s � 10 mm�1 and g � 0.8. The regularization pa-
rameter � was set to 1. The measured absorbed en-
ergy map Ĥ, shown in Fig. 2B, was simulated with
the 2D MC model. Normally distributed noise was
added, and any resulting negative values of Ĥ were
set to zero on the basis that the absorbed energy
cannot be negative. The SNR varied from �40 dB,
close to the source, to approximately �10 dB 12 mm
away from the surface. Following 20 iterations of the
inverse algorithm, the absorption distribution in
Fig. 2C was recovered. Horizontal cross sections
through the absorption distribution at 3 and
�1.5 mm (Fig. 2D) show that the absorption has been
recovered well. The final fluence distribution (Fig.
2E) shows that the fluence falls off rapidly with dis-
tance from the light source. The effect of this on the

absorption coefficient estimate is evident in Fig. 2C,
where the noise has corrupted the estimate in the
corners far from the source. The squared error, �H2,
summed over the region of the inversion is plotted on
a log scale as a function of the iteration number in
Fig. 2F. As the inversion progresses, the error de-
creases until the iteration converges. In these inver-
sions, each iteration took �1 s on a personal
computer with a 2 GHz processor.

This example shows that the inversion algorithm
can be used to obtain an accurate, quantitative esti-
mate of the absorption coefficient distribution from
realistic, noisy data that avoid the inverse crime. The
inversion converges quickly to an image that shows
the structure of the absorbers more clearly and to a
greater depth than in the original image of the ab-
sorbed energy. Furthermore, the success of the recon-
struction is an implicit indication that the FE model
agrees with the MC model and is therefore an accu-
rate model of light transport.

B. Example Using Data Simulated with the
Finite-Element Model

This example of three absorbers with absorption coef-
ficients of 0.3 mm�1 (small circle), 0.2 mm�1 (rectan-
gle), and 0.1 mm�1 (large circle) is shown in Fig. 3A.
The FE model was used to simulate the data. The
scattering coefficient, anisotropy factor, and regular-
ization parameter were �s � 10 mm�1, g � 0.8, and
� � 0.1. The absorption coefficient distribution is
shown in Fig. 3A. The simulated data were calculated
on a 150 � 150 mesh and interpolated to a 71 � 71
mesh to provide the measured Ĥ. Noise was added, as
in the previous example, to give a SNR in the range
of 40 to �20 dB. The simulated absorbed energy map
is shown in Fig. 3B. The downsampling distorts the
shape of the small circular absorption inhomogeneity
close to the source. The recovered absorption coeffi-
cient distribution (Fig. 3C), following 20 iterations,
also has a pixelated appearance for the same reason.
Nevertheless, good estimates of the absorption coef-
ficient were still recovered. This example shows even
more clearly than the previous one the improvement
in the image structure following the inversion. The
large rectangular absorber is all but invisible in
Fig. 3B, but, after the inversion, Fig. 3C is both clear
and, except where the fluence is low at the end far-
thest from the source, quantitatively accurate.

C. Two Contrasting Examples

The final two examples, in Figs. 4 and 5, illustrate that
the inversion algorithm is not restricted to recovering
specific shapes of absorption inhomogeneities but can
recover an arbitrary distribution. Figures 4 and 5 show
two contrasting examples, lines, representing a dis-
crete, well-defined structure such as blood vessels, and
a more diffuse absorber, representing a target such as
a tumor. In both examples the absorbed energy map
was simulated with the FE model, downsampled, and
noise was added as in the previous example. The scat-
tering coefficient and anisotropy factor were �s �
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10 mm�1 and g � 0.8, respectively. In Fig. 4, the true
absorption coefficient distribution (Fig. 4A) consists
of alternating strips of absorption of 0.1 and
0.01 mm�1. In the measured absorbed energy map
(Fig. 4B) the striped pattern has been distorted by the
fluence distribution, with the stripes fading rapidly
with distance from the source both in depth and to-
ward the top and bottom of the image. The recovered
absorption (Fig. 4C), with � � 0.1, although clearly

affected by the noise where the fluence is low, shows
that the strips of absorption extend deeper and far-
ther to the sides than the map of absorbed energy
suggests. Figure 5 shows an absorption distribution
(Fig. 5A) that differs from those considered so far in
that it is smooth and continuously changing, without
sharp boundaries or regions of constant absorption.
The inversion algorithm still recovers a good estimate
of the absorption distribution (Fig. 5C) from the ab-

Fig. 2. Quantitative reconstruction of absorbers in a scattering medium by use of data simulated with a MC model. A, true optical
absorption distribution with absorption coefficients of 0.2 mm�1 (small square), 0.1 mm�1 (larger square), and 0.01 mm�1 (background).
�s � 10 mm�1, g � 0.8, � � 1. B, measured absorbed energy distribution, in millijoules per cubic centimeter, simulated with a MC model
with added noise. The SNR varies across the image from 40 dB, near the light source, to �10 dB farthest away. C, recovered absorption
distribution, in inverse millimeters, following 20 iterations. D, horizontal slices through the true (solid) and recovered (dots) absorption
distributions at 3 and �1.5 mm. E, recovered fluence, in millijoules per square centimeter, following 20 iterations. F, log (base 10) of the
sum of the squared error against iteration number, showing convergence.
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sorbed energy distribution (Fig. 5B), with � � 0.1.
The strongest feature in the absorbed energy distri-
bution is a peak close to the point �1, 0�. By removal
of the distorting effect of the fluence, the peak around
�4, �3�, where the absorption coefficient is largest,
appears as the strongest feature.

5. Discussion

The examples above show that both the structure
and good quantitative estimates of the absorption

coefficient distribution can be recovered from the
absorbed energy map by use of the algorithm de-
scribed in Subsection 3.B. Obtaining absorption co-
efficient distributions at many wavelengths will
allow chromophores of known spectral characteris-
tics, and thereby physiologically interesting quan-
tities such as blood oxygenation, to be identified and
quantified. In PA molecular imaging, in which the
abundance of a biomolecule of interest is indicated
by the concentration of a marker chromophore, it is

Fig. 3. Quantitative reconstruction of absorbers in a scattering medium by use of data simulated using a FE model. A, true optical absorption
distribution with absorption coefficients of 0.3 mm�1 (small circle), 0.2 mm�1 (square), 0.1 mm�1 (larger circle), and 0.01 mm�1 (background).
�s � 10 mm�1, g � 0.8, � � 0.1. B, measured absorbed energy distribution, in millijoules per cubic centimeter, simulated with a model.
The SNR ranges from 40 to �20 dB. C, recovered absorption distribution, in inverse millimeters, after 20 iterations. D, horizontal slices
through the true (solid) and recovered (dots) absorption distributions at 2, 0, and �3 mm. E, recovered fluence, in millijoules per square
centimeter, following 20 iterations. F, log (base 10) of the sum of the squared error against iteration number showing convergence.
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necessary to have the estimate of the absorption
coefficient in absolute units to determine this con-
centration.

The quantitative inversion algorithm described
here, which does estimate the absorption coefficient
in absolute units, assumes that the map of absorbed
energy density has been recovered accurately, and
without significant structural distortion, from the

acoustic measurements. In practice this requires a
calibrated imaging system with a pointlike point-
spread function. Both parts of a PA imaging system,
the array of acoustic detectors and the algorithm to
backproject the pressure time series to obtain the
absorbed energy map, contribute to the point-spread
function. A realistic approximation to an ideal recon-
struction can be obtained by use of a closely spaced

Fig. 4. Quantitative reconstruction of absorbing strips in a scat-
tering medium. A, true absorption distribution consisting of alter-
nate lines with absorption coefficients 0.2 and 0.01 mm�1. �s �
10 mm�1, g � 0.8, � � 0.1. B, measured absorbed energy distri-
bution, in millijoules per cubic centimeter, simulated with a FE
model. The SNR ranges from 40 to �20 dB. C, recovered absorption
distribution, in inverse millimeters, following 20 iterations.

Fig. 5. Quantitative reconstruction of a smoothly varying absorp-
tion distribution in a scattering medium. A, true absorption dis-
tribution with the absorption coefficient varying smoothly and
continuously over space. �s � 10 mm�1, g � 0.8, � � 1. B, mea-
sured absorbed energy distribution, in millijoules per cubic centi-
meter, simulated with a FE model. The SNR ranges from 40 to �40
dB. C, recovered absorption distribution, in inverse millimeters,
following 20 iterations.
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array of broadband detectors over as great a solid
angle as possible, with the assumption that the
medium is acoustically homogeneous. These assump-
tions have been shown to be reasonable through ex-
perimental demonstrations in phantoms3,25 and
in vivo,26,27 where good reconstructions of the blood
vessel structure on a rodent brain have been obtained
by measuring all around, and through, the intact
skull.28,29 Where the image is distorted by the re-
sponse of the ultrasound detectors or a limited mea-
surement aperture, standard deconvolution routines
may be used to improve it.

Although in principle, with the scattering known
a priori, the absorption coefficient distribution could
be recovered from an uncalibrated absorbed energy
map, because the shape of the absorbed energy map
alone still depends uniquely on the absorption, the
recursive algorithm described here requires that the
absorbed energy map be calibrated. In principle, this
may be achieved with calibrated ultrasound sensors,
although further unknowns, such as acoustic cou-
pling, may arise in practice. One may overcome these
issues by calibrating the whole system at once, by
imaging a phantom of known optical coefficients (per-
haps a specific chromophore within the tissue), and
comparing the image to the absorbed energy density
predicted by an accurate model of light transport
within the phantom, such as described in Subsection
3.A. This type of calibration, using a homogeneous
absorber, has been used in diffuse optical imaging.30

6. Summary

An iterative inversion algorithm that can accurately
recover distributions of physiologically realistic opti-
cal absorption coefficients from given distributions of
absorbed optical energy has been described. It has
been shown, by use of simulated examples, that the
absorption distribution can be recovered quickly and
accurately from the absorbed energy density when
the scattering is known. The inversion is robust to
noise in the absorbed energy map where the fluence
is sufficiently high and any arbitrary pattern of ab-
sorption can be recovered.

This work was supported by the Engineering and
Physical Sciences Research Council (UK) and the
Swiss National Science Foundation.
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